From Source Imaging to Balance Functions Research Projects with Scott Pratt

Pawel Danielewicz

Facility for Rare Isotope Beams and Department of Physics and Astronomy Michigan State University, USA

WPCF 2024, 17th Workshop on Particle Correlations and Femtoscopy

Toulouse, France, November 4–9, 2024

Scott Edward Pratt

▶ BS U of Kansas 1980

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0) (1

[Joint Projects](#page-2-0)

Delays in **Elementary** [Interactions](#page-3-0)

[Transport Paradox](#page-3-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0)

[Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

▶ PhD U of Minnesota *Pion Pictures of Heavy Ion Collisions*

▶ Joined Michigan State U in 1992

Supervisor: Joseph Kapusta 1985

- ▶ Major Impact on Development of Heavy-Ion Collisions:
	- ▶ Femtoscopy Koonin-Pratt Eq
	- ▶ Speed of Sound
	- ▶ Viscosity
	- **Balance Functions**
	- **Baryon Number Transport**

▶ . . .

Our Joint Projects

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

- [Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0) 2
- Delays in **Elementary** [Interactions](#page-3-0) [Transport Paradox](#page-3-0)
-
- [Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0)
- [Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

- ▶ Our research careers largely overlapped in the same group!
- ▶ Scott Pratt's research energy area ≳ PD's
- \blacktriangleright 18 joint publications
- ▶ 3 major project areas:
	- ▶ Delays in Elementary Interactions Context of HI Simulations
	- ▶ 3D Imaging of Sources from Correlations & Other Femtoscopy
	- ▶ Clocking Hadronization with Balance Functions

Near-Threshold Resonances in Low-Energy Collisions Transport-Theory Paradox

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0)

Delays in **Elementary** [Interactions](#page-3-0) [Transport Paradox](#page-3-0) 3

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0)

[Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

Pion Production: $N + N \rightarrow N + \Delta$, $\Delta \longrightarrow N + \pi$ decays at the rate Γ, but Γ $\propto \rho^3,$ where *p* momentum in N_{π} channel, i.e., decay rate vanishes near threshold!

 $\Lambda \tau \to \infty$ Stable Λ 's??

B

Quantal Consideration PD & Scott Pratt PRC53(96)249

[Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)

Delays in **Elementary** [Interactions](#page-3-0) [Resolution?](#page-4-0) 4

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)

[Balance Functions](#page-11-0)

[Concluding](#page-12-0) **Comments**

 $L_{\text{max}}=kB$ R_{max}

How long ∆ of mass *m* lives?

Wavepacket sent into a volume of radius *R*. How long does it stay there?

$$
\tau_{\text{vol}} = \frac{1}{N} \int \mathrm{d}t \, t \oint \mathrm{d}\vec{\sigma} \cdot \vec{j}(\vec{r}, t)
$$

?Change compared to free passage:

$$
\Delta \tau = \tau_{\text{vol}} - \tau_{\text{vol}}^{\text{free}} = \frac{1}{N} \int dt \, t \oint d\vec{\sigma} \cdot [\vec{j} - \vec{j}^{\text{tree}}]
$$

$$
= \frac{d\delta_J}{dE} = \dots = - \int dt \, t \, \frac{d}{dt} \int_V [|\Psi|^2 - |\Psi^{\text{free}}|^2]
$$

for scattering in one partial wave Close femtoscopy connection

5

Delta Lifetime PD & Scott Pratt PRC53(96)249

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)

Delays in **Elementary** [Interactions](#page-3-0) [Transport Paradox](#page-3-0) [Resolution?](#page-4-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)

[Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

tan $\delta = \frac{\Gamma(m)/2}{m}$ where $m - m_{\Delta}^0$ $Γ(m) \propto (m - m_π - m_N)^{3/2}$ $\Delta \tau = \frac{\mathsf{d} \delta}{\mathsf{d} \mathsf{r}}$ d *E*

Virtual near-threshold ∆s live short not long time

Near-threshold production should be isolated as an elementary process in transport! SπRIT Coll PLB813(21)136016

 2.0

 1.5

 1.0

 0.5

 0.0

0.05

 0.1

 Q (GeV/c)

porrelation

Source Imaging Start: Brown *et al*

 π in

 0.15

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0)

Delays in **Elementary** [Interactions](#page-3-0) **[Transport Paradox](#page-3-0)**

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0)

[Balance Functions](#page-11-0)

ERSITY 12

GAN STATF

[Concluding](#page-12-0) **Comments**

Miskowiec E877 Coulomb corrected $\pi^-\pi^-$ correlation function

−→

3D Source-Imaging PD&Pratt PLB618(05)60, PRC75(07)034907; Brown, PD, Pratt *et al* PRC72(05)054902

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0)

Delays in **Elementary** [Interactions](#page-3-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)

[Balance Functions](#page-11-0)

 E R S I T Y 12

GAN STATF

[Concluding](#page-12-0) **Comments**

Spin-averaged kernel *K* in the 3D Koonin-Pratt relation depends only on the relative angle between **q** and **r** - can be expanded in Legendre polynomials:

$$
K(\mathbf{q}, \mathbf{r}) = \sum (2\ell + 1) K_{\ell}(q, r) P^{\ell}(\cos \theta)
$$

Ability to learn on source deformation depends on nonvanishing K^{ℓ} for $\ell > 0$. E.g., repulsive Coulomb trajectories appropriate for IMF-IMF correlations, firmly map source deformation onto correlation deformation

Expansion Options for Source and Correlation Spherical vs Cartesian

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)

Delays in **Elementary** [Interactions](#page-3-0) [Resolution?](#page-4-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)

[Balance Functions](#page-11-0)

[Concluding](#page-12-0) **Comments**

$$
K(\mathbf{q}, \mathbf{r}) = \sum_{\ell} (2\ell + 1) K_{\ell}(q, r) P^{\ell}(\cos \theta_{\mathbf{q} \mathbf{r}})
$$

Expansion options for asymmetry handling:
spherical **tesseral** (Brown *et al*) or **cartesian** (PD\&P*rat*) harmonics

$$
P^{\ell}(\cos \theta_{\mathbf{q} \mathbf{r}}) = \frac{4\pi}{2\ell + 1} \sum_{m} Y_{\ell m}^{*}(\hat{\mathbf{q}}) Y_{\ell m}(\hat{\mathbf{r}}) = (2\ell - 1)!! \sum_{\ell} \frac{1}{\ell_{x}! \ell_{y}! \ell_{z}!} \mathcal{A}_{\ell}(\hat{\mathbf{q}}) \mathcal{A}_{\ell}(\hat{\mathbf{r}})
$$

These yield

$$
S(\mathbf{r}) = \sqrt{4\pi} \sum_{\ell m} S_{\ell m}^{*}(r) Y_{\ell m}(\hat{\mathbf{r}}) = \sum_{\ell} \frac{1}{\ell_{x}! \ell_{y}! \ell_{z}!} S_{\ell}(r) \mathcal{A}_{\ell}(\hat{\mathbf{r}})
$$

and similar expansions for $R(\mathbf{q}) = C(\mathbf{q}) - 1$. Irrespectively which expansion is used, *K*^ℓ connects the corresponding deformation coefficients for *R* (or *C*) and *S*,

$$
\mathcal{R}_{\ell m,\ell}(q) = 4\pi \int \mathrm{d}r \, r^2 \, K_{\ell}(q,r) \, S_{\ell m,\ell}(r)
$$

Which Expansion? Spherical or Cartesian Tensors

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)

Delays in **Elementary** [Interactions](#page-3-0) [Resolution?](#page-4-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)

[Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

Spherical tensors, Yℓ*m*(*n*ˆ), and expansion coefficients in their basis are complex functions. The basis distinguishes a specific axis and transformation properties under rotations are involved.

Traceless Maxwell-Cartesian tensors, A _ℓ(\hat{n}), and expansion coefficients in their basis are real functions. The axes are treated democratically and transformation properties under rotations are straightforward.

E.g., correlation function *C* cartesian-expanded correlation up to rank $\ell = 2$:

$$
C(\mathbf{q}) = C^{(0)}(q) + \sum_{i} C_{i}^{(1)}(q) \hat{q}_{i} + \sum_{j} C_{ij}^{(2)}(q) \hat{q}_{i} \hat{q}_{j} + \dots
$$

Here, $C_{i}^{(1)}(q)$ is a vector function describing a dipole distortion and $C_{ij}^{(2)}$ is a traceless matrix, that can be diagonalized, describing a quadrupole distortion.

Identical π Correlations in Pb+Pb at $\sqrt{s} = 17.3$ GeV/u NA49 . . . Pratt PLB 685(10)41

- [Source Imaging](#page-6-0) [3D Imaging](#page-7-0)
- [Balance Functions](#page-11-0)

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

- *z* beam direction
- x P^{\perp} of the pair direction
- *y* perpendicular to *x* & *z*

The data described well by the hump function, inspired by the 3D imaging,

$$
S(r) = \Lambda \exp \left[-\frac{f_s(r) r^2}{r_s^2} - (1 - f_s(r)) \left(\frac{x^2}{x_f^2} + \frac{y^2}{y_f^2} + \frac{z^2}{z_f^2} \right) \right]
$$

where $f_s(r) = 1/[1 + (r/r_0)^2]$. The hump function evolves from a spherical Gaussian at short distances to an anisotropic one at long.

Balance Functions Bass, PD, Pratt PRL 85(00)2689; JPG 27(01)635

- Research [w/Scott Pratt](#page-0-0) P. Danielewicz
- [Scott Pratt](#page-1-0) [Career](#page-1-0)
- Delays in **Elementary** [Interactions](#page-3-0) [Transport Paradox](#page-3-0)
- [Source Imaging](#page-6-0)
- [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)
- [Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

- ▶ Steffen Bass, co-creator of URQMD, joining MSU as a postdoc
- ▶ PD ponders a talk at QM on strange-antistrange particle production. What happens to the pair members as they separate, in space and rapidity? Can one learn about system history? A good postdoc project
- ▶ Steffen explores the fate of compensating quantum numbers in URQMD
- ▶ Scott works on fluctuations in collisions related, but no separation vble f/quantum numbers there
- \triangleright Scott joins the project and formulates the balance function observable, modifying one from jet studies Drijard NPB155(79)269, to be pursued experimentally

$$
B(y_2|y_1) = \frac{1}{2} \Big[P(Q, y_2|\overline{Q}, y_1) - P(Q, y_2|Q, y_1) - \Big]
$$

 $+ P(\overline{Q}, y_2|Q, y_1) - P(\overline{Q}, y_2|\overline{Q}, y_1)$

Here, y_1 , are different values of a kinematic vble, such as rapidity, Q & *Q* are compensating quantum Nos and *P* are conditional probabilities

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)

Delays in **Elementary [Interactions](#page-3-0)** [Transport Paradox](#page-3-0)

[Resolution?](#page-4-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0) [3D Imaging](#page-7-0)

[Balance Functions](#page-11-0)

[Concluding](#page-12-0) (12) **Comments**

Research [w/Scott Pratt](#page-0-0) P. Danielewicz

[Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)

Delays in **Elementary** [Interactions](#page-3-0)

[Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0)

[Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

▶ Scott Loves Physics!

- \blacktriangleright He revels in physical phenomena and their understanding
- \blacktriangleright He is able to quickly identify the essence of a phenomenon and find a way to address that essence straightforwardly in a theoretical consideration

- Research [w/Scott Pratt](#page-0-0) P. Danielewicz
- [Scott Pratt](#page-1-0) [Career](#page-1-0) [Joint Projects](#page-2-0)
- Delays in **Elementary** [Interactions](#page-3-0)
-
- [Source Imaging](#page-6-0) [Imaging Pcple](#page-6-0)
- [Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

- ▶ Scott Loves Physics!
- \blacktriangleright He revels in physical phenomena and their understanding
- \blacktriangleright He is able to quickly identify the essence of a phenomenon and find a way to address that essence straightforwardly in a theoretical consideration
- ▶ Important partner for experimentalists and theorists!

- Research [w/Scott Pratt](#page-0-0) P. Danielewicz
- [Scott Pratt](#page-1-0) [Career](#page-1-0)
- Delays in **Elementary** [Interactions](#page-3-0)
-
- [Source Imaging](#page-6-0)
- [Balance Functions](#page-11-0)
- [Concluding](#page-12-0) **Comments**
- ▶ Scott Loves Physics!
- \blacktriangleright He revels in physical phenomena and their understanding
- \blacktriangleright He is able to quickly identify the essence of a phenomenon and find a way to address that essence straightforwardly in a theoretical consideration
- ▶ Important partner for experimentalists and theorists!
- \blacktriangleright He can be brash rejecting what he thinks is irrelevant

- Research [w/Scott Pratt](#page-0-0) P. Danielewicz
- [Scott Pratt](#page-1-0) [Career](#page-1-0)
- Delays in **Elementary** [Interactions](#page-3-0)
-
- [Source Imaging](#page-6-0)
- [Balance Functions](#page-11-0)

U N I V E R S I T Y 12

MICHIGAN STATE

[Concluding](#page-12-0) **Comments**

- ▶ Scott Loves Physics!
- \blacktriangleright He revels in physical phenomena and their understanding
- \blacktriangleright He is able to quickly identify the essence of a phenomenon and find a way to address that essence straightforwardly in a theoretical consideration
- ▶ Important partner for experimentalists and theorists!
- \blacktriangleright He can be brash rejecting what he thinks is irrelevant

Thanks, Scott, for the physics opportunities you provided to all of us \cdot

