

Scaling Analysis of Proton Cumulants and the QCD Critical Point

Facility for Rare Isotope Beams Michigan State University

arxiv:2405.10278

Agnieszka Sorensen w/ Paul Sorensen

What does this have to do with Scott Pratt? At first sight, not much...

Beam Energy Scan Theory collaboration:

- 3D hydrodynamics (MUSIC)
- particlization: 3 different choices of samplers (microcanonical, iSS w/ out-of-equilibrium corrections, MSU sampler)
- hadronic afterburner (SMASH) with potentials (VDF)

Who: the BEST Interfaces group

- the BEST Interfaces group continued to meet on Zoom, weekly, for 4 years
- extremely helpful for early-career researchers
- beyond BEST, 1 paper as a result of the meetings (<u>arXiv:2210.03877</u>)

From this you can infer two things:

- Scott really likes to meet, if needed online, and chat about physics 1) (BEST Interfaces, HBT Camp, ...)
- 2) Recent upgrade from BEST Interfaces to HBT Camp includes
 - improved documentation of the activities of the group (Maria!) - doubling the rate for writing papers together (<u>arXiv:2410.13983</u>)

Scott is a community builder and an enthusiastic mentor

Agnieszka Sorensen

for interpreting the results from the ongoing BES program at RHIC..."

Task: create a unified framework to take a hydro event and run different samplers and the afterburner

What does this have to do with Scott Pratt?

Support beyond just encouragement: invited talk at WPCF 2022 in East Lansing, MI

- At a time when I did not obtain much direction or encouragement, Scott was a constant positive voice

- somewhat niche subject, but important for BES
- encouragement from Scott
- at WPCF 2022, Scott warns me of mission creep

What does this have to do with Scott Pratt?

What does this have to do with Scott Pratt?

Mission creep:

Agnieszka Sorensen

Scott's advise: write it up and publish!

Introduction

Behavior near a critical point

- Critical point (CP): a single point in the phase diagram where char
- The endpoint of a 1st order phase transition

As systems approach the CP, latent heat decreases \Rightarrow it costs little energy for components of one phase to form a local "bubble" of the other phase \Rightarrow as CP is approached, correlation length ξ increases = large fluctuations (large bubbles) \Rightarrow critical opalescence phenomenon:

→ "bubbles" grow to sizes comparable with visible light wavelengths ($\xi \approx \lambda$) → light can be scattered and a translucent system becomes cloudy (like fog) ⇒ at CP, correlation length formally diverges; system experiences correlations of all sizes (proof: critical opalescence in methanol+cyclohexane persists at CP where $\xi \sim 1$ cm)

a single point in the phase diagram where change from an ordered to disordered phase occurs

6

Universal behavior

 $c_{\infty}(t,0) \sim |t|^{-\alpha}$ Near CP: $\xi_{\infty}(t,0) \sim$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\xi_{\infty}(0,m)$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity X: $X_{\infty}(t) \sim |$

Scaling is not unique to critical phenomena, e.g., Kepler's third law! The orbital period of a planet scales as the cube of the semi-major axis of its orbit:

The important question for scaling is: what is the scale relevant to the problem?

Agnieszka Sorensen

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$t \mid -\sigma \sim \left[\xi_{\infty}(t) \right]^{\frac{\sigma}{\nu}}$$

 $P^2 = a^3$

Universal behavior

Near CP: $c_{\infty}(t,0) \sim |t|^{-\alpha}$ $\xi_{\infty}(t,0) \sim$ $\tilde{n}_{\infty}(t,0) \sim (-t)^{\beta}$ $\xi_{\infty}(0,m)$ $\tilde{n}_{\infty}(0,m) \sim m^{\frac{1}{\delta}}$ $\chi_{\infty}(t,0) \sim |t|^{-\gamma}$

For a thermodynamic quantity X:

CP: infinite volume concept In real world ξ does not go to infinity = thermodynamic functions do not exhibit singularities

 $X_{\infty}(t) \sim |$

 ξ is bound by the size of the system L $\Rightarrow X_I($

 $\Rightarrow X_L$

 $\Rightarrow X_L(*$

Agnieszka Sorensen

$$\sim |t|^{-\nu} \qquad t \equiv \frac{T - T_c}{T_c}$$

$$\sim |m|^{-\nu_c} \qquad m \equiv \frac{\mu - \mu_c}{\mu_c}$$

$$t \mid -\sigma \sim \left[\xi_{\infty}(t) \right]^{\frac{\sigma}{\nu}}$$

$$(t_L) \sim L^{\frac{\sigma}{\nu}}$$

$$(t_L) = L^{\frac{\sigma}{\nu}} \phi(t, L) = L^{\frac{\sigma}{\nu}} \phi(tL^{\frac{1}{\nu}})$$

$$(t_L) L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$$

one can find CP by plotting

Finite size vs. window size

Finite-size scaling (original): change the size of the system, calculate $X_I(t_I)$, repeat

However, changing SIZE is not always possible or doesn't probe the same system: bird flocks, heavy-ion collisions, ...

Solution: study the dependence of X on the size of the *subsystem* that is considered

 $X_L(t_L)L^{-\frac{\sigma}{\nu}} = \phi(tL^{\frac{1}{\nu}})$

- D. Martin, T. Ribeiro, S. Cannas, et al., Box scaling as a proxy of finite size correlations, Sci Rep 11, 15937 (2021)

Where can we expect scaling behavior?

- For fluids far from the critical region, a mean-field treatment is good enough. contributions are small but finite.
- In the region of the phase diagram where the bulk of the evolution is well described by hydrodynamics (a scale free theory), the data follows Taylor's Law (is scale free): $\sigma^2 = a\lambda^p$

Agnieszka Sorensen

The transition between the critical scaling region, intermediate scaling region, and extended scaling region has been studied: for fluids, the extended scaling region essentially covers the entire phase diagram where fluctuation M.A. Anisimov, S.B. Kiselev, J.V. Sengers, S.Tang, Crossover approach to global critical phenomena in fluids, Physica A 188, 4 (1992)

$$C_2 = aW^p$$

$$C_2 = a(xW)^p = ax^pW^p = ax^pW^p$$

where $C_1 \propto W$ in this energy rates

Scale invariance supports the applicability of FSS (but not in at $\sqrt{s_{NN}} = 3$ GeV!)

Results using data from BES-I

Agnieszka Sorensen

10

Thermal model

$$\chi_2 = \frac{C_2}{T^3 V} \quad \Rightarrow \quad \chi_2(W, \mu_{\rm fo}) = \frac{C_2(W, \mu_{B, \rm fo})}{T_{\rm fo}^3 W dV_{\rm fo}/d}$$

- We use rapidity bin width W as the subsystem
- We use published thermal model fits for T_{f_0} and
- We parameterize $dV_{\rm fo}/dy$ from several publicat (for 2.4 GeV, $T_{f_0}^3 V$ is highly uncertain, ranging from about 65 to
- Experiments can improve results by publishing \bullet $dV_{\rm fo}/dy, T_{\rm fo}, \mu_{B,\rm fo}$ from thermal model fits for specific W

	$\sqrt{s_{_{ m NN}}}$	$y_{ m beam}$	$\mu_{ m fo}$	$T_{ m fo}$	$dV_{ m fo}$
^y	(GeV)		(GeV)	(GeV)	(fm
	2.4	0.73	0.776	0.050	1715
size	3.0	1.05	0.720	0.080	485
	7.7	2.09	0.398	0.144	104^{-1}
$d \mu_{B,fo}$	11.5	2.50	0.287	0.149	104'
	14.5	2.73	0.264	0.152	108
tions	19.6	3.04	0.188	0.154	113'
0 650)	27	3.36	0.144	0.155	1213
	39	3.73	0.103	0.156	134
	54.4	4.06	0.083	0.160	148'

J. Adamczewski-Musch et al. (HADES), Phys. Rev. C 102, 024914 (2020) M. Abdallah et al. (STAR), Phys. Rev. C 104, 024902 (2021) M. Abdallah et al. (STAR), Phys. Rev. C 107, 024908 (2023) A. Andronic, P. Braun-Munzinger, J. Stachel, Acta Phys. Polon. B 40, 1005-1012 (2009) A. Motornenko et al., Phys. Lett. B 822, 136703 (2021) S. Chatterjee et al., Adv. High Energy Phys. 2015, 349013 (2015)

Susceptibility

$$\chi_{2}(W, \mu_{\rm fo}) = \frac{C_{2}(W, \mu_{B,\rm fo})}{T_{\rm fo}^{3} W dV_{\rm fo}/dy}$$

- Grey band shows uncertainty from freeze-out ambiguities for the 2.4 GeV data. Uncertainty precludes any conclusion about observing a maximum in χ_2
- Data do indicate a change in slope at higher μ_B and at small *W*:
 χ₂ decreases with increasing *W* for 7.7–54.4 GeV but changes slope at 2.4 GeV (3.0 GeV is ~flat)

Scaled susceptibility: 2D fit w/ mean-field exponents

With mean-field exponents, we find scaling for 555 < $\mu_{B,c}$ < 610 MeV; T_c only constrained by "plausibility" (below $T_{pc,\mu_B=0}$ and above T_{fo}) Chi-square contours identify an allowed region in the phase diagram: $\mu_{B,c} = 580 \pm 30$ MeV Agnieszka Sorensen

Scaled susceptibility: 2D fit w/ mean-field exponents

With mean-field exponents, we find scaling for $555 < \mu_{B,c} < 610$ MeV; T_c only constrained by "plausibility" (below $T_{pc,\mu_B=0}$ and above T_{fo}) Chi-square contours identify an allowed region in the phase diagram: $\mu_{B,c} = 580 \pm 30$ MeV

Summary

- Data follows Taylor's law ($C_2 \propto C_1^p$) = exhibits scale-free behavior for 7.7-54.4 GeV data

Thank you for your attention, and thank you Scott for your support over the years!

Agnieszka Sorensen

• Window-size analysis allows studying the influence of probed scale (dynamics changes if size is studied *via*, e.g., centrality-dependence)

• In a 2-D fit, we extract $\mu_B \approx 580 \pm 30$ MeV: a first extraction from data!

