Charge balance function & fluctuation with CMS

WPCF, 4-8 Nov 2024 Toulouse, France

Prabhat R. Pujahari Indian Institute of Technology Madras

Outline

□ Correlation functions, balance functions, fluctuations

Main results from CMS charge-particle balance functions measurements

- \circ Centrality (multiplicity) and p_{T} dependence
- Widening of the rapidity correlations with centrality
- Narrowing of the Charge Balance Function with centrality
- $\circ\,$ Azimuthal Balance functions in $\Delta\varphi$ and diffusion
- Integrals of Balance functions
- Dynamical net-ch fluctuations using $v_{(+-,dyn)}$

□ Summary

□ CMS new measurements in progress

Correlation: 'Elementary NN' vs 'AA' collisions

Expansion of the Little Bang

Charge ordering of the ridge and it's width may distinguish

Width of correlations from initial state

The longitudinal width of the correlation is related to the time the correlation was established \star late stage correlation will be narrow in $\Delta \eta$, early times wide

> *Dumitru, Gelis, Venugopalan, McLerran: Nucl. Phys.A 810:91,2008

Charge conservation at freezeout

Charge ordering is not unique to jet physics:

-Correlation of conserved charges (Balance Functions): in this case the correlations existed already at the production moment would be modified by radial flow.

Correlations from the freeze-out surface must be shorter range

Effect on correlations

When you enforce charge conservation at the phase boundary, you develop a narrow charge dependent structure

P. Bozek and W. Broniowski, arXiv:1204.3580

Effect on correlations

Clocking Hadronization

CMS detector and data set

Data set: PbPb 2018 data set at $\sqrt{s_{NN}}$ = 5.02 TeV pPb 2016 data set at $\sqrt{s_{NN}}$ = 8.16 TeV

Why CMS Detector? -Good precision

-Large rapidity coverage

Ideal for capturing balancing partners and initial state fluctuations

Kinematic selection: - p_T > 0.5 GeV/c (PbPb) p_T > 0.4 GeV/c (pPb) - |η| < 2.4

Charge Balance function in PbPb

Quantifying balance function width in PbPb

Comparison to MC with and w/o radial flow

 \square Data not described by either HYDJET , HIJING or APMT in $\Delta\eta.$

□ Azimuthal balance function ($\Delta \phi$) : AMPT shows similar trend as in data \rightarrow could be connection to radial flow effect in AMPT!

Charge Balance function in pPb

- Narrowing is observed from low to high multiplicity events in pPb collisions in $\Delta\eta$ and $\Delta\varphi.$
- More radial flow effect and/or late hadronization in pPb system?

Quantifying balance function width in pPb

A similar trend is observed in pPb collisions:

D Narrowing of the balance function with increasing multiplicity in $\Delta \eta$ and $\Delta \phi$.

 \Box Narrowing in $\Delta \phi$ described by AMPT connection to radial flow.

Testing diffusion of Balance function

The tails (higher Δn projections) of the Balance functions are broader rightarrow could be due to extra diffusion of charge in the early stages of the collisions and/or collective radial flow?

Inclusive charge BFs and their integrals

Let
$$\alpha = \beta = +; \ \bar{\alpha} = \beta = -$$

 $B^{+|-}(y_1 \mid y_2) = \frac{\rho_2^{+-}(y_1, y_2)}{\rho_1^{-}(y_2)} - \frac{\rho_2^{--}(y_1, y_2)}{\rho_1^{-}(y_2)}$

CHARGE CONSERVATION:

Creation of $\alpha = +$ must be accompanied by the production of $\alpha = -$:

In the 4π , full p_{T} acceptance limit yields.

$$\lim_{\Omega\to 4\pi} I^{+|-}(y_2|\Omega)\to 1$$

courtesy: Claude Pruneau

Inclusive charge BFs and their integrals

Width of acceptance + Balance function determine the Integral

Dynamical net-charge fluctuations

 \checkmark Fluctuations in hadron gas is higher than in QGP medium.

Why E-by-E fluctuations?

 \checkmark To study the properties of

the phase transition.

To locate the critical end point.

C. Pruneau, S. Gavin, and S. Voloshin Phys. Rev. C 66 (2002), 044904

 $q = \pm \frac{1}{3}, \pm \frac{2}{3}, q^2 = \frac{1}{9}, \frac{4}{9}$ Hadron gas (HG) $q = \pm 1, \pm 2, q^2 = 1, 4$ $\nu_{(+-,dyn)} = \frac{\langle N_+(N_+-1)\rangle}{\langle N_+\rangle^2} + \frac{\langle N_-(N_--1)\rangle}{\langle N_-\rangle^2} - 2\frac{\langle N_+N_-\rangle}{\langle N_+\rangle\langle N_-\rangle}$ $\nu_{dyn} = 0; \text{ no dynamical fluctuation}$ $\nu_{dyn} > 0; \text{ same sign correlations dominates}$ $\nu_{dyn} < 0; \text{ opposite sign dominates}$

Relation to correlation:

- "Fluctuations" are determined by the 'average' value of the correlation function over p_T -region under study.

IIT Madras

Centrality dependence v_{dyn}

$\langle N_{part}\rangle$ and $\Delta\eta$ dependence ν_{dyn}

CMS-PAS-HIN-22-005

✓ HIJING and HYDJET could not explain the experimental data results

properly

IIT Madras

Summary

- Narrowing of the BF width with increasing multiplicities is consistent with the delayed hadronization and radial flow effects
- ✓ Narrowing in $\Delta \phi$ of the balance function from AMPT shows a similar trend observed in data.
- \checkmark Width does not depend on multiplicity for higher $p_{\rm T}$
- ✓ Tail of the BF is brooder could be an indication of extra diffusion
- $\checkmark~v_{dyn}$ value decreases with the increase of $\Delta\eta$ windows and saturating towards central collisions.
- Negative values of v_{dyn} across all centrality shows correlation of opposite charges dominate.

New measurement in CMS (work in progress)

What if I want to look inside a jet?

Figure courtesy: Ian Moult

- No flow features since ++ and +- (etc) in jets should "suffer" same differential attenuation (flow) from medium (if any)
- Narrow peak may change width with jet mass or virtuality
- Jet substructure: measure properties (charge, energy, etc) of radiation in a jet to extract information about its origin.

Charge BF, momentum-momentum correlation, and HBT within jet measurements are in progress within CMS