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Attractors in uRHICs

ultra-Relativistic Heavy-Ion Collisions...
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Attractors in uRHICs

...but not only

Collectivity signatures observed also in small systems (pp and pA)

(You Zhou, Collectivity in high energy proton proton collisions, SQM2024)

Good description by hydrodynamics!
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Attractors in uRHICs

Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge

Why do we look for attractors?

Uncertainties in initial conditions a�ect �nal
observables? Memory of initial conditions?

Appearance of attractors and hydrodynamisation. The
issue of small systems, as produced in pp or pA

Where do we look for attractors?

Full distribution function f (x , p)

Moments of f (x , p), probing regions of the phase-space

Anisotropic �ows vn

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023
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Relativistic Boltzmann Transport Approach

Relativistic Boltzmann Transport (RBT) Code

Solve Boltzmann Equation: pµ∂µf (x , p) = C [f (x , p)]p
with elastic 2 ↔ 2 collisions

Stochastic Method to implement collisions (Xu, Greiner, PRC 71

(2005), Ferini, Colonna, Di Toro, Greco, PLB 670 (2009))

Fix η/s by computing σ22 locally via the Chapman-Enskog
formula (Plumari, Puglisi, Scardina, Greco, PRC 86 (2012) ):

η = f (m/T )
T

σ22

m=0≃ 1.2
T

σ22

η/s → 0: ideal hydro; η/s → ∞: free streaming
η/sQGP ∼ 1/4π: most ideal �uid!

Unique tool from hydro regime to free streaming
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1D systems

Code setup for 1D boost-invariant systems

Conformal system (m = 0)

One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.

Boost-invariance. No dependence on ηs ! dN/dηs = const. in [−ηsmax, ηsmax]

Normalised moments: M
nm

(x) =

∫
dP (p · u)n(p · z)2m f (x , p)∫
dP (p · u)n(p · z)2m feq(x , p)

Romatschke-Strickland Distribution Function

f0(p; γ0,Λ0, ξ0) = γ0 exp

(
− 1

Λ0

√
p2⊥ + p2w (1+ ξ0)

)
,

where p2⊥ = p2x + p2y and pw = (p · z).
ξ0 �xes initial PL/PT , γ0 and Λ0 �x initial ε and n
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

At τ = τ0, three di�erent
distributions in
momentum space: oblate
(ξ0 = 10), spherical
(ξ0 = 0) and prolate
(ξ0 = −0.5).

V. Nugara Attractors from pp to AA WPCF 2024 Toulouse, September 4th 9 / 29



1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

Already at τ ∼ 1 fm,
strong initial
longitudinal expansion
brings the system away
from equilibrium

Distribution functions
have similar (but not
identical) shape.
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

At τ ∼ 5 fm, clear
universal behaviour also
for the distribution
functions.

Two components:
strongly peaked pw
distribution and a more
isotropic one (Strickland,

JHEP 12, 128)
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1D systems

Distribution function evolution: Forward attractor vs τ , η/s = 10/4π.

For large τ the system
is almost completely
thermalized and
isotropized.
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1D systems

Forward Attractor vs τ

Di�erent initial anisotropies ξ0 = −0.5, 0, 10,∞, for η/s = 1/4π and η/s = 10/4π.
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η/s = 1/4π: attractor
at τ ∼ 0.5 fm

η/s = 10/4π: attractor
at τ ∼ 1.0 fm

Not 10 times larger!

Less collisions to reach
the attractor?

Di�erent attractors

for di�erent η/s?
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1D systems

Mean free time & Pull-back attractors

Only one relevant time-scale

Mean free time

τcoll =
1

2

(
1

Npart

∆Ncoll

∆t

)−1

Notice: τcoll ∝ λmfp.

τRBTeq ≡ 3

2
τcoll = τtr = τRTAeq =

5η/s

T

Same as hydro & RTA! (Denicol et al.PRD 83,

074019) .
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eq

2=s = 10=4:

2=s = 1=4:

Comparison between τRTAeq and τRBTeq .
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1D systems

Mean free time & Pull-back attractors

Only one relevant time-scale =⇒ Solution rescaling: Pull-back attractor
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Initial free streaming expansion
leads to universality.

Results depend only on (τ/τeq)0
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3D systems. Moments

Code setup for 3D systems

Conformal system (m = 0)

Relax boundary conditions in the transverse plane =⇒ Transverse expansion

Romatschke-Strickland Distribution Function

f0(x , p) = γ0 exp

(
− 1

Λ0

√
p2x + p2y + p2w (1+ ξ0)

)
e−x2⊥/R2

θ(2.5− |ηs |)

γ0 and Λ0 �x initial ε and n (Landau matching conditions);

ξ0 �xes initial longitudinal anisotropy (PL/PT )

Gaussian distribution in the transverse plane with r.m.s. R

Uniform distribution in ηs : [-2.5, 2.5]
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3D systems. Moments

Transverse expansion

0 < t < R

Longitudinal
expansion (∼ 1D)

t > R

Onset of transverse
expansion

t > 2R

Quasi free streaming
(⟨β⊥⟩ > 0.8)
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0 < t < R

Longitudinal
expansion (∼ 1D)

t > R
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expansion
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3D systems. Moments

Opacity

New time scale: R . If we plot R/λmfp, simulations cluster in universality classes

In Relaxation and Isotropization Time
Approximation, opacity γ̂ emerges in solving
the Boltzmann equation as the only scaling

parameter. (Kurkela et al., PLB 783, 274 (2018);

Ambrus et al. PRD 105, 014031 (2022) )

In RBT one �nds:

R

λmfp
(t = R) ≈ γ̂
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Link with 1D: γ̂ =
τ
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0 T0R
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τ0T0
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R

τ0

)3/4

V. Nugara Attractors from pp to AA WPCF 2024 Toulouse, September 4th 18 / 29



3D systems. Moments

Opacity

New time scale: R . If we plot R/λmfp, simulations cluster in universality classes

In Relaxation and Isotropization Time
Approximation, opacity γ̂ emerges in solving
the Boltzmann equation as the only scaling

parameter. (Kurkela et al., PLB 783, 274 (2018);

Ambrus et al. PRD 105, 014031 (2022) )

In RBT one �nds:

R

λmfp
(t = R) ≈ γ̂

0 0.5 1 1.5 2 2.5 3

t=R

100

101

R
=
6

m
f
p

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

.̂ = 1:13

.̂ = 3:56

.̂ = 7:12

Link with 1D: γ̂ =
τ
1/4
0 T0R

3/4

5η/s
=
τ0T0

5η/s

(
R

τ0

)3/4

= (τ/τeq)0

(
R

τ0

)3/4

V. Nugara Attractors from pp to AA WPCF 2024 Toulouse, September 4th 18 / 29



3D systems. Moments

Opacity estimates

γ̂ R [fm] 4πη/s

1.0 3.18 pp
1.13 2.5 6.33 particle-like

5.5 11.4

1.0 1.00 pp
3.56 2.5 2.00 pA transition region

5.5 3.61

1.0 0.503
7.12 2.5 1.00 pA hydro-like

5.5 1.81 AA

Nomenclature from Kurkela et al., PLB 783, 274 (2018)
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3D systems. Moments

Forward attractors

3+1D, with azimuthal symmetry at ηs ∼ 0 =⇒ M
nm

= M
nm

(t, x⊥).
Fix η/s = 1/4π. Change ξ0 (PL/PT ) and R .

0
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1

7M 01

x? < 1 fm

7M 11

x? < 1 fm

R 2.5 fm 5.5 fm 90
0:5
0
10
1

10-1 100

t [fm]

0

0.5

1

7M 01

2 fm < x? < 2:5 fm

10-1 100

t [fm]

7M 11

2 fm < x? < 2:5 fm

Same trend of 1D: attractor due
to initial longitudinal expansion
(identical in 1D and 3D)

Reached at same t for di�erent R
(transverse size doesn't matter)

Di�erentiate when transverse
expansion starts to play a role
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3D systems. Moments

Pull-back attractors

We do not have a unique time-scale any more.
How do we rescale time? Do we expect pull-back attractors at all?

10-1 100

t=R

0

0.5

1

1.5

7M01

10-1 100

t=R

7M21

R = 5:5 fm
R = 2:5 fm
R = 1:0 fm

.̂ = 12:8 .̂ = 3:56

If plotted wrt t/R , a pull-back
attractor emerges for each
universality class, i.e. each value
of opacity γ̂.

One can `rescale' one system
evolution to another within the
same universality class
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3D systems. Anisotropic �ows

Eccentricities and anisotropic �ows

Reproduce eccentricity in coordinate space by shifting (x , y):

z = x + iy → z ′ = z − αz̄n−1

ϵn =

√
⟨xn⊥ cos(nϕ)⟩2 + ⟨xn⊥ sin(nϕ)⟩2

⟨xn⊥⟩
α≪1≃ nα

⟨x2(n−1)
⊥ ⟩
⟨xn⊥⟩

.

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

dN

dϕ p⊥ dp⊥
∝ 1+ 2

∑
n=1

vn(p⊥) cos[n(ϕp −Ψn(p⊥))].

Anisotropic �ows vn = ⟨cos(nϕ)⟩

How e�ciently does this conversion happen? How does it depend on η/s, R and γ̂?
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3D systems. Anisotropic �ows

Response functions vn/ϵn
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No dependence on ϵn

Clusters in γ̂ within 10%. Spreading decreases with increasing γ̂

For �xed γ̂, monotonic ordering in R
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3D systems. Anisotropic �ows

Dissipation of initial v2

Initial (τ0 ∼ 0.1− 0.4 fm) vn from CGC model prediction

Mimic initial v2 = 0.025 by ψ0 = −0.1 =⇒ f ∝ exp
(
−
√
p2x(1+ ψ0) + p2y + p2z/T

)
How does this initial v2 impact on the observed v2(t = 2R)?
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∼ Universality in γ̂ (same
colour curves)

For AA systems really small
impact: collisions cancel
initial correlation

For pp strong impact
≳ 15%
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3D systems. Anisotropic �ows

Attractors in v2/v2,eq

Equilibrium vn: v
eq
n =

∫
d2x⊥

∫
d3p cos(nϕ) Γ(x⊥) exp(−pµ · uµ(x⊥)/T (x⊥))∫

d2x⊥

∫
d3p Γ(x⊥) exp(−pµ · uµ(x⊥)/T (x⊥))

.
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Fix opacity γ̂, change
R, η/s, ψ0

Clear attractor behaviour
for high opacity: curves
converge at t ≈ 0.7R

Partially broken attractor
for small opacity. At
t = 2R, band of width
∼ 15% and v2/v

eq
2

≈ 0.7
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3D systems. Anisotropic �ows

Memory of initial v2 in high-multiplicity pA

Preliminary result!

0 1 2 3 4
pT [GeV]

-0.05

0

0.05

0.1

0.15

v 2

CGC initial v2(pT ) at t = 0:1 fm
v2(pT ) at t = 3R
v2f2PCg for :' ALICE preliminary (SQM2024)
v2(pT ) at t = 3R (w/o initial correlations)

p-Pb,
p

sNN = 5:02 TeV, Nch > 50

Minijets + m = 0.3 GeV (≈
QPM) + η/s(T )

Initial v2(pT ) from CGC
(Schenke et al., PLB 747 (2015))

Initial eccentricity ϵ2 = 0.3
(Sun et al., EPJC (2020))

Sensitive impact of initial
v2(pT )
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3D systems. Anisotropic �ows

Memory of initial v2 in 20-30% centrality AA

Preliminary result!

0 1 2 3 4
pT [GeV]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

v 2

CGC initial v2(pT ) at t = 0:4 fm
v2(pT ) at t = 3R
v2f4g for :' ALICE (JHEP 05 (2023) 243)
v2(pT ) at t = 3R (w/o initial correlations)

PbPb,
p

sNN = 5:02 TeV, 20-30%

Minijets + m = 0.3 GeV (≈
QPM) + η/s(T )

Initial v2(pT ) from CGC
(Schenke et al., PLB 747 (2015))

Initial eccentricity ϵ2 = 0.3
(Sun et al., EPJC (2020))

No memory of initial v2(pT )
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Summary and outlook

Summary

1D systems

Attractors in conformal boost-invariant case in the distribution function and its moments

One relevant time scale (τeq) driving the evolution

3D systems

✓ Forward and pull-back attractors (∼ 1D), di�erence w.t.r. 1D for t > R

✓ Opacity γ̂ quite good universal parameter (especially for large γ̂)

✓ Memory of initial momentum correlations in pA systems, not in AA

Outlook

Attractors in non-conformal systems in progress

Initial �uctuations for event-by-event simulation

Hadronisation
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Summary and outlook

Thank you for your attention.
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Backup slides

LRF and matching conditions

De�ne the Landau Local Rest Frame (LRF) via the �uid four-velocity:

Tµνuν = εuµ,

n = nµuµ

ε and n are the energy and particles density in the LRF.
Fluid is not in equilibrium =⇒ de�ne locally e�ective T and Γ via Landau matching
conditions:

T =
ε

3 n
, Γ =

n

d T 3/π2
,

d is the # of dofs, �xed d = 1.
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Code setup

Cell: ∆x = ∆y = 0.12 fm, ∆ηs = 0.25. Results taken in one-cell-thick slices in ηs .

Test particles: from 107 up to 3 · 108.
Time discretization: to avoid causality violation (∼ 103 time steps).

Performance: 1 core-hour per 106 total particles in 2 · 103 time steps.
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Testing boost-invariance

Compute normalized moments at di�erent ηs 's within an interval ∆ηs = 0.04.

10-1 100 101

= [fm]

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

7 M
0
1

10-1 100 101

= [fm]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

7 M
0
2

2s = 0:0
2s = 1:0
2s = 2:0
2s = 3:0

2=s = 1=4: 2=s = 1=4:

No dependence on η! We look for them at midrapidity: η ∈ [−0.02, 0.02]

V. Nugara Attractors from pp to AA WPCF 2024 Toulouse, September 4th 32 / 29



Backup slides

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

pµ∂µfp = −p · u
τeq

(feq − fp).

Exactly solvable, by �xing number and energy conservation.
Two coupled integral equations for Γeff ≡ Γ and Teff ≡ T :

Γ(τ)T 4(τ) = D(τ, τ0)Γ0T
4
0

H(α0τ0/τ)

H(α0)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′)Γ(τ ′)T 4(τ ′)H

(
τ ′

τ

)
,

Γ(τ)T 3(τ) =
1

τ

[
D(τ, τ0)Γ0T

3
0 τ0 +

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′)Γ(τ ′)T 3(τ ′)τ ′

]
.

Here α = (1+ ξ)−1/2. System solvable by iteration.
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vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation,
starting from kinetic theory (G. S. Denicol et al., PRL105, 162501 (2010)) :

∂τε = −1

τ
(ε+ P − π),

∂τπ = − π

τπ
+

4

3

η

τπτ
− βπ

π

τ
,

where τπ = 5(η/s)/T and βπ = 124/63.
Solved with a Runge-Kutta-4 algorithm.

V. Nugara Attractors from pp to AA WPCF 2024 Toulouse, September 4th 34 / 29



Backup slides

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol,

Alqahtani, Strickland, PRC 99, 2019).
System of three coupled ODEs:

∂τ log γ + 3∂τ log Λ− 1

2

∂τξ

1+ ξ
+

1

τ
= 0;

∂τ log γ + 4∂τ log Λ +
R′(ξ)

R(ξ)
∂τξ =

1

τ

[
1

ξ(1+ ξ)R(ξ)
− 1

ξ
− 1

]
;

∂τξ −
2(1+ ξ)

τ
+
ξ(1+ ξ)2R2(ξ)

τeq
= 0.

Solved with a Runge-Kutta-4 algorithm.
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Computation of moments in other models

RTA:

Mnm(τ) =
(n + 2m + 1)!

(2π)2

[
D(τ, τ0)α

n+2m−2
0 T n+2m+2

0 Γ0
Hnm(ατ0/τ)

[H20(α0)/2]n+2m−1
+

+

∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ ′, τ ′)Γ(τ ′)T n+2m+2(τ ′)Hnm

(
τ ′

τ

)]
;

DNMR:

M
nm
DNMR = 1− 3m(n + 2m + 2)(n + 2m + 3)

4(2m + 3)

π

ε
;

aHydro:

M
nm
aHydro(τ) = (2m + 1)(2α)n+2m−2 Hnm(α)

[H20(α)]n+2m−1
;
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Comparison with other models

Compute normalized moments with DNMR, anisotropic hydrodynamics (aHydro) and
Relaxation Time Approximation (RTA) Boltzmann Equation.
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M
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= PL=Peq

Full Boltzmann
RTA
aHydro
DNMR

2=s = 1=4:2=s = 1=4:

2=s = 10=4:2=s = 10=4:2=s = 10=4:

2=s = 1=4:

M
31

M
01

M
32

Better agreement with
RTA and aHydro for
lower order moments

Better agreement with
DNMR for lower η/s
(V. Ambrus et al., PRD 104.9

(2021))
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Pressure anisotropy in di�erent frameworks

For η/s = 1/4π and η/s = 10/4π, compute PL/PT from three di�erent initial anisotropies:
ξ0 = −0.5, 0, 10.

10-1 100 101

=

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

P
L
=
P

T

RBT
DNMR
aHydro

2=s = 1=4:
2=s = 10=4:

RTA (not showed) really similar
to aHydro

aHydro attractor reached ∼ time
than RBT

vHydro attractor reached at later
time, especially for larger η/s

V. Nugara Attractors from pp to AA WPCF 2024 Toulouse, September 4th 38 / 29



Backup slides

Who is the attractor?

All curves scale to a universal behaviour. Which is the curve they converge to?

Viscous (vHydro) and Anisotropic (aHydro) Hydrodynamics: analytical solution
(M. Strickland et al.PRD, 97, 036020 (2018)) ;

Relaxation Time Approximation (RTA) Boltzmann Equation (P. Romatschke PRL 120, 012301

(2018)) : τ0 ≪ 1 and ξ0 → ∞ (in accordance with aHydro).

In�nitely oblate distribution ξ0 → ∞, initial scaled time τ0T0/(η/s) → 0.

Is it the RBT attractor, too? It is.

The system initially is dominated by strong longitudinal expansion.
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Attractors in di�erent models
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vHydro

aHydro

RTA

RBT
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===eq

1

1.1

1.2

1.3

7M 30

M
nm

, m > 0: very
good agreement

Higher order moments
→ stronger departure
between models

RBT thermalizes
earlier

No agreement for M
n0
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Midrapidity
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boost-invariant
non boost-invariant

At midrapidity no di�erence w.r.t. the boost invariant case.
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Finite distribution in η

Breaking boost-invariance:
dN

dηs
(ηs ; τ0) =

{
const. |ηs | < 2.5

0 elsewhere

Tails of the distribution function
at |ηs | > 1

Discontinuity in initial
distribution → non-analyticity
points in moments' evolution

-5 -4 -3 -2 -1 0 1 2 3 4 5

2s

0

2000

4000

6000

8000

10000

12000

d
N

=d
2
s

= = 0:1 fm
t = 0:5 fm
t = 0:9 fm
t = 2:7 fm
t = 10 fm

1 simulation
T0 = 0:5 GeV
90 = 0
2=s = 1=4:
Ntest = 3 " 106
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Breaking boost-invariance. Attractors at �nite rapidity

Finite and non-homogenous initial distribution in ηs . 1+1D =⇒ M
nm

(x) = M
nm

(τ, ηs)

Forward attractor. Fixed η/s = 1/4π.
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Pull-back attractor. Fixed ξ0 = 0.
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2=s = 10=4:
2s = 0:0
2s = 2:0
2s = 2:5
2s = 3:0

Universal behaviour even at ηs = 3, outside the initial distribution range!
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T -dependent η/s: Plot with respect to τ
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Universal behaviour lost at di�erent τ (depend on local T)
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T -dependent η/s: Plot with respect to τ/τeq
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Universal behaviour restored after `loops'.
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Non-monotonic τ/τeq for Case 1

Loops when τ/τeq is no more a monotonic function: τeq ∝ η/s(T )/T grows faster than τ .
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Loss of attractors for small γ̂
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R = 0:8 fm
2=s = 30=4:

.̂ = 0:18

Attractor do not reached even for t = 4 fm ≈ 5R!
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