
Studying the proton source in Pb–Pb collisions at 
  = 5.36 TeV sNN

Romanenko G. (University and INFN Bologna) 
on behalf of the ALICE Collaboration

WPCF 2024 
Toulouse, 4/11/2024This research has received funding from the European Research 

Council (ERC) under the European Union’s Horizon 2020 research 
and innovation programme (grant agreement No. 950692).



Femtoscopy 2

R

C(k*)
⃗p2⃗p1

2k* = | ⃗p1 − ⃗p2 | —> rel. momentum of a pair

Correlation femtoscopy is used for studying space–time properties 
of an emission source via particle correlations based on quantum 
statistics (QS), strong and Coulomb interactions.



Femtoscopy 2

R

C(k*)
⃗p2⃗p1

—> rel. momentum of a pair

Femtoscopic correlation function (CF) 
experimentally obtained as a ratio:

C(k*) = N ⋅
S(k*)
B(k*)

B(k*)

S(k*) — rel. momentum distribution of pairs 
measured in the same event;

— rel. momentum distribution of pairs 
measured in different events;

Correlation femtoscopy is used for studying space–time properties 
of an emission source via particle correlations based on quantum 
statistics (QS), strong and Coulomb interactions.

2k* = | ⃗p1 − ⃗p2 |



Femtoscopy 2

R

C(k*)
⃗p2⃗p1 Correlation femtoscopy is used for studying space–time properties 

of an emission source via particle correlations based on quantum 
statistics (QS), strong and Coulomb interactions.

—> rel. momentum of a pair

Motivation: 

• Measure the spatial & temporal 
characteristics of the particle-emitting 
regions; 

• Study strong interaction; 

• Study collective dynamics                    
(e.g. radial flow); 

• Check and constrain theoretical models;
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Parametrisation of the correlation function 3

⃗p2

⃗p1

⃗p*1

⃗p*2

⃗p*1 + ⃗p*2 = 0

qinv = 2k * = ⃗p*1 − ⃗p*2

PRF:1D parametrisation in Pair Rest Frame (PRF*):

Cexp(Rinv, k*) = N [1 − λ(Cth(Rinv, k*) − 1)]

Rinv — 1D radius — corresponds to geometrical size of the system

— normalisation

— correlation strengthλ

N

For the theoretical proton correlation function we used a custom analytical model that is based on the Lednicky’s one 
but with an additional square-well potential to take into account the strong interaction at the small distances. 

(more detail in the backup)



Results from the first Pb–Pb data of Run 3 with a “new” 
ALICE detector



Proton source
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Proton CFs in Pb–Pb at 5.36 TeV 6
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Proton 1D radii in Pb–Pb at 5.36 TeV

• Proton radii demonstrate the dynamics that is typical for heavy-ion collisions. 

• Rinv decreases with increasing kT → collective (radial) flow (weaker for more peripheral events)
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Proton 1D lambdas in Pb–Pb at 5.36 TeV 8

new!

• The extracted  parameters are 
consistent throughout all the centrality 
bins 

• The decreasing trend with increasing 
the kT is caused by decrease in purity

λ

*kT binning and errors along X axis for λ parameters are the same as for the radii, the points have been shifted for clarity.
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Proton 1D radii: comparison with Run 1

• The new Run 3 results are consistent with Run 1 data (at close <mT>) 
• The precision has improved w.r.t. Run 1 
• More peripheral events are accessed w.r.t. Run 1 results 

(50-90% from Run 3 not shown here)
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Proton 1D Lambdas: comparison with Run 1

• The  parameters obtained with Run 3 results are higher than the one of Run 1 data (at close <mT>) 

• Probably comes from the different in theoretical models — usual Lednicky’s approach is known to overestimate the 
CF (more in the backup).

λ
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new! new!



Summary

• First femtoscopic measurement with ALICE’s Run 3 Pb–Pb data is performed; 
• Proton radii demonstrate the dynamics typical for heavy-ion collisions → collectivity; 
• New Run 3 results are in a good agreement with Run 1 ones; 
• “New” theoretical approach is tested; 
• Significant improvements are expected (more statistics, better reconstruction, etc.)



Backup slides



Lednický-Lyuboshitz model 13
Lednický-Lyuboshitz model simply introduces the short-range (strong) potential asymptotically 
by adding an additional phase shift to the WF:

δl

If we consider a short-range 
potential only in s-wave:

ψc+s =
r>d

1
2ρ

∞

∑
l=0

(2l + 1) il+1(u−
l (η, ρ) − e2iσle2iδlu+

l (η, ρ)) Pl(cos θ)

— phase shift corresponding to the short-range potential

We can rewrite: ψc+s =
r>d

1
r

∞

∑
l=0

(2l + 1) ileiσl( Fl(η, ρ)
k

+ fl(k) (Gl(η, ρ) + i Fl(η, ρ))) Pl(cos θ)

ψ l=0
c+s =

r>d
Ac(η) eiσ0ei ⃗k ⃗r

1F1( − iη, 1, i(kr − ⃗k ⃗r )) + eiσ0f0(k)
G0(η, ρ) + i F0(η, ρ)

r

But that is an asymptotical solution (also singular at 0) to the Schrodinger’s equation and can be 
used only outside the strong potential range. 
(Ledndicky also noted that (for example): https://arxiv.org/abs/nucl-th/0501065v3)



Starting with the Coulomb 14

The WF that satisfies the Schrodinger’s equation for the Coulomb potential is well known (here 
we already anticipate the partial wave expansion):

Adding here an additional phase shift one can 
obtain the analytical solution for a short-range 
potential — e.g. Lednicky’s model

ψ reg =
∞

∑
l=0

(2l + 1)ileiσl
Fl(η, ρ)

ρ
Pl(cos θ) we need the solution to be regular at 0 so we close the regular Coulomb WF

ψ reg =
1

2ρ

∞

∑
l=0

(2l + 1) il+1(u−
l (η, ρ) − e2iσlu+

l (η, ρ)) Pl(cos θ)or

Albert Messiah, Quantum Mechanics, v1

ηl =
1

klaB

ρl = kl ⋅ r



Adding box potential 15

Let’s introduce a short-range potential as a square-well for each value of l.

d2R(I )
l

dr2
+ [k2 −

l(l + 1)
r2

−
2

aBr
−

2μ
ℏ2

Vl] R(I )
l = 0

k̃l = k2 −
2μ
ℏ2

Vl

Vs
l (r) = {Vl, r < dl (I )

0, r > dl (II )

Radial Schrodinger’s equation in (I) sector:

Substituting the sq.-well potential:
d2R(I )

l

dr2
+ [k̃2 −

l(l + 1)
r2

−
2

aBr ] R(I )
l = 0

But we already know the solution 
(here we put directly the total): ψ reg =

∞

∑
l=0

(2l + 1)ileiσ̃l
Fl(η̃, ρ̃)

ρ̃
Pl(cos θ)



Final solution and CF 16
After matching the two WFs (within the box potential and the asymptotical one) one can get the final WF:

ψc+s(k , r) =
1
r

∞

∑
l=0

(2l + 1) ileiσl ul(k , r) Pl(cos θ )

ul(k , r) =

Fl(η̃l, k̃lr)

Fl(η̃l, k̃ld ) ( Fl(η, kd )
k + fl(k) (Gl(η, kd ) + i Fl(η, kd ))), r < d

( Fl(η, ρ)
k + fl(k) (Gl(η, ρ) + i Fl(η, ρ))), r ≥ d

C(k, Rinv) = ∫ d3r ⋅ S(r, Rinv) ⋅ |ψ ( ⃗k, ⃗r ) |
2

General expression for the CF:

— assuming Gaussian source

For a pair of protons with L=[0, 1]. Corresponding states:

Cpp(k * , Rinv) =
1
2

1

∑
S=0

2S + 1
(2sp + 1)2 ∑

L, J

ωLJ ∫ d3r S(r, Rinv) |ψ S
− ⃗k

( ⃗r ) + (−1)Sψ S
⃗k
( ⃗r ) |

2
ωLJ =

2J + 1
(2L + 1)(2S + 1)

S(r, ′ Rinv) =
1

8π
3
2 R3

inv

exp(−
r2

4R2
inv

)
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Result: with or without square-well potential 18



Square-well is indeed a very rough approximation. But is it so bad?

But we see our femtoscopic peak in small energy (momentum) 
region!

It was shown in phase shifts analyses that for small energies we 
are not sensitive to the shape of the strong potential (generally for 
a short-range one). Which means that we cannot extract any 
particular information about its shape from experimental data (at 
least from phase shifts).  
(for example: H. A. Bethe, Phys. Rev. 76, 38 – Published 1 July 1949)

Can we use a square-well? 19



The agreement is quite good, though there is a discrepancy (especially  
for small sizes) that has to be investigated. Nevertheless, in term of 
application to the experimental data that are no perfectly precise both 
approaches might be within the uncertainties.

Result: comparison with the CATS 20

Thanks to Dimitar Mihaylov for the assistance with the CATS.
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One can obtain them by fitting momenta(energy)-dependent 
phase shifts with our matching condition:

OK, we have an analytical WF for a square-well potential, but what 
are its parameters (depth and width)?

ctg δl =
Gl(η, kd)
Fl(η, kd)

k̃ fl(η̃, k̃d) − k gl(η, kd)
k fl(η, kd) − k̃ fl(η̃, k̃d)

fl(η, ρ) =
d
dr (ln (Fl(η, ρ)))

r=d

gl(η, ρ) =
d
dr (ln (Gl(η, ρ)))

r=d

Defining the potential parameters 22



2μ
ℏ2

V1s0 = − 0.0162 GeV 2

d1s0 = 2.3039 f m

2μ
ℏ2

V3p0 = − 0.00283 GeV 2

d3p0 = 4.03726 f m

2μ
ℏ2

V3p1 = 0.00374 GeV 2

d3p1 = 3.43222 f m

2μ
ℏ2

V3p2 = − 0.01023 GeV 2

d3p2 = 2.1868 f m
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Defining the potential parameters 23



By fitting the momenta-dependent phase shifts:

Extract effective range parameters.

f(k) =
1

k ctg(δl) − ik
k ctg(δl) ∼ −

1
f0

+
1
2

d0k2 + (−Pd3
0k4) + O(k6)

I used coefficient P != 0 only for 1s0 and 3p0 states.

H. A. Bethe, Phys. Rev. 76, 38 – Published 1 July 1949

Effective range parameters (Bethe’s formula) 24



Phase shifts data are taken from: https://nn-online.org/

Phase shifts fit: eff. range parameters 25



Phase shifts data are taken from: https://nn-online.org/

Phase shifts fit: eff. range parameters 26
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Proton CFs in Pb–Pb at 5.36 TeV
new!
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