## DETERMINATION OF THE n-<sup>17</sup>B SCATTERING LENGTH

#### **Emeline OLIVEIRA - LPC Caen**

WPCF - November 2024







## Effective Range Approximation

$$\varphi_k(r) \approx \frac{\sin(kr + \delta_0)}{kr}, k = \sqrt{2\mu E}$$

## Effective Range Approximation

$$\varphi_{k}(r) \approx \frac{\sin(kr + \delta_{0})}{kr}, k = \sqrt{2\mu E}$$
$$k \cot \delta_{0} = \frac{-1}{\alpha_{s}} + \frac{1}{2} \frac{r_{e}}{r_{e}} k^{2} + \mathcal{O}(k^{4})$$

## Effective Range Approximation

$$\varphi_{k}(r) \approx \frac{\sin(kr + \delta_{0})}{kr}, k = \sqrt{2\mu E}$$
$$k \cot \delta_{0} = \frac{-1}{a_{s}} + \frac{1}{2} r_{e} k^{2} + \mathcal{O}(k^{4})$$
$$\sigma(k) = 4\pi \frac{\sin^{2}(\delta_{0})}{k^{2}}$$

# **Effective Range Approximation** $\varphi_k(r) \approx \frac{\sin(kr + \delta_0)}{kr}, k = \sqrt{2\mu E}$ $k\cot \delta_0 = \frac{-1}{a_s} + \frac{1}{2} \frac{r_e}{r_e} k^2 + \mathcal{O}(k^4)$ $\sigma(k) = 4\pi \frac{\sin^2(\delta_0)}{b^2}$ $\sigma(E \rightarrow 0) = 4\pi a_s^2$

### LOW ENERGY SCATTERING: THE n+<sup>17</sup>B CASE

## Effective Range Approximation

$$\varphi_k(r) \approx \frac{\sin(kr + \delta_0)}{kr}, \ k = \sqrt{2\mu E}$$

$$k\cot \delta_0 = \frac{-1}{a_s} + \frac{1}{2} \frac{r_e}{r_e} k^2 + \mathcal{O}(k^4)$$

$$\sigma(k) = 4\pi \frac{\sin^2(\delta_0)}{k^2}$$

$$\sigma(E\to 0)=4\pi a_{\rm s}^2$$

## Case of interest: n+<sup>17</sup>B

- $\rightarrow$  Neutron off exotic nuclei ?
  - ➤ Both are unstable !

## LOW ENERGY SCATTERING: THE n+<sup>17</sup>B CASE

## Effective Range Approximation

$$\varphi_k(r) \approx \frac{\sin(kr + \delta_0)}{kr}, k = \sqrt{2\mu E}$$

$$k \cot \delta_0 = \frac{-1}{a_s} + \frac{1}{2} \frac{r_e}{r_e} k^2 + \mathcal{O}(k^4)$$

$$\sigma(k) = 4\pi \frac{\sin^2(\delta_0)}{k^2}$$
$$\sigma(E \to 0) = 4\pi a_s^2$$

EPJ Web Conf. 311, 00006 (2024)

## Case of interest: n+<sup>17</sup>B

- ightarrow Neutron off exotic nuclei ?
  - ➤ Both are unstable !
- ightarrow Knockout reaction
  - Sudden removal



$$\sigma(k) \approx k \left| \int_0^\infty \psi_i(r) \, \varphi_k^*(r) \, r^2 dr \right|^2$$

## THE STRUCTURE OF <sup>18</sup>B & <sup>19</sup>B



→ Why n+<sup>17</sup>B ? ( $a_s, r_e$ ) →  $\delta_0$  → V(n-<sup>17</sup>B)



### THE STRUCTURE OF <sup>18</sup>B & <sup>19</sup>B



- → Why n+<sup>17</sup>B ? ( $a_s,r_e$ ) →  $\delta_0$  → V(n-<sup>17</sup>B)
- ► Why V( $n^{-17}B$ )?

Only measure:  $a_s < -50 \text{ fm}!$ 

Byrou, Phy. Let. B 683 (2010)



## THE STRUCTURE OF <sup>18</sup>B & <sup>19</sup>B



- → Why n+<sup>17</sup>B ? ( $a_s,r_e$ ) →  $\delta_0$  → V(n-<sup>17</sup>B)
- > Why V(n-<sup>17</sup>B)?

Only measure: a<sub>s</sub> < -50 fm !

▶  $^{17}B+n+n$ : Borromean binding from two large  $a_s...$ 

Efimov states ?

Efimov physics !  $\frac{|a_s|}{r_e} \gg 1$ 













## Minimization



## Minimization



## Minimization



#### Non-correlated contribution



## Minimization



#### Non-correlated contribution



## Minimization



#### Non-correlated contribution



## Fit Example





## Fit Example



$$\underbrace{\mathsf{EXP}}_{\mathsf{L}} \quad \underbrace{\chi^2}_{\mathsf{L}} \quad \underbrace{\uparrow}_{\mathsf{L}} = \lambda^* \underbrace{\mathsf{SIM}}_{\mathsf{L}} \quad + (1-\lambda)^* \underbrace{\uparrow}_{\mathsf{L}} \quad \underbrace{\mathsf{NCC}}_{\mathsf{L}}$$

#### Fit Example



 $\underbrace{\mathsf{EXP}}_{\mathsf{L}} \quad \underbrace{\chi^2}_{\mathsf{L}} \quad \underbrace{\uparrow}_{\mathsf{L}} = \lambda^* \underbrace{\mathsf{SIM}}_{\mathsf{L}} \quad + (1-\lambda)^* \underbrace{\uparrow}_{\mathsf{L}} \quad \mathsf{NCC} \quad \underbrace{\mathsf{NCC}}_{\mathsf{L}} \quad$ 

#### Fit Example



 $\underbrace{\mathsf{EXP}}_{\mathsf{L}} \xrightarrow{\chi^2} \underbrace{\uparrow}_{\mathsf{L}} = \lambda^* \underbrace{\mathsf{SIM}}_{\mathsf{L}} + (1-\lambda)^* \underbrace{\uparrow}_{\mathsf{L}} \underbrace{\mathsf{NCC}}_{\mathsf{L}}$ 

#### PARAMETERS SENSITIVITY



#### PARAMETERS SENSITIVITY

$$kcot(\delta_0) = \frac{-1}{a_s} + \frac{r_e}{2}k^2 + \mathcal{O}(k^4)$$



#### PARAMETERS SENSITIVITY

$$kcot(\delta_0) = \frac{-1}{a_s} + \frac{r_e}{2}k^2 + \mathcal{O}(k^4)$$



















#### SUMMARY

## Low energy scattering

- · Formalism
- · Exotic nuclei (& n) unstable
- **n-<sup>17</sup>B** case: <sup>18</sup>B & <sup>19</sup>B

> scattering lenght

## Exp. program @ RIKEN

- Luminosity ⊗ Acceptance:
  > effective range
- · Multiple channels: (a<sub>s</sub>, r<sub>e</sub>)  $\gg \frac{|a_{\rm s}|}{r_e} \sim 100!$
- · Measure of <sup>19</sup>B mass ?
- First resonances in <sup>18</sup>B



## DETERMINATION OF THE n-<sup>17</sup>B SCATTERING LENGTH

#### **Emeline OLIVEIRA - LPC Caen**

WPCF - November 2024







## Particle off square well



#### Relative Energy: <sup>19</sup>C channel



#### Relative energy for every channel



#### Effect of the intial state



- Is it the same virtual state?
  - E=0-200 keV (no other resonances)
  - <sup>19</sup>C reference ('pure' state)
    - $\rightarrow$  deformation increases with  $S_n$
  - $\psi_i(n)_{SW}$  for  $(a_s, r_e) = (-600, 4)$  fm
    - consistent with same state!
    - description of container effects
    - $\rightarrow$  very sensitive to  $S_n(^{19}\text{B})$  !!!

#### Non Correlated Contribution

#### Non correlated events

Independent particles: 
$$\begin{cases} a \\ b \end{cases} \Rightarrow \begin{cases} P_a \\ P_b \end{cases} \Rightarrow \frac{d\sigma}{dP_a} \frac{d\sigma}{dP_b} \end{cases}$$
  
If (a,b) emitted together: 
$$\frac{d^2\sigma}{dP_a dP_b} = \frac{d\sigma}{dP_a} \frac{d\sigma}{dP_b} \times C(P_a, P_b)$$
  
$$C(P_a, P_a)? \rightarrow \frac{d\sigma}{dP_a} \frac{d\sigma}{dP_b}$$

## Mechanisms modifying (Pa, Pb)





## **Event Mixing**

Independent particles  $\rightarrow$  virutal pairs  $\rightarrow$   $E_{rel}$ 

$$\frac{\mathbf{i} \quad \mathbf{a} \quad \mathbf{b}}{1 \quad \mathbf{0} \quad \mathbf{0}} \qquad \frac{d\sigma_{\otimes}}{dP_a} = \int \frac{d^2\sigma}{dP_a dP_b} dP_b = \frac{d\sigma}{dP_a} \int C(P_a, P_b) \frac{d\sigma}{dP_b} dP_b$$
$$= \frac{d\sigma}{dP_a} \langle C \rangle (P_a)$$

## **Event Mixing**

Independent particles  $\rightarrow$  virutal pairs  $\rightarrow$   $E_{rel}$ 

$$\frac{\mathbf{i} \quad \mathbf{a} \quad \mathbf{b}}{1 \quad \mathbf{0} \quad \mathbf{0}} \qquad \frac{d\sigma_{\otimes}}{dP_{a}} = \int \frac{d^{2}\sigma}{dP_{a}dP_{b}}dP_{b} = \frac{d\sigma}{dP_{a}} \int C(P_{a}, P_{b}) \frac{d\sigma}{dP_{b}}dP_{b}$$
$$= \frac{d\sigma}{dP_{a}} \langle C \rangle (P_{a})$$
$$\frac{d\sigma_{\otimes}}{dP_{b}} = \frac{d\sigma}{dP_{b}} \langle C \rangle (P_{b})$$

## **Event Mixing**

Independent particles  $\rightarrow$  virutal pairs  $\rightarrow$   $E_{rel}$ 

$$\frac{\mathbf{i} \quad \mathbf{a} \quad \mathbf{b}}{1} \qquad \frac{d\sigma_{\otimes}}{dP_{a}} = \int \frac{d^{2}\sigma}{dP_{a}dP_{b}}dP_{b} = \frac{d\sigma}{dP_{a}}\int C(P_{a}, P_{b})\frac{d\sigma}{dP_{b}}dP_{b}$$
$$= \frac{d\sigma}{dP_{a}}\langle C\rangle (P_{a})$$
$$\frac{d\sigma_{\otimes}}{dP_{b}} = \frac{d\sigma}{dP_{b}}\langle C\rangle (P_{b})$$

if 
$$\langle C \rangle (P) \gg 1 \Rightarrow C(P_a, P_b) \ge \frac{d^2 \sigma / dP_a dP_b}{(d\sigma_{\otimes}/dP_a)(d\sigma_{\otimes}/dP_b)}$$



Figure: All distribution of event mixing procedure

Figure: Convergence of the event mixing procedure

#### Non Correlated Contribution



Section in re = 0 (fm), E<0.5 MeV

Free Mix No Mix BCK

.

2500 3000 abs(as) (fm)

2500

:

#### Non-Correlated Distribution



**Figure:** Best Fit without Mix,  $\chi^2$  = 4.57

Figure: Best Fit with simulated Mix,  $\chi^2$  = 0.95

## Induced long-range interaction

 $\rightarrow$  Effective interaction is mediated between two particles by the third particle moving back and forth between the two. It is thus possible for the three particles to feel their influence at distances much larger than the range of interactions, typically up to distances on the order of the scattering length.

## Discrete scale invariance

 $\rightarrow$  infinite series of bound states, the Efimov trimers, whose properties such as size and energy are related to each others' by a scale transformation with a **universal scaling factor**.

## Borromean binding

When the interaction is not strong enough to support a two-body bound state, it may nonetheless support one, up to infinitely many, Efimov trimers. This possibility of **binding N particles**, while the N-1 subsystems are unbound is called 'Borromean' binding. Alignment

