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Attractors in uRHICs

Relativistic Boltzmann Transport Approach

1D systems

3D systems. Moments

3D systems. Anisotropic flows

Summary and outlook
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Attractors in uRHICs

but not only

Collectivity signatures observed also in small systems (pp and pA)

o

ALICE J'HEP 05 (2023) 243

@ [ALCE Prefiminary 1 @& [ ALCE Prefiminan j 20-309 o b
I o *p(@) ~ y ALICE 0—30A=
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- ofl ¥ ool

(You Zhou, Collectivity in high energy proton proton collisions, SQM?2024)
Good description by hydrodynamics!
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Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023

—
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Attractors in uRHICs

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge

y

Why do we look for attractors?
@ Uncertainties in initial conditions affect final
observables? Memory of initial conditions?
@ Appearance of attractors and hydrodynamisation. The
issue of small systems, as produced in pp or pA

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023
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Attractors in uRHICs

Attractors

What is an attractor?
Subset of the phase space to which all trajectories converge

Why do we look for attractors?
@ Uncertainties in initial conditions affect final
observables? Memory of initial conditions?
@ Appearance of attractors and hydrodynamisation. The
issue of small systems, as produced in pp or pA )

Where do we look for attractors?

o Full distribution function f(x, p)
Jankowski, Spalinski, Hydrodynamic attractors in

e Moments of f(x, p), probing regions of the phase-space
ultrarelativistic nuclear collisions, 2023

o Anisotropic flows v,
y

Attractors from pp to AA WPCF 2024 Toulouse, September 4% 6 /29




Relativistic Boltzmann Transport Approach

Relativistic Boltzmann Transport (RBT) Code

o Solve Boltzmann Equation: p/d,f(x,p) = C[f(x, p)],
with elastic 2 <> 2 collisions

e

n[GeV’]

0.1

o [fm’]
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Relativistic Boltzmann Transport (RBT) Code

—— Az /_/A;\x v
. (11} i fgc\\'
o Solve Boltzmann Equation: p/d,f(x,p) = C[f(x, p)], | pes }Ay
with elastic 2 <> 2 collisions H 1 |

@ Stochastic Method to implement collisions (Xu, Greiner, PRC 71

(2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))

e

n[GeV’]

0.1

o [fm’]
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Relativistic Boltzmann Transport Approach

Relativistic Boltzmann Transport (RBT) Code

A 2
. (11 I 7 4N
o Solve Boltzmann Equation: p/d,f(x,p) = C[f(x, p)], T e }AV
with elastic 2 <+ 2 collisions AR 4

@ Stochastic Method to implement collisions (Xu, Greiner, PRC 71 ' ]
(2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))

e Fix 1)/s by computing 02> locally via the Chapman-Enskog
formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012) ):

e

n[GeV’]

T m=0 T

=f(m/T)— ~ 12—

n="FHm/T)_ p—

n/s — 0: ideal hydro; /s — oco: free streaming
n/sqep ~ 1/4m: most ideal fluid!

0.1

o [fm’]
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Relativistic Boltzmann Transport Approach

Relativistic Boltzmann Transport (RBT) Code

o Solve Boltzmann Equation: p/d,f(x,p) = C[f(x, p)],
with elastic 2 <> 2 collisions

@ Stochastic Method to implement collisions (Xu, Greiner, PRC 71
(2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))

e Fix 1)/s by computing 02> locally via the Chapman-Enskog
formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012) ):

T m=0 T
=f(m/T)— =~ 12—
n=f(m/ )022 p

n/s — 0: ideal hydro; /s — oco: free streaming
n/sqep ~ 1/4m: most ideal fluid!

Unique tool from hydro regime to free streaming

Attractors from pp to AA

e

n[GeV’]

0.1

o [fm’]
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Code setup for 1D boost-invariant systems

e Conformal system (m = 0)
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Code setup for 1D boost-invariant systems

e Conformal system (m = 0)
o One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.

@ Boost-invariance. No dependence on 75! dN/dns = const. in [—7smaxs Msmax)
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Code setup for 1D boost-invariant systems

Conformal system (m = 0)

One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.

Boost-invariance. No dependence on ns! dN/dns = const. in [—71smax> Msmax]
[ dP(p-u)(p-2)P™ F(x.p)

o Normalised moments: M""(x) =
00 = TaP (o~ 0y (p 2P feal )
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Code setup for 1D boost-invariant systems

e Conformal system (m = 0)

o One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.
@ Boost-invariance. No dependence on 75! dN/dns = const. in [—7smaxs Msmax)

_ JdP(p-u)"(p-2)*" f(x,p)

B fdP (,D : u)n(p : Z)2m feq(xyp)

o Normalised moments: M""(x)

Romatschke-Strickland Distribution Function

1
(9170 Mo 60) = 0 exp (~ 1/ + AR(1+50)).

where pi =p2+ p}2, and py = (p- 2).
&o fixes initial PL/Pt, 70 and A fix initial € and n

Attractors from pp to AA WPCF 2024 Toulouse, September 4% 8/29



1D systems

Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

o At 7 = 79, three different
distributions in
momentum space: oblate
(&0 = 10), spherical
(&0 = 0) and prolate
(¢0 = —0.5).

15

1

05
I MY

0
107 10° o

1
7 [fm]

Attractors from pp to AA

7 =0.100 fm

4 2 4 0
pu [GeV]

1, 2 @
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Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

7=1227fm
3 1
2
=y 09
& =10 i“
E-w 08
o Already at 7 ~ 1 fm, . "
strong initial :
. . . 2 06
longitudinal expansion %!
. -_E =0 [ S o0
brings the system away - e "
from equilibrium : 0
@ Distribution functions : 0
. =i
have .5|m||ar (but not 15 &= —05] 3.0 ‘ &
identical) shape. , o )
2 :
0,5\ 7 o
0 -1 0 1 2 8 2 1 0 1 2 3 o
10 10 10 10 Pu [GGV]

7 [fm]
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Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

7 =5.525 fin
3 1
2
%‘ 09
&H=1 | o ‘
1'2 - E-w 08
o At 7 ~ 5 fm, clear 5
. . 1 . :
universal behaviour also - . .
. . . 05 7~
for the distribution o iy p
. 0 & 1
functions. : S .
1.5 &71
@ Two components: \ 2 os
o] -3
strongly peaked p,, o»s\ / o ) -
distribution and a more . -
. . @ 02
isotropic one (Strickland, 18 b =-05 %“ ‘
1 -1
JHEP 12, 128) , _— 2 o
- M31 -3
01 0 1 2 3 2 4 0 1 2 3 0
10° 10 ]10 10 P [Gev]

7 [fm)]

Attractors from pp to AA WPCF 2024 Toulouse, September 4" 11 /29



1D systems

Distribution function evolution: Forward attractor vs 7, /s = 10/4x.

7 =41.073 fm
1 - = 3 i
2
05 5 09
0 M H=10 ] 2o °
15 ISR e
1 - -3 07
- 3
0.5
'_‘2 06
o For large 7 the system =
! g Y So (o] os
is almost completely SR
H 2 04
thermalized and 5
isotropized. : o3
% 1
&= 05| 5.0 . 02
&.1
3 01

3 2 1 0 1 2 3
puw [GeV]

7 [fm]
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1D systems

Forward Attractor vs 7

Different initial anisotropies {g = —0.5, 0, 10, oo, for /s = 1 /47 and n/s = 10/4x.

12

1
1.15 ,,-:_’_’_'.‘:;:~
11 s N fos e 1/s =1/4m: attractor
1.05 R / S at 7 ~ 0.5 fm
g 70 Py/P, DT g2
! 0 o e n/s = 10/4m: attractor
' at 7 ~ 1.0 fm
=0 .
SZ10 —ajsmiar | os @ Not 10 times larger!
—& = —0.5---n/s = 10/4w o

o Less collisions to reach
the attractor?

o Different attractors
for different 1/s?

7 [fm] 7 [fm]
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Mean free time & Pull-back attractors

Only one relevant time-scale

(Denicol et al.PRD 83,
074019) .
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Mean free time & Pull-back attractors

Only one relevant time-scale

Mean free time

. . l 1 ANcoll a
coll — 9 Npart At

Notice: Tcol X Amfp-

relaxation time
.
o
2,

_RBT _3_ _ _ _ RTA_51/S
&q 9 coll tr €q T 0 5 10 15 20 25
7 [fm)]
Same as hydro & RTA! (Denicol et al.PRD 83,
074019) . Comparison between 75 and 7EPT.
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1D systems

Mean free time & Pull-back attractors

Only one relevant time-scale —> Solution rescaling: Pull-back attractor

1f3 1
it V @ Unique attractor!
Po/Pu | N 7 N e 1/s =1/4m: attractor at
— 3 1 T~ 157
e W ek @ 7/s = 10/4m: attractor at
G e At a2 7 ~0.2 ’Teq
o Initial free streaming expansion
leads to universality.
Va _ e @ Results depend only on (7/7eq)o
10° 10° 10°
T/ Teq 7/Teq T/ Teq
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Code setup for 3D systems

e Conformal system (m = 0)
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Code setup for 3D systems

e Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1
fo(x,p) = Y0 exp (—A—O\/P§ +py + Py (1 + fo)) e 0L/R (2.5 — Jn])
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + fo)) e 0L/R (2.5 — Jn])

o 7o and Ag fix initial € and n (Landau matching conditions);
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1 —X
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + fo)) e 0L/R (2.5 — Jn])

o 7o and Ag fix initial € and n (Landau matching conditions);

o & fixes initial longitudinal anisotropy (P /PT)
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1 —X
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + 50)) e 0L/R (2.5 — Jn])

o 7o and Ag fix initial € and n (Landau matching conditions);
o & fixes initial longitudinal anisotropy (P /PT)

o Gaussian distribution in the transverse plane with r.m.s. R
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Code setup for 3D systems

o Conformal system (m = 0)

@ Relax boundary conditions in the transverse plane = Transverse expansion

Romatschke-Strickland Distribution Function

1 —X
fo(x,p) = Y0 exp (—A—O\/p§ +py + Py (1 + 50)) e 0L/R (2.5 — Jn])

~o and Ag fix initial € and n (Landau matching conditions);

&o fixes initial longitudinal anisotropy (P./Pr)

Gaussian distribution in the transverse plane with r.m.s. R

o Uniform distribution in 7s: [-2.5, 2.5]

Attractors from pp to AA WPCF 2024 Toulouse, September 4" 16 /29



3D systems. Moments

Transverse expansion

Longitudinal
expansion (~ 1D)

1 12 .
P
1
08 1
08|
0.8 ..
__06 £3
& 06 ~ Z 06
o4 == 3
0.4 =04
oal n/s 1/4mx 10/4m — 1D system
- 4 — R=25fm| 02f =-R=55fm- _ 0.2
/ - - R=55m —-R=25fm MO
0 0 - : 0
0 1 2 3 4 01 1 10 0 1 2 3 4
t/R t [fm] t/R
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3D systems. Moments

Transverse expansion

Onset of transverse

€xXpansion
1 1.2
//___.-—-—— .
08 - 1
0.8[
/, g 0.8 ==
__06 7 ESO .
& 06 - £
o4 . B
0.4 = 04
02 n/s 1/4m 10/4m —1D system
’ = R=25fm| 02r - -R=55fm- _ 0.2
- =. R=55fm —-=R =25 fm- MOt
0 0 0
0 1 2 3 4 01 1 10 0 1 2 3 4
t/R t [fm] t/R
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3D systems. Moments

Transverse expansion

0.8

0.6

(Br)

0.4

0.2

Quasi free streaming

((BL) > 0.8)

1.2
//_—--’"' )
1
o
g 0.8}
// 0.8 :§§
0.6 =2 06
X - <
5 S
0.4 = 0.4
n/s 1/4w 10/4w —1D system
— — R=25fm| 02r --B=55fm- _ 0.2
- =-. R=55fm —==R =25 fm- MOt
0 0
1 2 3 4 0.1 1 10 0 1 2 3 4
t/R t [fm] t/R
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3D systems. Moments

Opacity

New time scale: R. If we plot R/, simulations cluster in universality classes

In Relaxation and Isotropization Time P
. . B ~ . . 5\ =5.5 fm
Approximation, opacity 4 emerges in so|V|ng N - -R=25fm
1000 T ~-R=10fm 5

the Boltzmann equation as the only scaling
parameter. (Kurkela et al., PLB 783, 274 (2018);
Ambrus et al. PRD 105, 014031 (2022) )

In RBT one finds:

R
—(t=R) =4

>\mfp

R/ Amfp
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3D systems. Moments

Opacity
New time scale: R. If we plot R/, simulations cluster in universality classes

In Relaxation and Isotropization Time \ ‘ ‘ e
Approximation, opacity 4 emerges in solving S - R=25m |
the Boltzmann equation as the only scaling ah ] o
parameter. (Kurkela et al., PLB 783, 274 (2018);
Ambrus et al. PRD 105, 014031 (2022) )

In RBT one finds:

R .
~(t=R)=% L

)\mfp

R/ Amfp

1/4 3/4 3/4 3/4
ToR
Lt i 105 5 = - 577(}5 N ;(7)72 (T_Ro) =\ (T_ID

Attractors from pp to AA WPCF 2024 Toulouse, September 4" 18 /29




Opacity estimates

ol R [fm] 4mn/s

Nomenclature from Kurkela et al.,, PLB 783, 274 (2018)

Attractors from pp to AA WPCF 2024 Toulouse, September 4" 19 /29



Forward attractors
3+1D, with azimuthal symmetry at s ~0 = M" = M""(
Fix n/s = 1/4w. Change & (P./Pr) and R.

t,XJ_).
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3D systems. Moments

Forward attractors

341D, with azimuthal symmetry at s ~0 = M" =M
Fix n/s = 1/4w. Change & (P./Pr) and R.

nm(t,XJ_).

R 25fm 55fm¢§

— =- 05

—_— -- 0 =

@ Same trend of 1D: attractor due
to initial longitudinal expansion
(identical in 1D and 3D)

o Reached at same t for different R
(transverse size doesn’t matter)

o Differentiate when transverse
Mll

. / MO / <
2fm <z, <25fm

D fm < o <25 fm expansion starts to play a role
0
10t 10° 10 10°
t [fm)] t [fm)]
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3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?
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3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?

13 =128 % =356
— — -y o If plotted wrt t/R, a pull-back
R=10fm attractor emerges for each

universality class, i.e. each value
of opacity 4.

@ One can ‘rescale’ one system
evolution to another within the
same universality class

10 10° 10 10°
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3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

z=x+iy =27z =z—az"!

VT cos(ng))Z + (<7 sin(ng))? a1 na&
o) -

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

€n —
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3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

z=x+iy =27z =z—az"!

VT cos(ng))Z + (<7 sin(ng))? a1 na&
o) -

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

€n —

Viscosity converts space anisotropies in momentum space. Expand distribution function as:
dN

doprdps X122 valpu)cosln(dp — Wa(p.))]

n=1

Anisotropic flows v, = (cos(n¢))
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3D systems. Anisotropic flows

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y):

z=x+iy =27z =z—az"!

VT cos(ng) T+ T sin(n9))? a1 (21 3 =
: ) W g i
(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015)) — 2 ’

x

Viscosity converts space anisotropies in momentum space. Expand distribution function as:
dN

doprdps X122 valpu)cosln(dp — Wa(p.))]

n=1

Anisotropic flows v, = (cos(n¢))

How efficiently does this conversion happen? How does it depend on /s, R and 47

Attractors from pp to AA WPCF 2024 Toulouse, September 4" 22 /29



D systems. Anisotropic flows

Response functions v, /¢,

—R=5.5fm—e =0.1 —R =55 fm—e; =02 —R=55fm—e =01

--R=25fm =02 2 --=R=25fm =01 ~ 25 fm e =02
025/ _R=1.0fm —-R=10fmn e A —-R=10fm
0.2
o
L o015
N
=
0.1
0.05
0
0 05 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3
t/R t/R t/R

@ No dependence on €,
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3D systems. Anisotropic flows

Response functions v, /¢,

0.3

—R =55 fm—e =0.1
-=R=25fm =02
---R=10fm

—R =55 fm—e; =02
02 --R=25fm e =01
---R=1.0fm

@ No dependence on €,

@ Clusters in 4 within 10%. Spreading decreases with increasing 4
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3D systems. Anisotropic flows

Response functions v, /¢,

0.3

—R =55 fm—e =0.1

-=R=25fm =02

—R =55 fm—e; =02
--R=25fm
---R=1.0fm

—R=55fm—e =01
==R=25fm =02
=-=R=1.0 fm

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3

@ No dependence on €,
@ Clusters in 4 within 10%. Spreading decreases with increasing 4

e For fixed 4, monotonic ordering in R

WPCF 2024 Toulouse, September 4t 23 /29
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3D systems. Anisotropic flows

Dissipation of initial v,

o Initial (79 ~ 0.1 — 0.4 fm) v, from CGC model prediction
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3D systems. Anisotropic flows

Dissipation of initial v,

o Initial (79 ~ 0.1 — 0.4 fm) v, from CGC model prediction
@ Mimic initial vp = 0.025 by 99 = —0.1 = f x exp (—\/p)%(l + o) + p}2, + pﬁ/T)
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3D systems. Anisotropic flows

Dissipation of initial v,

o Initial (79 ~ 0.1 — 0.4 fm) v, from CGC model prediction
@ Mimic initial vp = 0.025 by 99 = —0.1 = f x exp (—\/p)%(l + o) + p}z, + pﬁ/T)

@ How does this initial vo impact on the observed vo(t = 2R)?
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3D systems. Anisotropic flows

Dissipation of initial v,

o Initial (79 ~ 0.1 — 0.4 fm) v, from CGC model prediction

@ Mimic initial vp = 0.025 by 99 = —0.1 = f x exp (—\/p)%(l + o) + p}z, + pﬁ/T)

@ How does this initial vo impact on the observed vo(t = 2R)?

0.06
oosf S 4
st N = It o
0.03
I I < A A 2
>
0.02
001 R=551Mm, e, =0.2 R=1.0fm, e =02
A —§=T12- -4 =0 47" —y=T12= =0
0 fponté” —4 = 3.56 —fy = —0.1 o —4 = 3.56 —t = —0.1
—4=113 —4 =113
-0.01
0 0.5 15 2 25 30 0.5 1 15 2 25 3
t/R t/R

Attractors from pp to AA
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3D systems. Anisotropic flows

Dissipation of initial v,

o Initial (79 ~ 0.1 — 0.4 fm) v, from CGC model prediction

o Mimic initial v, = 0.025 by 1o = —0.1 —> f o exp (—\/p)%(l + o) + P2 + pg/T>

@ How does this initial vo impact on the observed vo(t = 2R)?

R=15.51fm, eg=0.2
— 4 =T12--h =0

R=101fm, =02
—A4=712- -y =0

) — 4 =356 —g = —0.1] | e —4 =356 —y = —0.1
—45 =113 —4 =113
-0.01
0.5 15 2 25 30 0.5 1 1.5 2 25
t/R t/R

Attractors from pp to AA

3

@ ~ Universality in 4 (same
colour curves)

o For AA systems really small
impact: collisions cancel
initial correlation

o For pp strong impact
> 15%
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3D systems. Anisotropic flows

Attractors in va /vy ¢q

/dle/d3p cos(ng) I'(x1)exp(—py - u*(x1)/T(x1))
/dzxL/d3p F(x0) exp(—py - ' (x0)/T(x1))

o e
Equilibrium v,: v =

o Fix opacity 4, change
R’ 77/57 ¢0

J =R =10 fm —1 = —0.1 M
: -=R=25fm—uy=0
—R =55 fm— = 0.1

—R =10 fm — = —0.1
- =R=25fm— =0
—R =55 fm— 1y = 0.1

0.5 1 15 2 25 0.5 1 15 2 25
/R t/R
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3D systems. Anisotropic flows

Attractors in va /vy ¢q

/dle/d‘?’p cos(ng) I'(x1)exp(—py - u*(x1)/T(x1))
/dzxL/d3p F(x0) exp(—py - ' (x0)/T(x1))

o e
Equilibrium v,: v =

o Fix opacity 4, change
R» 77/57 ¢0

@ Clear attractor behaviour
for high opacity: curves
converge at t =~ 0.7R

02 --=R =10 fm —1 = 0.1
- : -=R=25fm—uy=0
1 —R =55 fm—1 =0.1

R=1.0 fm —y = —0.1
2.5 fm — = 0

—R =55 fm— 1y = 0.1

0.5 1 15 2 25 0.5 1 15 2 25
/R t/R
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3D systems. Anisotropic flows

Attractors in va /vy ¢q

/dzxL / d®p cos(ng) M(x.) exp(—py - ut(x1)/T(xL))

o e
Equilibrium v,: v =

/d2XJ_/d3pr(XJ_)eXp(—pH'U#(XJ_)/T(XJ_))

o Fix opacity 4, change

=R =10 fm —y = 0.1
--R=25fm—7y=0
—R=55fm—=0.1

=R = 1.0 fm =1y = —0.1
- —R=25fm—1 =0
—R =55 fm— 1y = 0.1

R» 77/57¢0

@ Clear attractor behaviour
for high opacity: curves
converge at t =~ 0.7R

@ Partially broken attractor
for small opacity. At

0.5 1 15 2 25

t/R

0.5 1 15
t/R

Attractors from pp to AA

25 t = 2R, band of width
~15% and v»/v,? ~ 0.7
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3D systems. Anisotropic flows

Memory of initial v» in high-multiplicity pA

Preliminary result!

0.15 w \
p—Pb, sny = 5.02 TeV, N, > 50
0.1r
S 0.05f
\
0172-" ---CGC iitial v(pr) at t = 0.1 fm AN
va(pr) at t = 3R
m v,{2PC} for 7 ALICE preliminary (SQM2024)
——wva(pr) at t = 3R (w/o initial correlations)
-0.05 : : :
0 1 3 4

2
pr [GeV]

Attractors from pp to AA

Minijets + m = 0.3 GeV (=
QPM) + 1/s(T)

Initial vo(p71) from CGC
(Schenke et al., PLB 747 (2015))

Initial eccentricity e = 0.3
(Sun et al., EPJC (2020))

@ Sensitive impact of initial
va(pT)
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3D systems. Anisotropic flows

Memory of initial v, in 20-30% centrality AA

Preliminary result!

0.2 ‘
PbPb, \/sny = 5.02 TeV, 20-30%

0.15¢

- - .CGC initial vs(pr) at t = 0.4 fm
—wo(pr) at t = 3R

-0.05¢ ¢ vs{4} for 7* ALICE (JHEP 05 (2023) 243)
— =vy(pr) at t = 3R (w/o initial correlations)
_0.1 L L L
0 1 2 3

pr [GeV]

Attractors from pp to AA

o Minijets + m = 0.3 GeV (=
QPM) + n/s(T)

o Initial v»(p7) from CGC
(Schenke et al., PLB 747 (2015))

o Initial eccentricity e = 0.3
(Sun et al., EPJC (2020))

o No memory of initial v2(p7)
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Summary and outlook

Summary
1D systems
@ Attractors in conformal boost-invariant case in the distribution function and its moments
@ One relevant time scale (7¢q) driving the evolution
3D systems
v" Forward and pull-back attractors (~ 1D), difference w.t.r. 1D for t > R
v~ Opacity 4 quite good universal parameter (especially for large 4)

v~ Memory of initial momentum correlations in pA systems, not in AA

Outlook
o Attractors in non-conformal systems in progress

o Initial fluctuations for event-by-event simulation

@ Hadronisation

v
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Summary and outlook

Thank you for your attention.
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Backup slides

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

v
T u, = eut,

"l
n=n"u,

€ and n are the energy and particles density in the LRF.

Fluid is not in equilibrium = define locally effective T and I' via Landau matching

conditions: N

T= = AT

€
for
3n’

d is the # of dofs, fixed d = 1.
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Code setup

Cell: Ax = Ay =0.12 fm, Ans = 0.25. Results taken in one-cell-thick slices in 7.
Test particles: from 107 up to 3 - 108.
Time discretization: to avoid causality violation (~ 103 time steps).

Performance: 1 core-hour per 10° total particles in 2 - 103 time steps.
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Backup slides

Testing boost-invariance

Compute normalized moments at different ns's within an interval Ans = 0.04.

11 ; 11 ‘
n/s=1/4r n/s=1/4r
1 - ! ]
0.9
09
osfh
= % 071
| % 1
E 0.7F % 0.6}
osf |
06} 1
04f 1\
05t
03}
0.4 ; ; 02 ; i
10t 10° 10t 10t 10° 10t

7 [fm] T [fm]

No dependence on 7! We look for them at midrapidity: 7 € [-0.02,0.02]
Attractors from pp to AA



Backup slides

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)
p-u
Pl Oufy = ———(feq — 1)
Teq

Exactly solvable, by fixing number and energy conservation.
Two coupled integral equations for Tege =T and T = T

r(r) T4(7') = D(7,70)lo Tg% + /T #I/T’)D(T’ () T4(T’)’H (;) ’

1 T dr!
r(T)T3(T)=; D(7, 7)o T3m0 + / T

70 TGQ(T,)

D(r, 7 (r") T3 (T/)T/:| .
Here o = (1 + 6)_1/2. System solvable by iteration.
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Backup slides

vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation,
starting from kinetic theory (G. s. Denicol et al., PRL105, 162501 (2010)) :

1
€ (e + )

where 7. = 5(n/s)/ T and . = 124/63.
Solved with a Runge-Kutta-4 algorithm.
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Backup slides

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Aimaalol,

Algahtani, Strickland, PRC 99, 2019).
System of three coupled ODEs:

196 1
-l 30; logN\ — = ~- =0
0 log~y + 30; log 21+€—|—T

R'(&) 1 1 1
Or logy + 40; log A + W@rﬁ- p m — E -1

_201+9  fd +O*RAE) _

Teq

o<
Solved with a Runge-Kutta-4 algorithm.
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Backup slides

Computation of moments in other models

w7 hm
Mpnmg =1 —

o RTA:
(n+2m+1)!
Mnm —
o DNMR:
@ aHydro:
m;'Hmydro

| D(r, ro)ag 2m2 T2 2

0 TGQ(T/)

H"™(arg/T) N

[H20(ag) /2] 2m1
+ /TT d—T/D(T/,T/)r(T/) Tnt2mE2 (2l ygynm (T—I) };

T

(1) = (2m + 1)(2a)™2m 2

Attractors from pp to AA

3m(n+2m+2)(n+2m+3) 7
4(2m + 3) '

£

H™ (o)

[H20(a)]r+2m-1 ;
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Backup slides

Comparison with other models

Compute normalized moments with DNMR, anisotropic hydrodynamics (aHydro) and
Relaxation Time Approximation (RTA) Boltzmann Equation.

-~ nfs=1/4m

boonfs=1/4r

- mfs=1f4m - 1

o Better agreement with

04T [—Full Boltzmann 04 \ 04

oaf [ A oz} | o2l ez RTA and aHydro for
o \ B B

of bk M =PyP, | o ;" o [ M lower order moments

10" 10° 10 10" 10° 10! 10 10° 10!

o Better agreement with
DNMR for lower /s
(V. Ambrus et al., PRD 104.9
(2021))
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Backup slides

Pressure anisotropy in different frameworks

For n/s = 1/4mw and /s = 10/4m, compute P; /Pt from three different initial anisotropies:
€0 = —0.5, 0, 10.

16 ----RBT n/s=1/4r

N e DNMR n/s =10/4m| |
aHydro
12 b . .
@ RTA (not showed) really similar
' v to aHydro

@ aHydro attractor reached ~ time
than RBT

o vHydro attractor reached at later
time, especially for larger n/s

P,/ Py
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Backup slides

Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

@ Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution
(M. Strickland et al.PRD, 97, 036020 (2018)) ;

o Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301
(2018)) : 7o < 1 and & — oo (in accordance with aHydro).

Infinitely oblate distribution &y — oo, initial scaled time 74 7o/(7)/s) — 0.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.
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Backup slides

Attractors in different models

1.4
1
R T —nm
el 08 o M, m>0: very
1 e =
MY good agreement
1 o Higher order moments
“;ﬁ){j:;’ — stronger departure
R e between models
0 o RBT thermalizes
.3 -
! 1 earlier
—n0
@ No agreement for M
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Midrapidity

10 10° 10t 10t 10° 10t

7 [fm)] 7 [fm)] 7 [fm)]

At midrapidity no difference w.r.t. the boost invariant case.
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Backup slides

Finite distribution in n

const. |ns| < 2.5

Breaking boost-invariance: (ns;70) =
Ms 0 elsewhere
12000 T T
1 simulation _:fg‘sl ffr’“l‘
Ty = 0.5 GeV = 096m
10000 | £, =0 t=2.7fm [
7//3:1/47r t =10 fm
. . . . . _2.106
@ Tails of the distribution function sooo | Nt =310 1
at [ns| > 1 &
. . . . . .. =~ 6000 i )
@ Discontinuity in initial Z
distribution — non-analyticity 4000/~ 1
points in moments’ evolution
2000 - -
-5 -4 3 2 -1 0 1 2 3 4 5

s
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Backup slides

Breaking boost-invariance. Attractors at finite rapidity

Finite and non-homogenous initial distribution in 5. 1+1D = M"" (x) = M"" (7, 7)

Forward attractor. Fixed n/s = 1/4r. Pull-back attractor. Fixed & = 0.
L1 [ Y S s ———— 12 P R —————
\,/// o \\
05h 05
PP, ! M™ P/ Py
0
T [fm] 7_/7—eq T/Teq
I i
n/s=1/4m n/s =10/4n
1, = 0.0 ns = 0.0
05 \ —1ns =2.0 —1ns=2.0 0.5
R Ny =2.5 ns = 2.5
_ 7, = 3.0 7, = 3.0 Vel
. M . M
7 [fm)] 7/Teq
Universal behaviour even at ns = 3, outside the initial distribution range! )
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Backup slides

T-dependent n/s: Plot with respect to 7

11

\ —)/s = 1 /47
¥\ = =Case 1: 1/47 + freeze out

\ = Case 2: 7)/s o< T + freeze out
10t F \ QPM [PRD 84, 094004 (2011)] 4
¢ xPT Meson Gas
----- Bayesian [NP 15, 1113 -1117 (2019)] s =1/4n

& 1QCD [PRD 76, 101701 (2007)] Caso 1

\{— 1QCD [PRD 98, 014512 (2018)]

3
o
o

----Caso 2

Am nls

(T T.)/T.

7 [fm] 7 [fm] 7 [fm)]

Universal behaviour lost at different 7 (depend on local T)
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Backup slides

T-dependent 7/s: Plot with respect to 7/7¢q

~

10t

A nls

\ —)/s = 1/47
%Y = =Case 1: 1/47 + freeze out
\  —Case 2 n/s T + freeze out
\ QPM [PRD 84, 094004 (2011)]
‘ ¢ xPT Meson Gas
° v Bayesian [NP 15, 1113 -1117 (2019)]
° \ § 1QCD [PRD 76, 101701 (2007)]
1 ¥ 1QCD [PRD 98, 014512 (2018)]

\

10°

-1 -0.5 0 0.5 1 15 2

(T -T)/T.

25

1.06
1.04
1.02

0.98

—n/s=1/4m
Caso 1
----Caso 2

,,,,,,,,,,,,,,,,, Do |

e e 2
10° 10! 10° 10t 10° 10*
T/ Teq T/ Teq T/ Teq

Universal behaviour restored after ‘loops’.
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Backup slides

Non-monotonic 7 /7, for Case 1

Loops when 7/7¢4 is no more a monotonic function: 7eq o 7/s(T)/ T grows faster than 7.

101 L

7/ Teq

100 —& =-0.5] 1
—& =0
—& =10

107 10° 10* 10? 10°
7 [fm)]
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- Seckwelde
Loss of attractors for small %

1.2

R=0.8fm
1 n/s =30/4w
4 =0.18

0.8¢

—

Cioa—
| B

0.4r

0.2

0
101 10°
t [fm)]

Attractor do not reached even for t =4 fm ~ 5R!
Attractors from pp to AA
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