Theoretical description of proton-deuteron interactions

Based on: <u>arXiv:2410.13983</u> W. Rzęsa, **M. Stefaniak**, S. Pratt

M. Stefaniak, WPCF - November 2024

Theoretical description of proton-deuteron interactions

Based on: <u>arXiv:2410.13983</u> W. Rzęsa, **M. Stefaniak**, S. Pratt

How this work was created

M. Stefaniak, WPCF - November 2024

Everything started 2 years ago at WPCF at MSU

Everything started 2 years ago at WPCF at MSU And followed in GSI on a first meeting HBT camp

Motivation

- Studies of strong interactions
- Proton deuteron: interesting system, possible studies of light nuclei creation
- Three body system? I will talk only about 2-body "approach"
- results on p-d femtoscopic correlations

Acta Phys. Polon. Supp., vol. 16, no. 1, pp. 1–A91, 2023

• Both me and Wiola (and others) needed the robust theoretical description of our experimental

ALICE: Phys. Rev. X 14, 031051

HADES

EPJ Web Conf., vol. 296, p. 02001, 2024.

5

Correlation function

$$C(\mathbf{k}^*) = \int S(\mathbf{r}^*) |\Psi(\mathbf{r}^*, \mathbf{k}^*)| d^3 r^*$$

- $\circ S(\mathbf{r}^*)$ probability that two particles emitted with the same velocity would be separated by a relative distance r^*
 - or momentum conservation are ignored
- We assume the Gaussian profile of source!

$$S(\mathbf{r}^*) \sim \exp\left(-\frac{r^{*2}}{4R^2}\right)$$

R- femtoscopic source size

S.E. Koonin: Phys.Lett.B 70 (1977) 43-47, S.Pratt: Phys.Rev.D 33 (1986) 1314-1327

* - denotes variables in the pair-rest frame $k^* = |\mathbf{p}_1^* - \mathbf{p}_2^*|/2$ $\mathbf{p}_{1,2}^*$ - the particle momenta r^* - relative distance between the two particles

- The formalism is contingent on the assumption that other sources of correlation, such as energy

Correlation function

$$C(\mathbf{k}^*) = \int S(\mathbf{r}^*) |\Psi(\mathbf{r}^*, \mathbf{k}^*)| d^3 r^*$$

- relative distance r^*
- $\Psi(\mathbf{k}^*, \mathbf{r}^*)$ wave function, describing the interactions between the two particles: A. derived by solving the Schrodinger equation for a given potential B. obtained through parameterization of the interaction

Here, the challenging part starts...

Proton-deuteron system is relatively **large** (deuteron radius is already ~2.1 fm)

S.E. Koonin: Phys.Lett.B 70 (1977) 43-47, S.Pratt: Phys.Rev.D 33 (1986) 1314-1327

* - denotes variables in the pair-rest frame $k^* = |\mathbf{p}_1^* - \mathbf{p}_2^*|/2$ $\mathbf{p}_{1,2}^*$ - the particle momenta r^* - relative distance between the two particles

 $\circ S(\mathbf{r}^*)$ - probability that two particles emitted with the same velocity would be separated by a

Lednicky-Lyuboshits

° Enables the parametrization of $\Psi(\mathbf{k}^*,\mathbf{r}^*)$ for both Coulomb and SI • For multiple spin state systems applies sum of Clebsch-Gordan coefficients:

$$C_{pd}^{total} = \frac{1}{3}C_{pd}^{2}S_{1/2} + \frac{2}{3}C_{pd}^{4}S_{3/2}$$
 (for prote

- Includes s-wave
- Based on zero effective-range approximation ($r_0 = 0$)
- Highly successful in multiple $C(\mathbf{k}^*)$ descriptions: kaon-kaon, Lambda-Lambda...

R. Lednicky and V. L. Lyuboshits: Yad. Fiz., vol. 35, pp. 1316–1330, 1981 R. Lednicky: Acta Phys. Polon. B, vol. 40, pp. 1145–1154, 2009

on-deuteron)

D. Pawłowska-Szymańska (STAR): EPJ Web Conf., 276 (2023) 01016

Lednicky-Lyuboshits

• Wave function disturbed by interactions (Coulomb neglected):

$$\phi_{k^*}(r) = e^{i\delta}\sin(k^*r + \delta)$$

Exact only when r larger than the range of nuclear reaction ro!

• Proposed asymptotic form does not satisfy the boundary condition

 $\phi(k^*, r) \rightarrow 0 \text{ as } r \rightarrow 0$

where true function vanishes completely

- *r* range of interaction
- δ parameter related to phase shift

 r_0 - zero effective-range of the interaction

Lednicky-Lyuboshits

• Wave function disturbed by interactions (Coulomb neglected):

$$\phi_{k^*}(r) = e^{i\delta}\sin(k^*r + \delta)$$

Exact only when r larger than the range of nuclear reaction ro!

• Proposed asymptotic form does not satisfy the boundary condition

 $\phi(k^*, r) \rightarrow 0 \text{ as } r \rightarrow 0$

where true function vanishes completely

As a result of the size of the interacting p-d: for many investigated systems r<ro

What are other options?

- *r* range of interaction
- δ parameter related to phase shift

Solving Schrödinger equation numerically

- Using potentials derived from fits to experimentally measured phase shifts • This method allows for a calculation of wave function down to r=0• Possible to capture the full dynamics of interaction including shorter distances

Applied in CorAL package !

- Potentials chosen to be combinations of simple square wells
- Altered to best fit the experimental phase shifts
- Potentials found for total intrinsic spins of deuteron: S = 0,1
- And for orbital momenta: L = 0, 1, 2

More details about treatment of orbital angular momenta Jin <u>arXiv:2410.13983</u>

 r_0 - zero effective-range of the interaction

 \mathbf{r}_0

https://github.com/scottedwardpratt/coral **Solving Schrödinger equation numerically: CorAL**

What about potentials determination? More than one can:

- Produce the same phase shift
- Have the same derivative of the phase shifts:

$$\int dr \left(\left\| \psi(r) \right\|^2 - \left\| \psi_0(r) \right\|^2 \right) = \frac{1}{2} \frac{d\delta}{dk^*} \qquad \qquad \delta - \rho$$

Integral of $|\psi(r)|^2$ is the same in range of r_0 Not trivial to decide between two potentials

<u>Important note</u>: in scattering theory phase shifts that differ by π are indistinguishable

Look at the experimental data!

wave function in the absence of SI

parameter related to phase shift

 r_0 - zero effective-range of the interaction

Comparison of two approaches

Not visible in any available experimental data!

https://github.com/scottedwardpratt/coral

ALICE: Phys. Rev. X 14, 031051

Higher orbital momentum waves

- p-wave contribution significant for capturing the dynamics od p-d interactions
- Reduces the strength of in traction between p and d, less repulsive
- Possible formation of ³He bound state in S = 1/2M. Viviani, S. K[°]onig, A. Kievsky, L. E. Marcucci, spin state B. Singh, and O. V. Doce: Phys. Rev. C, vol. 108, p. 064002, Dec 2023

Comparison of two approaches

Key difference between the two-body approaches: asymptotic approximation

- Coulomb only reference
- Clear discrepancies between two models
- Difference relevant for smaller sources
- R = 2 fm: peak structure in LL
- "Wiggles" in CorAL incorporate s-, p-, d-waves arise from complexity of the potential.

Also seen in:

M. Viviani, S. K[°]onig, A. Kievsky, L. E. Marcucci, B. Singh, and O. V. Doce: Phys. Rev. C, vol. 108, p. 064002, Dec 2023 ALICE:, Phys. Rev. X, 2023

15

Conclusions

- Significant impact of asymptotic approximation on the description of the *p-d* interactions • Relevant influence of higher -order waves (especially p-wave!)
 - Message: Employ a full solution of the Schrödinger equation in any studies of correlations including <u>deuteron!</u>

W. Rzęsa, M. Stefaniak, S. Pratt: arXiv:2410.13983

V. ACKNOWLEDGMENTS

We would like to express our gratitude to the entire "HBT camp" community for their insightful discussions and the inspiration that led to this paper.

Conclusions

• Significant impact of asymptotic approximation on the description of the p-d interactions • Relevant influence of higher -order waves (especially p-wave!)

Message: Employ a full solution of the Schrödinger equation in any studies of correlations including <u>deuteron!</u>

W. Rzęsa, M. Stefaniak, S. Pratt: arXiv:2410.13983

V. ACKNOWLEDGMENTS

We would like to express our gratitude to the entire "HBT camp" community for their insightful discussions and the inspiration that led to this paper.

Happy retirement Scott! Thank you for the time you dedicated to this work and HBT camp :)

