Charge Balance Functions

Scott Pratt, Karina Martirosova, Oleh Savchuk, Rachel Steinhorst Michigan State University Andrew Gordeev and Steffen Bass Duke University Christopher Plumberg Pepperdine University Dima Olliinchenko Microsoft

S.P., J. Kim & C.Plumberg PRC(2018) S.P. & C.Plumberg PRC(2019) S.P. PRC (2020) S.P. & R.Steinhorst, PRC (2020) S.P. & C.Plumberg, PRC (2020) S.P. & K.Martirosova, PRC (2022) S.P., D.Oliinchenko & C.Plumberg, PRC (2022) O.Savchuk and S.P., PRC (2024) Why Charge Balance Functions are the Most Important Measurement in High-Energy Heavy-Ion Collisions

Properties of the QGP

- 1. Eq. of State
- 2. Chemistry (charge fluctuations)
- 3. Chiral Symmetry Restoration

Charge balance functions are principal tool

Transport Coefficients

- 4. Viscosity (shear & bulk)
- 5. Diffusivity & Conductivity (light / heavy quark)
- 6. Electromagnetic Opacity & Emissivity
- 7. Gluonic Opacity and Emissivity (jet quenching)

Also important for:

- CME background
- Background for fluctuations for phase transitions

Charge Susceptibility

Because $\langle Q_a \rangle = 0$, chemistry (at $\mu = 0$), you must look at fluctuations

For non-interacting

Quark Gas:

$$\chi_{ab} = \sum (n_a + n_{\bar{a}}) \delta_{ab}$$

Hadron Gas:

$$\chi_{ab} = \sum_{h} n_h q_{ha} q_{hb}$$

Susceptibility represents chemistry!!!!

Diffusion/Conductivity (light quark)

Charge Susceptibilities

At what part of trajectory do you *measure* χ_{ab} ?

Answer: BFs sensitive to ENTIRE trajectory!!! $B_{hh'}(\Delta y) \leftrightarrow \chi_{ab}(\tau)$

Theory of Correlations and Balance Functions

Charge Correlations

(Equilibrated System)

Eq.s of motion

 $\partial_t C'_{ab}(\vec{r}_1 - \vec{r}_2) - D_{ab} \nabla_1^2 C'_{ab}(\vec{r}_1, \vec{r}_2) - D_{ab} \nabla_2^2 C'_{ab}(\vec{r}_1, \vec{r}_2) = -S_{ab}(\vec{r}_1, t) \delta(\vec{r}_1 - \vec{r}_2),$ $S_{ab}(\vec{r}, t) = \left[\partial_t + \vec{v} \cdot \vec{\nabla} + (\nabla \cdot \vec{v})\right] \chi_{ab}(\vec{r}, t) \approx s(\vec{r}, t) \left[\partial_t + \vec{v} \cdot \vec{\nabla}\right] \frac{\chi_{ab}(\vec{r}, t)}{s(\vec{r}, t)}$

Translate C_{ab} into $C_{hh'}$

 $\delta N_h = \chi_{ab}^{-1} (T_{\text{interface}}) q_{ha} n_h \delta Q_b$

Charge Balance Function

$$\begin{split} C_{hh'}(\vec{r}_1, \vec{r}_2) &= \langle [\delta n_h(\vec{r}_1) - \delta n_{\bar{h}}(\vec{r}_1)] [\delta n_{\bar{h}'}(\vec{r}_2) - \delta n_{h'}(\vec{r}_2)] \rangle, \\ B_{h|h'}(\vec{p}_1|\vec{p}_2) &= \frac{1}{N_{h'}(\vec{p}_2) + N_{\bar{h}'}(\vec{p}_2)} \langle [\delta N_h(\vec{p}_1) - \delta N_{\bar{h}}(\vec{p}_1)] [\delta N_{\bar{h}'}(\vec{p}_2) - \delta N_{h'}(\vec{p}_2)] \rangle \\ \text{If you see a charged particle at } \vec{p}_2, \end{split}$$

chance of finding balancing (opposite charge) at \vec{p}_1

 $B_{\pi\pi}$ has contribution from hadronization stage B_{pp} and B_{KK} are sourced at thermalization

 $B_{\pi\pi}(\Delta y)$ should be narrower than $B_{KK}(\Delta y)$ or $B_{pp}(\Delta y)$!!!

$$\begin{split} \mathbf{Diffusivity} \\ \vec{j}_a &= - D_{ab} \nabla \rho_b, \mathbf{3x3 matrix} \text{ (colors)} \\ &= -\sigma_{ab} \nabla (\mu_b/T), \\ \sigma &= \chi D, \\ \mathbf{\chi}_{ab} &= \langle \delta Q_a \delta Q_b \rangle / V = \partial \rho_a / \partial (\mu_b/T) \\ \mathbf{susceptibility} \end{split}$$

Kubo Relation

$$\sigma_{ab} = \frac{1}{2T} \int d^4x \, \left\langle \{j_a(0), j_b(x)\} \right\rangle$$

difficult (not impossible) for lattice gauge theory

The Calculation

Diffusion = Random walk

Monte Carlo procedure:

- A) Overlay with hydro evolution to create $S_{ab}(t, \vec{r})$
- B) Generate partners (uu,dd,ss,ud,us,ss) proportional to $S_{ab}(t, \vec{r})$ with weights
- C) Move particles in random directions punctuated by re-directioning according to τ_{coll}
- D) Translate δQ_a to δN_h at hyper surface
- E) Collide (fixed σ) and decay particles
- F) Combine decay products with those from partner
- G) Correlations created during hadronic phase:
 create uncorrelated hadrons, run through cascade,
 combine ALL particles to create BF

17

- H) Add contributions from (E) and (F)
- I) Fold with acceptance/efficiency
- J) Test sum rules

ALGORITHM

ALGORITHM

TYPE I:

Correlations from Hydro:

- Depends of D and σ_0
- Only a few hours of CPU
- track charges from same source point

<u>TYPE 2:</u>

Correlations from Cascade

- Weeks of CPU
- One hydro event (independent of D, σ_0)
- Millions of cascade events

Adjustable Parameters

- **1.** Diffusion Constant D(T) (multiples of lattice values)
- 2. $T_h = 155 \text{ MeV}$
- 3. σ_0 = spread in spatial rapidity at τ_0 = 0.6 fm/c
 - creation before τ_0 or tunneling (flux tubes)

Model input Susceptibility

Claudia Ratti BW Collaboration

D(T) – No Clear Consensus

G.Aarts et al, JHEP (2015) J.Ghiglieri et al, JHEP (2018) G.Policastro et al, JHEP (2002)

Model input Hydro history

Andrew Gordeev

Chris Plumberg

VISHNU Hydro, Au+Au (200A GeV)

Source Function

- First surge when QGP is created
- uu,dd continuously created
- ss nearly steady
- ud, us, ds at hadronization

Diffusive Trajectories

ALGORITHM: Add in Type II

Type II done by brute force (lots of combinatoric noise)

Results vs. Data

26

Model vs. STAR

- Identified particles (vs. Δy)
- pK is off
 pp is off (annihilation missing)

Evidence of Early Chemical Equilibrium

- $p\bar{p}$, K^+K^- BFs broader than $\pi^+\pi^-$ BFs!!
- σ₀ > 0! charge already
 created at separated at τ₀

Look at $B(\Delta \phi)$

- Width: Insensitive to pre-thermal separation
- Eliminate sensitivity to late-production *-pp* or *KK* BFs
 - Only consider $\Delta y \gtrsim 1.0$

Sensitivity to Diffusivity

annihilation affects results

32

0-5% centrality, Au+Au (200A GeV) simulated STAR acceptance

Sensitivity to Diffusivity

- $\Delta \phi$ binning reduces dependence on σ_0
- kaons or protons best suited:
- χ_{ss}/s roughly constant \approx only phi contributes from final state
- χ_{BB}/s roughly constant annihilation an issue

33

Model vs. ALICE

Lattice Diffusivity looks good

Analyze $B(\Delta \phi)$ Cutting on large Δy

$$B_1(\Delta y) \equiv \int d\Delta \phi B(\Delta y, \Delta \phi) \cos(\Delta \phi),$$
$$B(\Delta y) = \int d\Delta \phi B(\Delta y, \Delta \phi)$$

Type II only provides noise for $\Delta y \gtrsim 1$ Robust extraction of diffusivity Eliminate HBT, annihilation, decays..

O. Savchuk and S.P. PRC 2024

In Progress

en

- Bayesian Analysis
 - New emulator built (BAND Collaboration, Oleh Savchuk)
 Based on Taylor expansion

$$E(x, y, \dots) = \sum_{\langle n_x, n_y \dots \rangle} \frac{1}{\sqrt{n_x! n_y! \dots}} A_{\langle n_x, n_y \dots \rangle} \left(\frac{x}{\Lambda}\right)^{n_x} \left(\frac{y}{\Lambda}\right)^{n_y} \dots$$

- Non-equilibrium chemistry (Steffen Bass and Andrew Gordeev)
- Rigorously constrain initial chemistry!
- Will better constrain diffusivity if we can get more data!

Summary

- Charge Balance correlations calculated in "standard model"
- STAR/ALICE BFs vs Δy suggest early chemical equilibration $K^+K^-, p\bar{p}, \pi^+\pi^-$ systematics reproduced (STAR pK normalization off)
- Diffusivity can be extracted from BFs binned by $\Delta \phi$ cut on large Δy High statistics STAR & ALICE data coming !?!?
- MANY opportunities for progress
 - Both theoretical and experimental
 - Both for diffusivity and for chemistry
 - Similar to femtoscopy

Office of Science

39

Bonus Slides

- CME background
- Skewness/kurtosis background
- Theory for higher-order charge fluctuations

Bonus Slides

- CME background
- Baryon Annihilation
- Higher Moments

Charge Conservation and Q^3, Q^4 correlations

b) Perform canonical ensemble on sub-volumes & superimpose on blast wave (crude)

BONUS: Charge conservation and Q^3 , Q^4 correlations

(formalism)

a) Integrate n-point correlations to obtain skewness & kurtosis

BONUS: baryon annihilation

- $p \bar{p}$ BF vs q_{inv}
- Includes recombination
- Great way to constrain baryon
 annihilation in final-state