

Probing QGP formation in pp collisions with Balance Functions

Alexandru Manea*,

In collaboration with Sumit Basu, Catalina Brandibur, Andrea Danu, Alexandru Dobrin, Victor Gonzalez, Claude Pruneau XVII Workshop on Particle Correlations and Femtoscopy

Clocking hadronization

Measurement of correlations of charges with their respective anti-charge

Investigate late-stage hadronization and formation of quark-gluon plasma

Balance function at ALICE and STAR

- Balance function reproduced by models with hydro evolution of medium
- Do correlations survive in thermal models as in QCD string ones?

(b) Centrality 30-40%

0

0.5

1.5 0

0.5

1

1.5 0

(Γ.5 Β+(∇

0.5

(a) Centrality 0-5%

XVII Workshop on Particle Correlations and Femtoscopy, Toulouse, FR

0.5

(c) Centrality 70-80%

Pb-Pb @ $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

ALICE data

Integrals of Balance Function

 Balancing of charges almost independent of collision centrality in data mesurements of Pb-Pb collisions

In full acceptance $I^{\alpha\beta}(4\pi) \rightarrow 1$

In finite acceptance it shows the degree to which charges are balanced -> affected by production and transport

Monte Carlo Models

- Macroscopic model:EPOS4
 - Core-corona model with statistical hadronization
 - Core is micro-canonical and conserves charges

- Microscopic model:PYTHIA8
 - QCD strings with LUND fragmentation
 - Implicit quantum number conservation

Difference in particle production mechanisms and system evolution results in different correlations

Generalized Balance Functions

General Balance Function definition arXiv:2209.10420 [hep-ph]

$$B(\Delta\eta, \Delta\varphi) = \frac{1}{2} \{ \rho_1^{\bar{\beta}} (R_2^{\alpha\bar{\beta}} - R_2^{\bar{\alpha}\bar{\beta}}) + \rho_1^{\beta} (R_2^{\bar{\alpha}\beta} - R_2^{\alpha\beta}) \}$$

and robust against efficiency corrections

Charge Balance Function

Projections of Charge BF

Scaling of near side peak is different

Widths of projections are similar but evolve differently with multiplicity

Projections of Charge BF

Scaling of near side peak is different

Widths of projections are similar but evolve differently with multiplicity

Unexpected structure in away side seen in EPOS -> depends on multiplicity

Impact of micro-canonical decay in EPOS?

Identified Particle BF

Particle balancing shows underlying production mechanisms

Identified Particle BF

- Essentially flat away side for kaons and protons in EPOS
- Proton balancing shows divergence of models for baryon balancing

Alexandru Manea

$\pi\pi$ balance with multiplicity

- Anti-correlation for pions in low multiplicity collisions
- EPOS increases correlation strength in the away side

Alexandru Manea

Integrals of Balance Function

- Charged particles almost independent of collision multiplicity
- Different balancing trends for PYTHIA and EPOS with growing multiplicity

Longitudinal width of charge BF

- Width evolution with multiplicity is showing unexpected trend in PYTHIA
- Widths estimate the near side peak

- Different models can be distinguished from balance function measurements
- Evidence for different decay mechanisms
- Opposite trends for integrals
- Extensive measurements of balance functions can improve models

Back-up

Alexandru Manea

Multiplicity Class	$\langle p_T angle$		$\sigma_{\Delta\eta} \ ({ m GeV}/c)$	
Model	PYTHIA	EPOS	PYTHIA	EPOS
0-5%	0.680	0.688	0.772	0.765
5 - 10%	0.669	0.671	0.783	0.770
10-20%	0.655	0.659	0.795	0.775
20-40%	0.627	0.638	0.817	0.789
40-60%	0.592	0.597	0.847	0.809
60-80%	0.564	0.556	0.870	0.832
80-100%	0.547	0.533	0.885	0.823

 $\langle p_{\rm T} \rangle$ evolution with multiplicity -> decrease with multiplicity

KK balance with multiplicity

• EPOS increases correlation strength in the away side

$p + \bar{p}$ balance with multiplicity

• PYTHIA is very different from EPOS

$v_2\{2, |\Delta \eta| > 2\}$ Monash tune

- Mass ordering at low p_T at high Crossing between baryon and multiplicity meson v_2
- Evolution with multiplicity class No particle type grouping

Alexandru Manea

$v_2\{2, |\Delta\eta| > 2\}$ EPOS 4

- Mass ordering at low p_T at high No crossing between pion and multiplicity proton v_2
- Evolution with multiplicity class No particle type grouping

Alexandru Manea

$v_2\{2, |\Delta\eta| > 2\}$ Angantyr

- Heavier particles have smaller v_2 Crossing between pion and than lighter ones proton v_2
- Similarities between multiplicity classes

Alexandru Manea

XVII Workshop on Particle Correlations and Femtoscopy, Toulouse, FR

No particle type grouping