

Extraction of the speed of sound in hot QCD matter at the LHC

CESAR A. BERNARDES

IF-UFRGS, SPRACE-UNESP

WPCF 2024 - 17th Workshop on Particle Correlations and Femtoscopy Toulouse, France, November 04-08, 2024

Speed of sound (c_s)

Access the Equation of State (EoS) of the medium

❑ Relativistic hydrodynamics

$$
c_{\rm S}^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\rm adiabatic} \quad P := \text{pressure}, \ \varepsilon := \text{energy density}
$$

Speed of sound extraction: SPS

Access the Equation of State (EoS) of the medium

❑ Relativistic hydrodynamics

$$
c_{\rm S}^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\text{adiabatic}} P := \text{pressure}, \varepsilon := \text{energy density}
$$

Studies using PbPb collisions at SPS energies

- □ Landau hydrodynamics model
	- $_{\blacksquare}$ Rapidity distribution of hadrons related to $c_{\rm s}$

Izv. Akad. Nauk. SSSR **17** 51 (1953) Usp. Fiz. Nauk. **56** 309 (1955) Nuovo Cimento (Suppl.) **3** 15 (1956)

Speed of sound extraction: RHIC & LHC

Constraints on c_s^2 from data (Bayesian analysis)

Speed of sound extraction: new ideas

Speed of sound: directly related to the compressibility

- **□** General procedure: maintain "volume≈constante" while varying number of produced particles
	- **Two proposed procedures:**
		- \circ 1) For the same centrality category, measure $\langle p_{\rm T} \rangle$ at different collision energies $\frac{N_{\rm{R}}}{N_{\rm{R}}}\rho_{\rm{R}}$. Phys. 16, 615 (2020)
		- 2) In ultracentral collisions (UCC), measure $\langle p_{\rm T} \rangle$ as a function of particle multiplicity Phys. Lett. B **809**, 135749 (2020)

Speed of sound extraction: new ideas

Speed of sound: directly related to the compressibility

□ General procedure: maintain "volume≈constante" while varying number of produced particles

Two proposed procedures:

 \circ 1) For the same centrality category, measure $\langle p_{\rm T} \rangle$ at different collision energies $\frac{N_{\rm{R}}}{N_{\rm{R}}}\rho_{\rm{R}}$. Phys. 16, 615 (2020)

○ 2) In ultracentral collisions (UCC), measure $\langle p_{\rm T} \rangle$ as a function of particle multiplicity

Phys. Lett. B **809**, 135749 (2020)

From thermodynamics relations and hydrodynamics simulations

❑ $c_s^2(T_{\text{eff}}) =$ *dP dε* = *sdT* $Tds\mid_{T_{\text{eff}}}$ = *d* $ln \langle p_T \rangle$ $d \ln N_{ch}$ Nat. Phys. **16**, 615 (2020) Phys. Lett. B **118**, 138 (1982), Phys. Lett. B **703**, 237 (2011)

 \blacksquare $T_{\rm eff}$ (effective temperature): integrated over a hypersurface at the end of hydro evolution

o Reduced by longitudinal cooling (system expansion) & includes kinetic energy (radial flow)

 \circ Hydrodynamics simulations: $T_{\rm eff} \approx \langle p_T \rangle / 3\,$ Nat. Phys. **16**, 615 (2020) Independent of centrality for PbPb

Thermodynamics of hot QCD matter

The thermodynamic relations in previous slides do not apply to the real collisions ❑ Dynamic system, out-of-equilibrium, etc…

Idea from Nat. Phys. 16 **615** (2020): consider a medium at the end of hydro evolution with entropy S and energy E

 \Box A uniform fluid at rest with an effective volume (V_{eff}) and temperature (T_{eff})

$$
\sum E = \int_{f.o.} T^{0\mu} = \epsilon(T_{eff}) V_{eff} \& S = \int_{f.o.} s u^{\mu} = s(T_{eff}) V_{eff}
$$

 \circ $e(T)$ and $s(T)$ EoS used in the hydro calculation

- $_{\odot}$ By taking the ratio of E and S they solve the equation for T_{eff}
- $\sigma_{\rm O}$ They connect with $T_{\it eff} \sim$ $<$ p_T $>$ /3 and $S \sim N_{ch}$

Procedure 1: different energies

PbPb ALICE data at 2.76 TeV and 5.02 TeV

❑ 0-5% centrality

Speed of sound squared directly from

$$
\sum c_s^2(T_{\text{eff}}) = \frac{d \ln \langle p_T \rangle}{d \ln N_{ch}}
$$

 \Box Using values of $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$ for the two energies

$$
T_{\text{eff}} = 222 \pm 9 \text{ MeV}, c_s^2/c^2 = 0.24 \pm 0.04
$$

Procedure 2: UCC events

Non-trivial prediction by relativistic hydrodynamics

 \Box When impact parameter $b\approx 0$ (UCC) \circ Increasing entropy $S \sim N_{\text{ch}}$ \circ \uparrow *s* \Rightarrow \uparrow *T* \Rightarrow \uparrow $\langle p_{\text{T}} \rangle$ □ Slope associated with $c_s^2 = d \ln \langle p_T \rangle / d \ln N_{ch}$

Analysis method - observables

The $c_{\rm s}^2$ depends on the relative variation of $\langle p_T^{} \rangle$ vs $N_{\rm ch}$

□ Extracted using

▪

11

$$
\langle p_T \rangle \over \langle p_T \rangle^0} \sim \left(\frac{N_{\text{ch}}}{N_{\text{ch}}^0}\right)^{c_s^2}
$$
, where $\langle p_T \rangle^0$ and N_{ch}^0 are obtained in 0-5%

Analysis observables

$$
\langle p_T \rangle^{\text{norm}} = \frac{\langle p_T \rangle}{\langle p_T \rangle^0}
$$
 vs $N_{\text{ch}}^{\text{norm}} = \frac{N_{\text{ch}}}{N_{\text{ch}}^0}$

 $\langle p_T \rangle^0$ (used to estimate T_{eff})

Analysis method - $\langle p_T \rangle$ and N_{ch}

To avoid other sources of correlations between $\langle p_{T}\rangle$ and $N_{\rm ch}$

 \Box Measured in bins of transverse energy sum in HF $E^{\rm HF}_{\rm T,sum}$ (bin width 50 GeV)

Analysis method - p_T extrapolation to zero

 $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$: corrected for tracking efficiency

Extracting the speed of sound - multiplicity fluctuations

 $Prob(N_{\text{ch}}^{\text{norm}})$: analytical model to capture the trends from hydro.

n

Extracting the speed of sound - multiplicity fluctuations

 $Prob(N_{\rm ch}^{\rm norm})$: analytical model to capture the trends from hydro.

Extracting the speed of sound: CMS data

Comparison with lattice QCD & hydrodynamics models

Lattice QCD (μ _B \approx 0 and 2+1 flavors)

Studies by ATLAS - no fitting procedure

Reasonable agreement with

 $c_s^2 \approx 0.23$ & $T_{e\!f\!f} \approx 222 MeV$

❑ Captures different trends due to $p_{\rm T}$ cut

❑ Similar trends in PbPb and XeXe

- ❑ Compatible with CMS results
- **□** Gap in η of 0.7

 $(E_T^{\phantom i}$ based centrality estimator)

Trajectum: bias from centrality estimator

Tested with different *η* ranges for centrality estimator

*E*_T based seems to bias toward higher values of $\langle p_T \rangle$ with small (or no) η -gap

Tested several η ranges for centrality estimator and $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$

ALICE-PUBLIC-2024-002

Ref. arXiv:2403.06052: for centrality estimation region overlapping with the region used for $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$ => apply correction for self-correlation

ALICE-PUBLIC-2024-002

ALICE-PUBLIC-2024-002

 $E_{\rm T}$ -based Higher values compared to CMS

Midrapidity: N_{ch} (I) and N_{tracklet} (V) E_T : No subevent (V) and subevent (IV) $\langle \rho_{\uparrow} \rangle / \langle \rho_{\uparrow} \rangle^{\rm 0-5\%}$ 1.04 Centrality selectors Centrality selectors 1.0° $HII, c_s^2 = 0.43$ \blacksquare I, $c_s^2 = 0.13$ $.03$ ◆ IV, $c_{\rm s}^2$ = $0.306^{0.014}_{0.006\;(\rm stat)}$ $V, c_s^2 = 0.17$ $.02$ 1.005 Fit to extract c_s^2 -11.01 1.2 0.9 0.9 0.95 1.05 1.15 0.95 $.05$ 1.15 1.2 1.1 \langle d N_{ch} /d η)/ \langle d N_{ch} /d η)^{0-5%}

Summary of extracted values of $c_{\rm s}^2$

Initial checks from CMS: no considerable bias in the slope

□ Probably due to large η gap ?

Will perform more studies about the *η*-gap

Summary of extracted values of $c_{\rm s}^2$

 $|\eta| \leq 0.8$

 $|\eta| \leq 0.3$

 $|\eta| \leq 0.8$

 $|\eta| \leq 0.3$

 $|\eta| \leq 0.8$

 $|\eta| \leq 0.3$ $|\eta| \leq 0.3$

 $|\eta| \leq 0.3$

 $|\eta| \leq 0.8$

Rough comparison using few points

No uncertainties included

(IV) $E_{\rm T}$ in TPC ($0.5 < |\eta| < 0.8$) - Eta Gap 0.2

(IX) N_{ch} in V0 ($-3.7 < \eta < -1.7, +2.8 < \eta < 5.1$)

For this last one added the 4 points used in the fit

The one with larger eta-gap looks not very far from CMS measurement. It seems (to be checked with the authors) that the $c_{\rm s}^2$ was extracted fitting these last four points.

NB.: added few points from ALICE Collaboration by hand.

Any discrepancy from original ALICE values is a fault from the author of this presentation.

Continue investigation on the effects from centrality estimator

- \Box NB.: For overlapping regions between centrality estimator and $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$
	- **EXECTED ACCELLENGE ACCELLENGE ACCELLENGE**

arXiv:2403.06052

Continue investigation on the effects from centrality estimator

 \Box NB.: For overlapping regions between centrality estimator and $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$

EXECTED ACCEDED Needed a correction due to self-correlations arXiv:2403.06052

Effect of initial density fluctuations profile

- \Box How initial fluctuations affect the hypotheses: $\langle p_{\rm T}\rangle/T_{\rm eff}$ and $V_{\rm eff}$ independent of multiplicity ???
- \Box Relation between $\langle p_{\rm T} \rangle$ & $T_{\rm eff}$ seems not to be affected $\,$ Nucl. Phys. A 1005, 121999 (2021)
- But effective volume seems not very constant ($\uparrow N_{\rm ch} \Rightarrow \downarrow V_{\rm eff}$) Phys. Lett. B **853**, 138636 (2024)
- \Box Compare increase of $\langle p_{\rm T}\rangle$: as a function of $N_{\rm ch}$ in the same collision energy Vs using different collision energies arXiv:2403.06052

Continue investigation on the effects from centrality estimator

 \Box NB.: For overlapping regions between centrality estimator and $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$

EXECTED ACCEDED Needed a correction due to self-correlations arXiv:2403.06052

Effect of initial density fluctuations profile

- \Box How initial fluctuations affect the hypotheses: $\langle p_{\rm T}\rangle/T_{\rm eff}$ and $V_{\rm eff}$ independent of multiplicity ???
- \Box Relation between $\langle p_{\rm T} \rangle$ & $T_{\rm eff}$ seems not to be affected $\,$ Nucl. Phys. A 1005, 121999 (2021)
- But effective volume seems not very constant ($\uparrow N_{\rm ch} \Rightarrow \downarrow V_{\rm eff}$) Phys. Lett. B **853**, 138636 (2024)
- \Box Compare increase of $\langle p_{\rm T}\rangle$: as a function of $N_{\rm ch}$ in the same collision energy Vs using different collision energies arXiv:2403.06052

The rise of $\; < p_T>$ vs N_{ch} in UCC: new hydrodynamics probe

❑ Study other colliding systems: XeXe, OO, high-multiplicity pPb, etc… Phys. Lett. B **853**, 138636 (2024)

Few selected recent theoretical studies

□ Analytical studies of the relation between c_s^2 & $\ln < p_T^{}>$ vs $\ln N_{ch}^{}$ arXiv:2405.10401

n Inviscid hydrodynamics with a constant c_s^2 (Gubser hydro solution) **• Effects from rapidity cuts** $c_s^2 = \frac{d \ln(E_{\text{tot}}/N_{\text{tot}})}{d \ln N_{\text{tot}}} = \lim_{T_{\text{FO}} \to 0} \frac{d \ln \langle p_T \rangle}{d \ln N_{\text{int}}}$

 \sim The c_s^2 is extracted more precisely for higher center-of-mass energies

Few selected recent theoretical studies

□ Analytical studies of the relation between c_s^2 & $\ln < p_T^{}>$ vs $\ln N_{ch}^{}$ arXiv:2405.10401

n Inviscid hydrodynamics with a constant c_s^2 (Gubser hydro solution) **Effects from rapidity cuts** $c_s^2 = \frac{d \ln(E_{\text{tot}}/N_{\text{tot}})}{d \ln N_{\text{tot}}} = \lim_{T_{\text{FO}} \to 0} \frac{d \ln \langle p_T \rangle}{d \ln N_{\text{int}}}$ \sim The c_s^2 is extracted more precisely for higher center-of-mass energies

 $Δ ln V_{eff} /Δ ln S = 0.065 ± 0.025$

 \Box Volume effect on the extraction of c_s^2 arXiv:2407.05570

- Use Trento model to simulate initial conditions $c_s^2 = \frac{dP}{de} = \left(1 \frac{\Delta \ln V_{\text{eff}}}{\Delta \ln S}\right)^{-1} \frac{\Delta \ln T_{\text{eff}}}{\Delta \ln S}$
- **Initial fluctuations lead to sizable volume effect**

 \circ Provide quantitative estimate of required corrections for c_s^2

Thank You!

32

Thank You!

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE SÃO PAULO RESEARCH FOUNDATION (FAPESP) GRANTS NO. 2018/01398-1 AND NO. 2013/01907-0. ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF FAPESP.

CNPQ GRANT 407174/2021-4 , CNPQ GRANT 309962/2023-4

pPb Analysis

What happens at very high multiplicities?

UCC PbPb collisions

Collision centrality

- ❑ Experimentally: sum of transversal energy ($E_{\rm T}$) in HF
- ❑ Related to impact parameter, system volume/geometry
- **a** For $b \approx 0$ (~0-1% centrality)
	- Volume almost constant
	- \blacksquare Energy density can fluctuate

Samples and track selections Minimum bias PbPb collisions at 5.02 TeV \Box About 4.27 billion events, $L_{\text{int}} = 0.607$ nb⁻¹

Monte Carlo (MC) simulations: HYDJET generator ❑ Efficiency corrections, cross-checks, closure tests, etc…

Track selection: $p_\mathrm{T} > 0.3 \ \mathrm{GeV}, \ \bigl| \eta \bigr| < 0.5$

❑ Better tracking performance

Systematic uncertainties and cross-checks

Systematics

❑ Tracking efficiency corrections

 \Box Extrapolation to $p_{\rm T} \approx 0$

□ Choice of fit range (only for c_s^2) s

Main cross-checks

- ❑ HF energy resolution
	- Data HF energy smearing
	- \blacksquare Vary bin width

 \circ 50GeV \rightarrow 25GeV and 100GeV

- ❑ Efficiency correction
	- **Dependence on particle species**
- \Box Extrapolation to $p_{\rm T} \approx 0$
	- **Use of different fit function**
	- Closure using simulations

Extrapolation to $p_T \approx 0$ - Monte Carlo HYDJET generator

No extrapolation to $p_{\rm T} = 0$

CMS (left) & ATLAS (right) comparison with Trajectum model

Phys. Lett. B **853**, 138636 (2024)

The slope has a clear dependence on the p_T cut

$< p_T$ vs T (Hydrodynamic simulation)

Nature Physics **16** (2020) 615

$$
P(n) = \int_0^1 P(n|c_b)dc_b.
$$

$$
n(c_b) \qquad (n-i)
$$

$$
P(n|c_b) = \frac{\eta(c_b)}{\sigma(c_b)\sqrt{2\pi}} \exp\left(-\frac{(n-\bar{n}(c_b))^2}{2\sigma(c_b)^2}\right), \quad (3)
$$

$$
\eta(c_b) = 2 \left[1 + \text{erf}\left(\frac{\bar{n}(c_b)}{\sigma(c_b)\sqrt{2}} \right) \right]^{-1}
$$

$$
\bar{n}(c_b) = n_{\text{knee}} \exp(-a_1 c_b - a_2 c_b^2 - a_3 c_b^3)
$$

$$
\sigma(c_b) = \sigma(0)\sqrt{\bar{n}(c_b)/\bar{n}(0)}
$$

¹ The results in this paper use the variable c_b , but one can easily express them in terms of b by using the change of variables $c_b =$ $\pi b^2/\sigma_{\text{inel}}$. The value of σ_{inel} needs to be taken from either data or some collision model.

