

Extraction of the speed of sound in hot QCD matter at the LHC

CESAR A. BERNARDES

IF-UFRGS, SPRACE-UNESP

WPCF 2024 - 17th Workshop on Particle Correlations and Femtoscopy Toulouse, France, November 04-08, 2024

Speed of sound ($c_{\rm s}$)

Access the Equation of State (EoS) of the medium

Relativistic hydrodynamics

$$c_{\rm S}^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\rm adiabatic} \qquad P:= {\rm pressure}, \ \varepsilon:= {\rm energy \ density}$$

Speed of sound extraction: SPS

Access the Equation of State (EoS) of the medium

Relativistic hydrodynamics

$$c_{\rm S}^2 = \left(\frac{\partial P}{\partial \varepsilon}\right)_{\rm adiabatic}$$
 $P:= {\rm pressure}, \ \varepsilon:= {\rm energy \ density}_{\rm L.D.\ Landau\ \&\ E.M.\ Lifshitz,\ Fluid\ Mechanics}$ Dashe

Studies using PbPb collisions at SPS energies

- Landau hydrodynamics model
 - Rapidity distribution of hadrons related to c_s

Izv. Akad. Nauk. SSSR **17** 51 (1953) Usp. Fiz. Nauk. **56** 309 (1955) Nuovo Cimento (Suppl.) **3** 15 (1956)

Phys. Rev. C **68**, 064903 (2003) 10 J. Phys. G: Nucl. Part. Phys. **31**, 1345 (2005)

Speed of sound extraction: RHIC & LHC

Constraints on c_s^2 from data (Bayesian analysis)

Speed of sound extraction: new ideas

Speed of sound: directly related to the compressibility

- □ General procedure: maintain "volume≈constante" while varying number of produced particles
 - Two proposed procedures:
 - $_{\odot}$ 1) For the same centrality category, measure $\langle p_{\rm T} \rangle$ at different collision energies Nat. Phys. 16, 615 (2020)
 - $_{\odot}$ 2) In ultracentral collisions (UCC), measure $\langle p_{\rm T} \rangle$ as a function of particle multiplicity $_{\rm Phys.\ Lett.\ B\ 809,\ 135749\ (2020)}$

Speed of sound extraction: new ideas

Speed of sound: directly related to the compressibility

□ General procedure: maintain "volume≈constante" while varying number of produced particles

Two proposed procedures:

 $_{\odot}$ 1) For the same centrality category, measure $\langle p_{\rm T} \rangle$ at different collision energies Nat. Phys. 16, 615 (2020)

 $_{\odot}$ 2) In ultracentral collisions (UCC), measure $\langle p_{
m T}
angle$ as a function of particle multiplicity

Phys. Lett. B 809, 135749 (2020)

From thermodynamics relations and hydrodynamics simulations

 $c_{\rm s}^2(T_{\rm eff}) = \frac{dP}{d\varepsilon} = \frac{sdT}{Tds} \bigg|_{T_{\rm eff}} = \frac{d\ln\langle p_T \rangle}{d\ln N_{ch}} \quad \text{Nat. Phys. 16, 615 (2020)} \\ \text{Phys. Lett. B 118, 138 (1982), Phys. Lett. B 703, 237 (2011)}$

• $T_{\rm eff}$ (effective temperature): integrated over a hypersurface at the end of hydro evolution

o Reduced by longitudinal cooling (system expansion) & includes kinetic energy (radial flow)

 $_{\odot}$ Hydrodynamics simulations: $T_{\rm eff}\approx \langle p_T\rangle/3~$ Nat. Phys. 16, 615 (2020) Independent of centrality for PbPb

Thermodynamics of hot QCD matter

The thermodynamic relations in previous slides do not apply to the real collisions Dynamic system, out-of-equilibrium, etc...

Idea from Nat. Phys. 16 615 (2020): consider a medium at the end of hydro evolution with entropy S and energy E

 \Box A uniform fluid at rest with an effective volume (V_{eff}) and temperature (T_{eff})

$$\Box E = \int_{f.o.} T^{0\mu} = \epsilon(T_{eff}) V_{eff} \& S = \int_{f.o.} su^{\mu} = s(T_{eff}) V_{eff}$$

 $\circ \epsilon(T)$ and s(T) EoS used in the hydro calculation

- $_{\rm O}$ By taking the ratio of E and S they solve the equation for T_{eff}
- $_{\odot}$ They connect with $T_{e\!f\!f} \sim < p_T >$ /3 and $S \sim N_{ch}$

Procedure 1: different energies

PbPb ALICE data at 2.76 TeV and 5.02 TeV

0-5% centrality

Speed of sound squared directly from

$$\Box c_{\rm s}^2(T_{\rm eff}) = \frac{d \ln \langle p_T \rangle}{d \ln N_{ch}}$$

 $\hfill\square$ Using values of $\langle p_{\rm T}\rangle$ and $N_{\rm ch}$ for the two energies

$$T_{\rm eff} = 222 \pm 9 \ MeV, \ c_{\rm s}^2/c^2 = 0.24 \pm 0.04$$

Procedure 2: UCC events

Non-trivial prediction by relativistic hydrodynamics

 $c_{\rm s}^2 = d \ln \langle p_T \rangle / d \ln N_{ch}$

Measurement using the CMS detector

Analysis method - observables

The $c_{\rm s}^2$ depends on the relative variation of $\langle p_T \rangle$ vs $N_{\rm ch}$

Extracted using

$$\frac{\langle p_T \rangle}{\langle p_T \rangle^0} \sim \left(\frac{N_{\rm ch}}{N_{\rm ch}^0}\right)^{c_{\rm s}^2}$$
, where $\langle p_T \rangle^0$ and $N_{\rm ch}^0$ are obtained in 0-5%

Analysis observables

$$\langle p_T \rangle^{\text{norm}} = \frac{\langle p_T \rangle}{\langle p_T \rangle^0} \text{ vs } N_{\text{ch}}^{\text{norm}} = \frac{N_{\text{ch}}}{N_{\text{ch}}^0}$$

 $\langle p_T \rangle^0$ (used to estimate $T_{\rm eff}$)

Analysis method - $\langle p_T \rangle$ and $N_{\rm ch}$

To avoid other sources of correlations between $\langle p_T \rangle$ and N_{ch}

 \Box Measured in bins of transverse energy sum in HF $E_{T,sum}^{HF}$ (bin width 50 GeV)

Analysis method - $p_{\rm T}$ extrapolation to zero

 $\langle p_{\rm T} \rangle$ and $N_{\rm ch}$: corrected for tracking efficiency

Extracting the speed of sound - multiplicity fluctuations

 $Prob(N_{ch}^{norm})$: analytical model to capture the trends from hydro.

n

Extracting the speed of sound - multiplicity fluctuations

 $Prob(N_{ch}^{norm})$: analytical model to capture the trends from hydro.

Extracting the speed of sound: CMS data

 $T_{\rm eff} \approx \langle p_{\rm T} \rangle^0 / 3 = 219 \pm 8 (syst) MeV$

Comparison with lattice QCD & hydrodynamics models

Studies by ATLAS - no fitting procedure

Reasonable agreement with

MUSIC when using $c_s^2 \approx 0.23 \& T_{eff} \approx 222 MeV$

❑ Captures different trends due to p_T cut

Similar trends in PbPb and XeXe

- Compatible with CMS results
- **Gap** in η of 0.7

(E_T -based centrality estimator)

Trajectum: bias from centrality estimator

Tested with different η ranges for centrality estimator

 $E_{\rm T}$ based seems to bias toward higher values of $\langle p_{\rm T} \rangle$ with small (or no) η -gap

Tested several η ranges for centrality estimator and $\langle p_{\rm T} \rangle$ & $N_{\rm ch}$

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d} N_{ m ch}/{ m d} \eta angle$	Minimum $ \Delta\eta $
N _{ch} in TPC	Ι	$ m\eta \leq 0.8$	$ m\eta \le 0.8$	0
	Π	$0.5 \leq oldsymbol{\eta} < 0.8$	$ \eta \leq 0.3$	0.2
	III	$ \eta \leq 0.8$	$ m\eta \le 0.8$	0
$L_{\rm T}$ in IFC	IV	$0.5 \leq oldsymbol{\eta} < 0.8$	$ \eta \leq 0.3$	0.2
	V	$ m\eta \leq 0.8$	$ m\eta \le 0.8$	0
N _{tracklets} in SPD	VI	$0.5 \leq oldsymbol{\eta} < 0.8$	$ \eta \leq 0.3$	0.2
	VII	$0.3 < \eta < 0.6$	$ \eta \le 0.3$	0
	VIII	$0.7 \leq oldsymbol{\eta} < 1$	$ \eta \leq 0.3$	0.4
$N_{\rm ch}$ in V0	IX	$-3.7 < \eta < -1.7$ and $2.8 < \eta < 5.1$	$ oldsymbol{\eta} \leq 0.8$	0.9

ALICE-PUBLIC-2024-002

Ref. arXiv:2403.06052: for centrality estimation region overlapping with the region used for $\langle p_{\rm T} \rangle \& N_{\rm ch} =>$ apply correction for self-correlation

ALICE-PUBLIC-2024-002

ALICE-PUBLIC-2024-002

 $E_{\rm T}$ -based Higher values compared to CMS

Observable	Label	Centrality estimation	$\langle p_{ m T} angle$ and $\langle { m d} N_{ m ch}/{ m d} \eta angle$
N _{ch} in TPC	Ι	$ oldsymbol{\eta} \leq 0.8$	$ m\eta \leq 0.8$
$E_{\rm T}$ in TPC	III IV	$ert oldsymbol{\eta} ert \leq 0.8 \ 0.5 \leq ert oldsymbol{\eta} ert \leq 0.8$	$ert \eta ert \leq 0.8 \ ert \eta ert \leq 0.3$
N _{tracklets} in SPD	V	$ oldsymbol{\eta} \leq 0.8$	$ \eta \leq 0.8$

Midrapidity: N_{ch} (I) and $N_{tracklet}$ (V) E_T : No subevent (V) and subevent (IV) $\langle p_{\rm T} \rangle / \langle p_{\rm T} \rangle^{0-5\%}$ 1.04 Centrality selectors Centrality selectors 1.0 $|||, c_s^2 = 0.43$ I, $c_s^2 = 0.137$.03 • IV, $c_s^2 = 0.306_{0.006}^{0.014}$ (syst V, $c_s^2 = 0.17$ 1.02 1.005 Fit to extract c_s^2 -1.01 1.2 0.9 0.9 0.95 1.05 1.15 0.95 .05 1.15 1.2 1.1 $\langle \mathrm{d}N_{\mathrm{ch}}^{}/\mathrm{d}\eta
angle\!/\langle\mathrm{d}N_{\mathrm{ch}}^{}/\mathrm{d}\eta
angle^{0.5\%}$

Summary of extracted values of c_s^2

Initial checks from CMS: no considerable bias in the slope

 \Box Probably due to large η gap ?

Will perform more studies about the η -gap

Summary of extracted values of c_s^2

 $\langle p_{\rm T} \rangle$ and $\langle dN_{\rm ch}/d\eta \rangle$

 $|\eta| \le 0.8$

 $|\eta| \leq 0.3$

 $|\eta| \leq 0.8$

 $|\eta| \le 0.3$

 $|\eta| \leq 0.8$

 $|\eta| \leq 0.3$

 $|\eta| \le 0.3$

 $|\eta| \le 0.3$

 $|\eta| \leq 0.8$

Rough comparison using few points

No uncertainties included

(IV) E_{T} in TPC ($0.5 < |\eta| < 0.8$) - Eta Gap 0.2

(IX) $N_{\rm ch}$ in V0 (-3.7 < η < - 1.7, + 2.8 < η < 5.1)

For this last one added the 4 points used in the fit

The one with larger eta-gap looks not very far from CMS measurement. It seems (to be checked with the authors) that the c_s^2 was extracted fitting these last four points.

NB.: added few points from ALICE Collaboration by hand. Any discrepancy from original ALICE values is a fault from the author of this presentation.

Continue investigation on the effects from centrality estimator

- \square NB.: For overlapping regions between centrality estimator and $\langle p_{\rm T}\rangle$ & $N_{\rm ch}$
 - Needed a correction due to self-correlations

arXiv:2403.06052

Continue investigation on the effects from centrality estimator

 \square NB.: For overlapping regions between centrality estimator and $\langle p_{\rm T}\rangle$ & $N_{\rm ch}$

Needed a correction due to self-correlations arXiv:2403.06052

Effect of initial density fluctuations profile

- \Box How initial fluctuations affect the hypotheses: $\langle p_{\rm T} \rangle / T_{\rm eff}$ and $V_{\rm eff}$ independent of multiplicity ???
- \Box Relation between $\langle p_{\rm T} \rangle$ & $T_{\rm eff}$ seems not to be affected Nucl. Phys. A 1005, 121999 (2021)
- \Box But effective volume seems not very constant ($\uparrow N_{\rm ch} \Rightarrow \downarrow V_{\rm eff}$) Phys. Lett. B 853, 138636 (2024)
- Compare increase of $\langle p_T \rangle$: as a function of N_{ch} in the same collision energy Vs using different collision energies arXiv:2403.06052

Continue investigation on the effects from centrality estimator

 \square NB.: For overlapping regions between centrality estimator and $\langle p_{\rm T}\rangle$ & $N_{\rm ch}$

Needed a correction due to self-correlations arXiv:2403.06052

Effect of initial density fluctuations profile

- \Box How initial fluctuations affect the hypotheses: $\langle p_{\rm T} \rangle / T_{\rm eff}$ and $V_{\rm eff}$ independent of multiplicity ???
- \Box Relation between $\langle p_{\rm T} \rangle$ & $T_{\rm eff}$ seems not to be affected Nucl. Phys. A 1005, 121999 (2021)
- \Box But effective volume seems not very constant ($\uparrow N_{\rm ch} \Rightarrow \downarrow V_{\rm eff}$) Phys. Lett. B 853, 138636 (2024)
- Compare increase of $\langle p_{\rm T} \rangle$: as a function of $N_{\rm ch}$ in the same collision energy Vs using different collision energies arXiv:2403.06052

The rise of $< p_T > vs N_{ch}$ in UCC: new hydrodynamics probe

Study other colliding systems: XeXe, OO, high-multiplicity pPb, etc... Phys. Lett. B **853**, 138636 (2024)

Phys. Rev. C 109, 014904 (2024)

Few selected recent theoretical studies

 \Box Analytical studies of the relation between $c_s^2 \& \ln < p_T > vs \ln N_{ch}^{2}$ arXiv:2405.10401

Inviscid hydrodynamics with a constant c_s² (Gubser hydro solution)
 Effects from rapidity cuts
 $c_s^2 = \frac{d \ln(E_{tot}/N_{tot})}{d \ln N_{tot}} = \lim_{T_{FO} \to 0} \frac{d \ln \langle p_T \rangle}{d \ln N_{mr}}
 O
 The c_s^2 is extracted more precisely for higher center-of-mass energies$

30

Few selected recent theoretical studies

 \Box Analytical studies of the relation between $c_s^2 \& \ln < p_T > vs \ln N_{ch}^{2}$ arXiv:2405.10401

- Inviscid hydrodynamics with a constant c_s² (Gubser hydro solution)
 Effects from rapidity cuts
 $c_s^2 = \frac{d \ln(E_{tot}/N_{tot})}{d \ln N_{tot}} = \lim_{T_{FO} \to 0} \frac{d \ln \langle p_T \rangle}{d \ln N_{mr}}
 O
 The c_s² is extracted more precisely for higher center-of-mass energies$
- Volume effect on the extraction of c_s^2 arXiv:2407.05570
 - Use Trento model to simulate initial conditions $c_s^2 = \frac{dP}{de} = \left(1 \frac{\Delta \ln V_{\text{eff}}}{\Delta \ln S}\right)^{-1} \frac{\Delta \ln T_{\text{eff}}}{\Delta \ln S}$
 - Initial fluctuations lead to sizable volume effect $\frac{de}{\Delta \ln S} = 0.065 \pm 0.025$

 $_{\odot}$ Provide quantitative estimate of required corrections for c_s^2

Thank You!

Thank You!

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE SÃO PAULO RESEARCH FOUNDATION (FAPESP) GRANTS NO. 2018/01398-1 AND NO. 2013/01907-0. ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF FAPESP.

CNPQ GRANT 407174/2021-4, CNPQ GRANT 309962/2023-4

pPb Analysis

What happens at very high multiplicities?

UCC PbPb collisions

Collision centrality

- **C** Experimentally: sum of transversal energy $(E_{\rm T})$ in HF
- Related to impact parameter, system volume/geometry
- **G** For $b \approx 0$ (~0-1% centrality)
 - Volume almost constant
 - Energy density can fluctuate

Samples and track selections Minimum bias PbPb collisions at 5.02 TeV About 4.27 billion events, L_{int} = 0.607 nb⁻¹

Monte Carlo (MC) simulations: HYDJET generator Efficiency corrections, cross-checks, closure tests, etc...

Track selection: $p_{\rm T} > 0.3 \; {\rm GeV}, \; \left| \eta \right| < 0.5$

Better tracking performance

Systematic uncertainties and cross-checks

Systematics

Tracking efficiency corrections

 \Box Extrapolation to $p_{\rm T} \approx 0$

 \Box Choice of fit range (only for c_s^2)

Main cross-checks

- HF energy resolution
 - Data HF energy smearing
 - Vary bin width
 - \circ 50GeV \rightarrow 25GeV and 100GeV
- Efficiency correction
 - Dependence on particle species
- $\Box \quad \text{Extrapolation to } p_{\mathrm{T}} \approx 0$
 - Use of different fit function
 - Closure using simulations

Extrapolation to $p_{\rm T}\approx 0$ - Monte Carlo HYDJET generator

No extrapolation to $p_{\rm T} = 0$

CMS (left) & ATLAS (right) comparison with Trajectum model

The slope has a clear dependence on the $p_{\rm T}$ cut

<p_T> vs T (Hydrodynamic simulation)

Nature Physics 16 (2020) 615

$$P(n) = \int_0^1 P(n|c_b) dc_b.$$

$$P(n|c_b) = \frac{\eta(c_b)}{\sigma(c_b)\sqrt{2\pi}} \exp\left(-\frac{(n-\bar{n}(c_b))^2}{2\sigma(c_b)^2}\right), \quad (3)$$

$$\eta(c_b) = 2 \left[1 + \operatorname{erf}\left(\frac{\bar{n}(c_b)}{\sigma(c_b)\sqrt{2}}\right) \right]^{-1}$$

$$\bar{n}(c_b) = n_{\text{knee}} \exp\left(-a_1 c_b - a_2 c_b^2 - a_3 c_b^3\right)$$

$$\sigma(c_b) = \sigma(0)\sqrt{\bar{n}(c_b)/\bar{n}(0)}$$

¹ The results in this paper use the variable c_b , but one can easily express them in terms of b by using the change of variables $c_b = \pi b^2 / \sigma_{\text{inel}}$. The value of σ_{inel} needs to be taken from either data or some collision model.

