Strange particle femtoscopy in PbPb collisions at 5.02 TeV with the CMS detector

- **Raghunath Pradhan**
- for the CMS collaboration
- **University of Illinois, Chicago**

Introduction: femtoscopy

- Femtoscopy: Powerful tool to probe space-time dimensions of the particle emitting source region on the femtometer scale
 - Use final state particle correlations

Motivation: V⁰ femtoscopy

- Why study V⁰ particles ($\Lambda(\bar{\Lambda}) \& K^0_S$) femtoscopic correlation?
 - No coulomb interaction
 - Quantum statistical (QS) effect and strong final state interaction (FSI)
 - Less resonance contribution (less feed down contribution)
 - Size of the particles emitting source
 - Interaction between baryons and mesons
 - Strong interaction scattering parameters
 - Scattering length and effective range
 - $\Lambda\Lambda(\Lambda\Lambda)$ correlation is relevant for searching bound H-dibaryon

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

CMS detector and V⁰ decay

UIC Raghunath Pradhan, UIC

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

> PRESHOWER Silicon strips ~ $16m^2$ ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

• $\Lambda \to p + \pi^{-} [(63.9 \pm 0.5)\%]$

• $K_S^0 \to \pi^+ + \pi^- [(69.20 \pm 0.05)\%]$

V⁰ particles reconstruction

- Signal : triple Gaussian
- Combinatorial background : 4th order polynomial

Correlation function

$$C(q_{inv}) = N \left[\frac{A(q_{inv})}{B(q_{inv})} \right]$$

$$q_{inv} = |q^{\mu}|, q^{\mu} = k^{\mu} -$$

UIC Raghunath Pradhan, UIC

Results: correlation and fitting

UIC Raghunath Pradhan, UIC

Results: correlation and fitting

QS + strong FSI [non-identical]

• Different pairs have different shape depending on their correlation features.

UIC Raghunath Pradhan, UIC

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

QS (Fermi-Dirac) + strong FSI

Results: source size from $K_c^0 K_c^0$

• Source size (R_{inv}) decreases from central to

Results: comparison with ALICE

 $K_{S}^{0}K_{S}^{0}$ source size comparison with ALICE

- Source size is decreasing with increasing $\langle m_T \rangle$
- Following the trend measured by ALICE

UIC Raghunath Pradhan, UIC

UIC Raghunath Pradhan, UIC

UIC Raghunath Pradhan, UIC

Repulsive interaction

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

JIC

CMS

UIC Raghunath Pradhan, UIC

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

0.5

 $\star \mathfrak{T}_0$ for $\Lambda K^0_{\mathfrak{S}} \oplus \overline{\Lambda} K^0_{\mathfrak{S}}$ consistent with zero within error bar

UIC Raghunath Pradhan, UIC

UIC Raghunath Pradhan, UIC

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

JIC

Summary

- Source size is extracted from $K^0_S K^0_S$ correlation and it increases from peripheral to central collisions as expected.
- First measurement of $\Lambda \Lambda \oplus \overline{\Lambda}\overline{\Lambda}$ correlation in PbPb collisions at LHC • $\Lambda \Lambda \oplus \overline{\Lambda}\overline{\Lambda}$ interaction : Attractive
 - Indicating non-existence of bound H-dibaryon of two $\Lambda(\overline{\Lambda})$
- $\Lambda K^0_S \bigoplus \bar{\Lambda} K^0_S$ interaction : Repulsive

UIC Raghunath Pradhan, UIC

Thank you for your kind attention!

Backup

UIC Raghunath Pradhan, UIC

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

Duplicate V0 removal

- Removed duplicate V0 (sharing common daughters):

• If $|\Delta \chi 2/ndf| = 0$ between V0 daughters with same charge, remove one V0 randomly

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

Correction to the correlation

Pair purity

Non-femtoscopic background

$$\Lambda\Lambda \bigoplus \bar{\Lambda}\bar{\Lambda} \longrightarrow C'_{\text{Fit}}(q_{\text{inv}}) = N \left[1 + \lambda \left(-\frac{1}{2} \exp(-q_{\text{inv}}^2 R_{\text{inv}}^2) + \frac{1}{4} |\frac{f(q_{\text{inv}}/2)}{R_{\text{inv}}}|^2 (1 - \frac{d_0}{2\sqrt{\pi}R_{\text{inv}}}) + \frac{\Re f(q_{\text{inv}}/2)}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Im f(q_{\text{inv}}/2)}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{inv}}) + \frac{\Pi f(q_{\text{inv}}/2)}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Im f(q_{\text{inv}}/2)}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{inv}}) + \frac{\Pi f(q_{\text{inv}}R_{\text{inv}})}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Im f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{inv}}) + \frac{\Pi f(q_{\text{inv}}R_{\text{inv}})}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Im f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{inv}}) + \frac{\Pi f(q_{\text{inv}}R_{\text{inv}})}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Im f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{\sqrt{\pi}R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{inv}}} F_2(Q_{\text{inv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{inv}}} F_1(q_{\text{inv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{qinv}}} F_2(Q_{\text{qinv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{inv}}R_{\text{qinv}})}{2R_{\text{qinv}}} F_1(q_{\text{qinv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{qinv}}R_{\text{qinv}})}{2R_{\text{qinv}}} F_1(q_{\text{qinv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{qinv}}R_{\text{qinv}})}{2R_{\text{qinv}}} F_1(q_{\text{qinv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{qinv}}R_{\text{qinv}})}{2R_{\text{qinv}}} F_1(q_{\text{qinv}}R_{\text{qinv}}) - \frac{\Pi f(q_{\text{qinv}}R_{\text{qinv}}R_{\text{$$

UIC Raghunath Pradhan, UIC

$$2) = \frac{f_{f_0} + f_{a_0}}{2} \qquad \qquad f_{f_0, a_0}(q_{inv}/2) = \gamma_{f_0, a_0}/[m_{f_0, a_0}^2 - s - i\gamma_{f_0, a_0}q_{inv}/2 - i\gamma_{f_0, a_0}'k_{f_0, a_0}]$$

$$\frac{|f(q_{inv}/2)|^{2}}{R_{inv}}|^{2}(1 - \frac{d_{0}}{2\sqrt{\pi}R_{inv}}) + \frac{2\Re f(q_{inv}/2)}{\sqrt{\pi}R_{inv}}F_{1}(q_{inv}R_{qinv}) - \frac{\Im f(q_{inv}/2)}{R_{inv}}F_{2}(Q_{inv})$$

$$f(q_{inv}/2) = (\frac{1}{f_{0}} + \frac{1}{8}d_{0}q_{inv}^{2} - i\frac{q_{inv}}{2})^{-1}$$

$$1 + f(q_{inv}/2)|_{2}(1 - \frac{d_{0}}{2}) + \frac{\Re f(q_{inv}/2)}{\Re f(q_{inv}/2)}F_{2}(q_{inv}-q_{inv}) = \frac{\Im f(q_{inv}/2)}{\Im f(q_{inv}/2)}F_{2}(q_{inv}-q_{inv})$$

$$(-1) = (\frac{1}{f_0} + \frac{1}{8}d_0q_{inv}^2 - i\frac{q_{inv}}{2})^{-1}$$

Lambda parameter

UIC Raghunath Pradhan, UIC

Fitted parameters

Table 3: Extracted values of the R_{inv} , $\Re f_0$, $\Im f_0$, d_0 , λ , and $\langle m_T \rangle$ parameters from the $K_S^0 K_S^0$, ΛK_S^0 , and $\Lambda \Lambda$ combinations in the 0–80% centrality range. The first and second uncertainties are statistical and systematic, respectively.

Parameter	$\mathbf{K}_{\mathbf{S}}^{0}\mathbf{K}_{\mathbf{S}}^{0}$	ΛK_{S}^{0}	$\Lambda\Lambda$
$R_{\rm inv}$ (fm)	$3.40 \pm 0.11 \pm 0.37$	$2.1^{+1.4}_{-0.5} \pm 0.8$	$1.3^{+0.4}_{-0.2} \pm 0.3$
$\Re f_0$ (fm)		$-0.76^{+0.29}_{-0.19}\pm0.20$	$0.74^{+0.59}_{-0.16}\pm0.33$
$\mathfrak{I}f_0$ (fm)		$-0.07^{+0.48}_{-0.11}\pm0.32$	
d_0 (fm)		$2.3^{+0.7}_{-0.5} \pm 1.3$	$4.2^{+5.7}_{-2.1} \pm 2.9$
λ	$0.43 \pm 0.03 \pm 0.13$	$0.34^{+0.41}_{-0.12}\pm0.17$	$1.5^{+1.2}_{-1.1} \pm 1.4$
$\langle m_{\rm T} \rangle$ (GeV)	1.50	2.09	2.60

UIC Raghunath Pradhan, UIC

PLB 857 (2024) 138936

Non-prompt fraction

- HYDJET: 85% $\Lambda(\overline{\Lambda})$ produce directly and 15% $\Lambda(\overline{\Lambda})$ from secondary decay
- HIJING: 39% $\Lambda(\overline{\Lambda})$ produce directly and 61% $\Lambda(\overline{\Lambda})$ from secondary decay

WPCF-2024, 4-8 Nov. 2024, Toulouse, France

Strong parameters fixed

$\Lambda K^0_S \bigoplus \overline{\Lambda} K^0_S$

UIC Raghunath Pradhan, UIC

Armenteros-Podolanski plot

$\alpha = (p_{1L} - p_{2L})/(p_{1L} + p_{1L})$ $p_{i\mathrm{L}} = (\vec{p}_{\mathrm{V}^0} \cdot \vec{p}_i) / |\vec{p}_{\mathrm{V}^0}|$

$Q_{\rm T} = |\vec{p}_1 \times \vec{p}_2| / |\vec{p}_{\rm V}|$

24

α