

WARSAW UNIVERSITY OF TECHNOLOGY

Whispers of Baryons: A Femtoscopic Journey to **High Baryonic Chemical Potential**

Daniel Wielanek Workshop on Particle Correlations and Femtoscopy, Tolouse 4th-8th November2024

Warsaw University of Technology

NATIONAL SCIENCE CENTRE POLAND

RESEARCH UNIVERSITY EXCELLENCE INITIATIVE

Outline

- Motivation
- Current and future experiments at high baryonic density
- Femtoscopy introduction
- Femtoscopy at high baryonic densities
- Summary

WARSAW UNIVERSITY OF TECHNOLOGY

Motivation

Motivation

Probing phase diagram of QCD matter

- High $\sqrt{s_{NN}} \rightarrow$ high T, low μ_B
 - Lattice QCD calculations available
 - Crossover transition
 - Early Universe
- Medium $\sqrt{s_{NN}} \rightarrow medium \mu_B \& T$
 - Critical Point?
 - 1st order PT/crossover
- Low $\sqrt{s_{NN}} \rightarrow high \mu_B$, low T
 - Neutron stars nature
 - Onset of deconfinement
- Different collision energies \rightarrow probing QCD phase diagram

Overview of the QCD phase diagram, Recent progress from the lattice, The European Physical Journal A, •Volume 57, article number 136, (2021), Jana N. Guenther

Warsaw University of Technology

WARSAW UNIVERSITY OF TECHNOLOGY

Current and future experiments dedicated to the measurements at high $$\mu_{\text{B}}$$

Current experiments (chosen)

• Na61/SHINE

- Fixed target experiment at CERN
- lacksquare
- Energies $\sqrt{s_{NN}} \sim 5-17 \text{ GeV}$

Warsaw University of Technology

- Deconfinent, 1st order PT signature

- Deconfinent, 1st order PT signature

Future experiments

- J-PARC (Japain $\sqrt{s_{NN}}$ 2-5 GeV)
- NICA (Russia $\sqrt{s_{NN}}$ 2-11 GeV)
- GSI/FAIR CBM $\sqrt{s_{NN}}$ 2-5 GeV

Status and Perspectives of the CBM experiment at FAIR, N.. HerrMann, EPJ Web of Conferences 259, 2022

WARSAW UNIVERSITY OF TECHNOLOGY

Femtoscopy

Femtoscopy

Femtoscopy uses the Correlation Function defined as:

$$C(q) = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} = \int \rho(x_1, p_2)$$

Experimental definition

 $q = \sqrt{(p_1 - p_2)^2 - (E_1 - E_2)^2} = 2k^*$

Warsaw University of Technology

11

Two particle interactions/quantum effect

WARSAW UNIVERSITY OF TECHNOLOGY

Femtoscopy at high baryonic densities

1	2

Lower collision energies

PHYSICS WITH THE CBM EXPERIMENT AT FAIR, Iu. Vassiliev, SQM 2024

Probing interaction

Measuring deuteron-lambda interaction:

- Extraction of interaction parameters
- Extraction of binding Energy of hypertriton

Probing interaction

Hyperon puzzle:

- Hyperons might be present in the core of neturon stars
- They should soften EoS
- However this is not seen in astronomical observations
- YY repulsive potential? 3-body forces?

Warsaw University of Technology

SQM2019 presentation - Jacek Otwinowski

WARSAW UNIVERSITY OF TECHNOLOGY

Challenges

"Theoretical" challenges

Development of models for collisions at lower energies

- High collision energies = instant collisions
- Lower collision energies = continuous collision

Warsaw University of Technology

Development of formalism for calculation of CF with taking into account 3-body interactions

"Theoretical" challenges

Warsaw University of Technology

Study of the p-p-K+ and p-p-K- dynamics using the femtoscopy technique, ALICE Collaboration, Eur. Phys. J. A (2023) 59:298

Experimental challenges

Taking sufficient amount of data e.g.:

- CBM interaction rate up to 10 MHz
 - How build event with continuous reading mode? • What about non-gaussian sources?
 - How trigger events?
 - How process data? ullet

Fitting measured correlation functions

- For pions & kaon Bowler Sinukov
 - Levy fits (M. Csanad +)
 - Imaging, deblurring techniques no assumption about shape of the source! – still very exotic 🛞 (Chi Kin Tam)
- What about protons?
 - New developments this talk

Probing dynamics of the collision

Crossover EoS 1st order EoS

Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model, P. Batyuk et al. Phys. Rev. C 96, 024911

J. Steinheimer, S. Schramm, and H. St["]ocker, J. Phys. G 38, 035001 (2011) 1PT Eos P. F. Kolb, J. Sollfrank, and U. W. Heinz, Phys. Rev. C 62, 054909 (2000).

Warsaw University of Technology

vHLLE+UrQMD calculations:

EoS affects the measured femtoscopic radii

Azimuthally sensitive HBT

A twisted emission geometry in non-central Pb+Pb collisions measurable via azimuthally sensitive HBT, G. Graef, M. Lisa, M. Bleicher, Phys. Rev. C 89, 014903 (2014)

General idea:

- Extension of HBT 3D measurements with respect to the reaction plane
- Extraction of tilt angle
- Probing dynamics of the collisions
- Done for pion @ STAR 7.7-200 GeV
- See Tilted geometry in the heavy-ion collisions tal Y. Khyzhniak (Monday)

HBT radii from the UrQMD transport approach at different energies, The European Physical Journal Conferences, Gunnar Graef &et al. 2011

Femtoscopy

- Probing spatio-temporal structure of the collision
 - STAR measurements done for various energies, reconstructed the eccentricity in Au+Au collisions at RHIC
 - Eccentricity reproduced by UrQMD model in cascade mode but non of the model listed in figure was able to reproduce all observables (spectra, HBT) etc.)

Warsaw University of Technology

22

Beam energy dependent two-pion interferometry and the freeze-out eccentricity of pions in heavy ion collisions at STAR, STAR Collaboration, Phys Rev C 92, 2015

Azimuthally sensitive HBT

Collaboration, 2017

Directed Flow in Heavy-Ion Collisions and Its Implications for Astrophysics, Universe, STAR

WARSAW UNIVERSITY OF TECHNOLOGY

Towards new method of fitting correlation functions

• Standard approach (CorrFit)

- Generation of femtoscopic pairs from model (e.g., Therminator) lacksquare
- Calculation of theoretical function #1 \bullet
- Calculation of theoretical function #2 \bullet
- ullet....
- Finding best fit \bullet
- Paper 😳 ullet
- Pros:
 - Works with basically any pairs of particles \bullet
 - Works with complicated sources ullet
 - Possible to include momentum resolution
 - •
- Problems:
 - Time!

Warsaw University of Technology

C(q) =

$$\int S(r^*,k^*) |\Psi(r^*,k^*))|^2 dr^* => rac{2}{N(N-1)} \sum_{i=1}^N \sum_{j=i+1}^N |\Psi(r^*,k^*)|^2$$

Spherical Harmonics:

$$C(q) = \sum_{l,m} C(q) Y_{lm}^* (\Omega_q) d\Omega_q$$

Pros:

- Smaller number of bins faster fitting
- 1D histogram can be visualized Cons:
- Less intuitive
- More complicated math •

Warsaw University of Technology

Warsaw University of Technology

(**) (**) (**) (**)

1.8 1.6 1.4

- New approach (ROCO)
 - Reading pairs only once
 - Calculating of two-particle wave function only once
 - Computing time almost constant (depend only on number of pairs)

Warsaw University of Technology

- New approach (ROCO)
 - Reading pairs only once
 - Calculating of two-particle wave function only once
 - Computing time almost constant (depend only on number of pairs)

Warsaw University of Technology

- New approach (ROCO)
 - **R**eading pairs **o**nly once
 - Calculating of two-particle wave function only once
 - Computing time almost constant ullet(depend only on number of pairs)

Warsaw University of Technology

		0 30 -	
		0.50	
•	New approach (ROCO)	0.25	
	 Reading pairs only once 		
	 Calculating of two-particle wave 	0.20	
	function only once		
	 Computing time almost constant 	0.15	
	(depend only on number of pairs)		
		0.10	
		0.05	
		0.05	
		0.00	
		0.00	

Warsaw University of Technology

33

Example of test of code

- Below comparion of ROCO vs classical method
- Similar improvement in 3D achieved

Example of test of code

- Below comparion of ROCO vs classical method
- Similar improvement in 3D achieved

Warsaw University of Technology

N=1000

General way to fit the data:

- Prepare pair file
- call hal-corrfit 0 prepare xml-template and macro for calculations, modify them
- Send jobs to computer farm (each calculates part of the CF)
- Call hal-corrfit 1 check and combine numerators and denominators of CF
- Call hal-corrfit 2 compress data (store CF)
- Download map to your local PC and fit data

```
CorrfitConfig>
Parameters>
       <Param name="R_{out}" min="1" max="10" step="1"></Param>
       <Param name="R {side}" min="1" max="10" step="1"></Param>
       <Param name="R {long}" min="1" max="10" step="1"></Param>
</Parameters>
 !-- full path to file with pairs-->
PairFile>zz.root</PairFile>
 -- optional part, use to configure dump pair analysis-->
DumpAnalysisConf>
       <CorrelationFunction>
               <Name>CF</Name>
               <Frame>EKinematics::kLCMS</Frame>
               <Type>Femto3DCF</Type>
 !-- optional part, used only for spherical harmonics-->
               <L>3</L>
               <Xaxis bins="100" min="0.0" max="1.0"></Xaxis>
               <Yaxis bins="100" min="0.0" max="1.0"></Yaxis>
               <Zaxis bins="100" min="0.0" max="1.0"></Zaxis>
       </CorrelationFunction>
       <FreezoutGenerator>Hal::FemtoFreezoutGeneratorLCMS</FreezoutGenerator>
       <SourceModel>Hal::FemtoSourceModelGauss3D</SourceModel>
       <CalcOptions>
               <JobMultiplyFactor>1</JobMultiplyFactor>
               <WeightMultiplyFactor>1</WeightMultiplyFactor>
               <PreprocessMultiplyFactor>1</PreprocessMultiplyFactor>
               <!-- S/B/S+B for S(signal) B (background) B+S (both)-->
               <CalcMode>S</CalcMode>
               <IgnoreSign>kTRUE</IgnoreSign>
       </CalcOptions>
       <WeightConf>
               <Type>Hal::FemtoWeightGeneratorLednicky</Type>
               <QuantumOn>kTRUE</QuantumOn>
               <StrongOn>kFALSE</StrongOn>
               <CoulombOn>kFALSE</CoulombOn>
               <PairType>211;211</PairType>
       </WeightConf>
</DumpAnalysisConf>
</CorrfitConfig>
```


Example of function with fit (3d options)

1.6 1.4 0.6 0.4

0.6 0.4 0.2

Example of visualization – 2d option

Warsaw University of Technology

Example of visualization – standard vis.

Hal::CorrFitMask3D* mask = new Hal::CorrFitMask3D(*cf);

/ mask->ApplvThreshold(*cf->GetNum(), 100);

mask->Reset(0); mask->ApplyRange(0, 0.15, 0, 0.15, 0, 0.15, kTRUE); mask->SetBin(2, 2, 2, 1); Hal::CorrFit3DCFMultiDim* mdim = new Hal::CorrFit3DCFMultiDim();

mdim->SetFunctorFromMap("/media/daniel/Baza1/data/corrfit_star/compressed_map.root");

```
auto minimizer = Hal::Minimizer::Instance();
Hal::MinimizerStepConf conf;
conf.LoadFromXML("dummy_conf.xml");
minimizer->SetParamConf(Hal::MinimizerStepConf(), kFALSE);
mdim->SetMinimizer(Hal::CorrFit::EMinAlgo::kHalScan);
mdim->FixParameter(mdim->NormID(), 0.05);
mdim->FixParameter(mdim->NormID(), 1);
mdim->SetParLimits(mdim->LambdaID(), 0.4, 0.8);
mdim->FixParameter(mdim->LambdaID(), 1);
mdim->FixParameter(mdim->RoutID(), 2);
mdim->FixParameter(mdim->RsideID(), 2);
```

mdim->TraceFitting();

```
cf->FitDummy(mdim);
mdim->SetFittingMask(*mask);
mask->Init();
```

```
cf->Fit(mdim);
cf->Draw("{y=0,2}+{ang=45,145}");
```

mdim->Draw("norm+legend+chi2+{leg=0.1,0.1,0.8,0.8}"); new Hal::CorrFitGUI(mdim);

Towards protons in 3D

Current issues/limitations:

- Size of the maps (3D functions are huge)
- Might use more CPU nodes (better parallelization)
- Pair generation time!
 - Partially improved by y-pt generation instead of "real MC model"
- Discretization uncertainty estimation, need for fititng in steps
 - No as "automagic" as initially expected ☺

Data from: Phys. Rev. C 96 (2017) 44904

WARSAW UNIVERSITY OF TECHNOLOGY

Summary

- Exploration of area of high baryonic densities:
 - Very interesting but also challenging
 - Understanding of proton correlations is important
- New algorithm for measurements of proton-proton correlation developed:
 - Significant improvement in performance
 - Still needs some improvements
 - Many (new) ideas need to be tested
 - All new ideas welcome!

Thank you

Warsaw University of Technology

Backup slides

Warsaw University of Technology

Femtoscopy - baryons

https://indico.cern.ch/event/592683/contributions/2393804/attachments/1386135/2109411/Karsai_Zimanyi.pdf

Warsaw University of Technology

Warsaw University of Technology