17th Workshop on Particle Correlations and Femtoscopy

WPCF 2024 – Toulouse, France

are

particle correlations in 2-proton radioactivity really understood ?

J. Giovinazzo – LP2iB (former CENBG) – Bordeaux

- ▷ 2p radioactivity
- ▷ experiment & theory
- ▷ understanding correlations

2-proton radioactivity

proton drip line
(w/r nuclear interaction)

beyond the proton drip-line

large proton / neutron asymetry

last proton not bound / nuclear strong interaction

- proton binding energy < 0 (separation energy > 0)
- time scale of nucleons motion $\sim 10^{-20}$ s

beyond the proton drip-line quasi-bound system

proton charge \rightarrow Coulomb barrier

if larger than proton separation energy → metastable state

then tunnel effect → 1-proton radioactivity

beyond the proton drip-line quasi-bound system

pairing of nucleons

energy

A+2,Z+2

(Z is even)

gain of stability for pairs → lower mass energy

pairing effect

A+1,Z+1

(+p)

A,Z

(+2p)

beyond the proton drip-line quasi-bound system

drip-line + Coulomb + pairing → 2-proton radioactivity

emitted protons:

- strongly correlated inside the nucleus
- **independent** part. oustide

even-Z isotope

1 proton emission forbidden (so called "*true*" 2P radioactivity)

a unique decay process

- → drip-line and masses (beyond the « drip-line ») transition Q-values
- → nuclear structure

energies, half-life, levels configuration

→ pairing

correlations in energy and angle of emitted protons

→ tunnel effect

theoretical descriptions

complex process for theoretical interpretations / predictions

ideally, taking into account:

- the 3-body decay dynamics
- the nuclear structure (wave functions)
- the coupling to the continuum

2-proton radioactivity candidates

proposed in ~1960 (by V.I. Goldanskii)

 $Q_{2P} > 0$ and $Q_{1P} < 0$ \rightarrow mass predictions

observing 2-proton radioactivity

 $T_{1/2} = f(Q_{2P})$

competition with beta decay

- small $Q_{2P} \rightarrow$ slow tunneling \rightarrow dominated by beta
- large $Q_{2P} \rightarrow$ too fast for observation

medium mass nuclei

 $T_{1/2}(\beta) \sim 10 \text{ ms} \rightarrow \text{observable range } 1 \,\mu\text{s} - 10 \,\text{ms}$

possible observation only at fragmentation facilities

(2000's: GANIL/LISE, GSI/FRS, NSCL/A1900; 2010's: RIKEN/BigRips... then: FRIB, FAIR...)

- ightarrow fast production / extraction from target
 - → implantation in a **thick active stopper** for decay measurement (few ms after implantation)

experiments & theory

2-proton radioactivity: experiments

observation: silicon detector experiments

⁴⁵Fe: first indirect evidence (J.G. *et al.* GANIL 2002, M. Pfützner *et al.* GSI 2002)

• ⁵⁴Zn: B. Blank *et al*. 2005

- implantation in a silicon detector (DSSD)
 - protons stopped inside (full energy)
 - **no beta pile-up** (exclude β-p)
 - identification of 2nd decay after 2p (daughter)

- ⁴⁸Ni: indication (B. Blank *et al*. GANIL 2005)
- 67 Kr: J.G. *et al*. RIKEN 2015 \rightarrow half-life problem...

limited exp. information

- $T_{1/2}$ and Q_{2P}
- no individual proton info
- limited comp. with models

2-proton radioactivity: experiments

correlations: time projection chambers (tracking) experiments

 ⁴⁵Fe: first indirect evidence (J.G. *et al.* GANIL 2002, M. Pfützner *et al.* GSI 2002)
 first direct observation (LG. et al.)

first **direct** observation (J.G. *et al.* GANIL 2007) **angular distribution** (K. Miernik et al., MSU 2009)

60 170 180 190 200

• ⁵⁴Zn: B. Blank *et al.* 2005

few p-p correlations (P. Ascher et al., GANIL 2011)

- ⁴⁸Ni: indication (B. Blank *et al.* GANIL 2005) few p-p correlations (K. Miernik et al., MSU 2007)
- ⁶⁷Kr: J.G. *et al*. RIKEN 2015
 → half-life problem...

2-proton radioactivity: theoretical interpretations

• models based on nuclear structure

R-matrix formalism, shell model wave functions, p-p resonance (I. Barker & B.A. Brown) shell-model embedded in the continuum (SMEC, M. Ploszajczak)

 \rightarrow no dynamics, limited comparison: $T_{1/2}(Q_{2P})$

• 3-body model

core+p+p system (L.V. Grigorenko)

- \rightarrow emission dynamics (angular & energy correlations), no intrinsic structure prediction
- \rightarrow good agreement for ⁴⁵Fe correlation patterns
- recent approaches
 - hybrid model (B.A. Brown)
 - Gamow Coupled Channels (GCC) (S. Wang & W. Nazarewicz)

need for new measurements (2018 status)

GCC...

⁴⁸Ni decay at GANIL / LISE3 with ACTAR TPC

long beam time, high intensity...

full acceptance of the spectrometer (\rightarrow ident. problems) implantation (optimized for ⁴⁸Ni) in ACTAR TPC

2p /total	stopped	entified	ide
decays	in ACTAR		
6 (+9) / 7(+?)	13 (+?)	80	⁴⁵ Fe
3 / 5	6	11	⁴⁸ Ni

only few 2P decay events (⁴⁸Ni & ⁴⁵Fe)

courtesy of A. Ortega Moral

understanding correlations

correlations interpretation

exp. data analysis: A. Ortega Moral

proton-proton relative angles and energy sharing

combining ACTAR TPC + O-TPC results

- 15 events for ⁴⁵Fe + results from K. Mierniek (75 events)
- 3 events for ⁴⁸Ni + results from M. Pomorski (4 events)

GCC calculations: S. Wang

new calculations: extended asymptotic region to 500 fm (50 fm in 2018 calc.)

ightarrow significant change in angular distributions

variation of proton-proton interaction term V_{pp} in the interaction (w.r.t. "standard" value \equiv 100%)

previous 3-body model calculations from L.V. Grigorenko ⁴⁸Ni angular distributions extrapolated from ⁴⁵Fe and ⁵⁴Zn for angles only (limited energy resol./info. from O-TPC)

half-life and Q-value

all models fail to reproduce the half-lives with last measured Q-values

 \rightarrow 3-body model:

dominant contribution of $p_{3/2}$ occupancy while expected $f_{7/2}$ (almost 100% for ⁴⁸Ni) (it was ok for 45 Fe with Q_{2P} from silicon experiments)

 \rightarrow GCC framework:

increased V_{pp} favoured for ⁴⁸Ni, not for ⁴⁵Fe – but anyway no agreement...

but... systematic trend: Q_{2P} values from TPC experiments smaller than from silicon experiments

angular correlations

3-body

same conclusions as in Miernik *et al*. best agreement with ~24% of p^2 no significant change

favours standard value of V_{pp} fairly good agreement with exp. (χ^2 similar to 3-body) very low statistics...

 but similar trend for both models
 → confirmation of the persistence of the shell closure

favours standard value of V_{pp} (opposite conclusion than for $T_{1/2}$)

A. Ortega Moral, S. Wang et al., in preparation

energy sharing

all models (since prediction in the 1960's...) suggest a more favourable equal energy sharing from barrier penetration considerations (non-trivial...²*He* / *p*+*p* tunnelling)

distribution from calculations larger than experimental ones

3-body model in agreement with data from K. Miernik et al. (2007) with O-TPC \rightarrow poor energy resolution GCC calculation: no sensitivity to V_{pp} (not folded with exp. resol. \rightarrow worse...)

45**Fe**

Counts

Wang et al., in preparation S. Ortega Moral,

energy sharing

all models (since prediction in the 1960's...) suggest a more favourable equal energy sharing from barrier penetration considerations (non-trivial...²*He* / *p*+*p* tunnelling)

distribution from calculations larger than experimental ones

3-body model in agreement with data from K. Miernik et al. (2007) with O-TPC \rightarrow poor energy resolution

GCC calculation: no sensitivity to V_{pp} (not folded with exp. resol. \rightarrow worse...)

⁴⁵*Fe*

what could influence the distribution width?

mainly (only ?) the **barrier height**

requires significantly lower Q_{2P}

 \rightarrow contradiction with $T_{1/2}$ and exp. TPC/Silicon discrepancy

proton pair emitted with angular momentum $L_{pp} > 0$ (centrifugal barrier) what reason ?...

concluding remarks

- we (I...) thought a consistent description of all aspects () would give a comprehensive picture
- when angular and energy correlations enter the game, we cannot get a satisfying description of experimental observable:
 - → contradictory conclusions/trends in models for half-lives and angular distributions
- open question of the energy sharing and the Q-value
 - → (in principle...) experimental data does not lie... but the systematic difference between TPC and silicon experiments (despite large uncertainties) must be clarified
 - ightarrow comparison with theory suggests the opposite direction

this is (not) the end !...

thank you for your attention

special thanks to A. Ortega Moral and S. Wang and the E791 collaboration

ACTAR TPC, a 4D detector: tracking and energy

- 2D collection plane (pads/pixels)
- time projection chamber: drift of ionization signal
- time sampling of vertical dimension (ionization drift)

a versatile detector

Active Target mode:inelastic scattering, transfer,...Decay TPC mode:implantation-decay experiments

the ACTAR TPC device

+ flexible PCB connection to readout electronics

decay experiments (GANIL/LISE)

2019: proton radioactivity of ^{54m}Ni and isospin symmetry (^{54m}Fe) 2021: 2-proton radioactivity of ⁴⁸Ni & other exotic decays

first hypothesis: transition from 2P to sequential decay?

first hypothesis: transition from 2P to sequential decay ?

(L.V. Grigorenko, semi-analytical R-matrix calculation)

- indication of a 1p channel opening ?
- possible transition from 2P to seq. emission
 transition region: S_p = [-340 ; -270] keV

⁶⁷Kr

⁶⁶Br

1p

second hypothesis: influence of deformation ?

calculations by Wang & Nazarewicz, PRL 120 (2018) (Gamow Coupled Channels + coupling to core exc.)

with $|\beta_2| < 0.1 \rightarrow T_{1/2}^{2P} > 220 \, ms$

with $\beta_2 = -0.3 \rightarrow T_{1/2}^{2P} = 24_{-7}^{+10} ms$ agreement with exp. !

+ angular correlation prediction

(consistent treatment of structure and emission dynamics)

second hypothesis: influence of deformation ?

angular correlation prediction

recent work by Wang & Nazarewicz, PRL 120 (2018) (Gamow Coupled Channels + coupling to core exc.)

with $|\beta_2| < 0.1 \rightarrow T_{1/2}^{2P} > 220 \, ms$

with $\beta_2 = -0.3 \rightarrow T_{1/2}^{2P} = 24_{-7}^{+10} ms$ agreement with exp. !

2-proton radioactivity events

low additional statistics

⁴⁵Fe

agreement with previous distribution no significant change side product of the experiment

⁴⁸Ni

 $(\rightarrow RIKEN)$

limited comparison with theory but...

measurement for ⁶⁷Kr required !

 $^{48}\mathrm{Ni}~0^+_\mathrm{g.s.}$ 1.2 V^N_{pp} - 100% 0.9 --- 150% $\rho(\theta)$ 0.6 GCC 0.3 0.0 30 60 90 120 150 180 0 θ (degrees)