

ANGULAR CORRELATIONS AT LHCb

Miłosz Zdybał*

On behalf of the LHCb Collaboration

17th Workshop on Particle Correlations and Femtoscopy, 08.11.2024

*Institute of Nuclear Physics PAS, Kraków, Poland

OUTLINE

2

- Motivation
- The LHCb Experiment
- Angular correlations in:
 - Pb-Pb
 - Pb-p and p-Pb
- Summary

MOTIVATION AND GOALS

- Measurement of two particle angular correlation of prompt charged particles in the forward region
- Angular correlations in lead-lead for different centralities
- Search for a long-range angular correlations on the near side ("ridge") in small systems, previously observed in:
 - Pb-Pb collisions by RHIC experiment
 - Pb-Pb, p-Pb, and p-p collisions by CMS, ATLAS and ALICE at central rapidities ($|\eta|{<}2.5)$
- Comparison of long-range correlations in proton-lead for both hemispheres (p-Pb and Pb-p) in relative and absolute activity classes

THE LHCb EXPERIMENT

10 ղ

10 n

10

- Acceptance: 2 < η < 5
- Impact parameter resolution: $20 \ \mu m$
- Momentum resolution: $\Delta p/p = 0.5 1.0\%$ (5-200 GeV/c)
- Fully instrumented in the forward region
- Detector designed for flavour physics and searches for physics beyond SM, but also provides:
 - Results on heavy ion physics in the unique kinematic region
 - Complementary results to the other LHC experiments

hadron PID

HCAL ECAL

tracking

muon system lumi counters

ANGULAR CORRELATIONS IN Pb-Pb COLLISIONS AT LHCb

- Pb-Pb data collected by LHCb in 2018 at nucleon-nucleon center-of-mass energy of $\sqrt{S_{NN}} = 5.02 \ TeV$, integrated luminosity 214 μb^{-1}
- Two centrality ranges: 65-75% and 75-84%
- Data selection:
 - One primary vertex (PV) with a position $\pm 3\sigma$ around mean interaction point
 - Centrality 65-84%
 - Lack of sufficient events below 65%
 - Upper bound to avoid contamination with ultraperipheral events
- Tracks selection:
 - p > 2 GeV/c $p_T > 0.2 \text{ GeV/c}$ $2.0 < \eta < 4.9$

ANALYSIS METHOD

- Particles divided into p_T ranges, additionally:
 - Pb-Pb: one particle in $0.2 < p_{Ta} < 10 \ GeV/c$ and second in $0.2 < p_{Tb} < 5 \ GeV/c$
 - Pb-p and p-Pb: events divided into activity classes
- Trigger particles for each event, all candidates within a given p_T interval
- Associated particles all remaining candidates in $p_{\rm T}$ interval after selecting a trigger particle
- Pairs created by combining every trigger particle with each associated particle

CORRELATION FUNCTION

• Correlated through detector effects, no physics correlation

ANGULAR CORRELATIONS IN Pb-Pb

FLOW HARMONIC COEFFICIENTS

- First measurement in the forward region
- Results similar in features, but lower in values (difference in pseudorapidity ranges)
 - v_2 lower for the LHCb
 - v₃ compatible with other experiments

Phys. Rev. C 109 (2024) 054908

ANGULAR CORRELATIONS IN SMALL SYSTEMS

- Ridge effect in heavy ion collisions attributed to the hydrodynamic expansion of the QGP creating a pressure gradient causing particles to flow along the direction of the collision axis
- For smaller systems, the cause of the ridge is still under discussion
- Confirmation of the ridge effect at large pseudorapidities and comparison of the two beam configurations provide new input to the understanding of the underlying mechanism

p-Pb AND Pb-p COLLISIONS

p-Pb

- $E_p = 4$ TeV, $E_{Pb} = 1.58$ TeV
- Rapidity range: 1.5 < y < 4.4
- Sample used for the analysis: 0.46 nb⁻¹

Pb-p

- $E_{Pb} = 1.58$ TeV, $E_p = 4$ TeV
- Rapidity range: -5.4 < y < -2.5
- Sample used for the analysis: 0.30 nb⁻¹

- Data collected in 2013
- Asymmetric beams: nucleon-nucleon $\sqrt{S_{NN}} = 5 \ TeV$
- Center of mass system shifted by $\Delta y=0.47$ into proton beam direction
- Common rapidity range: 2.5 < |y| < 4.4

DATA SELECTION

- Event selection:
 - One primary vertex (PV) with a position $\pm 3\sigma$ around mean interaction point (only 2% of interactions with more than one PV)
 - Events with too small ratio between the number of clusters in EM calorimeter and in the VELO are rejected (reduction of beam-gas and secondary interactions with detector material)
- Track selection:
 - Prompt particles (small IP with respect to PV)
 - Charged particles reconstructed in full tracking system (before and after the magnet)
 - Kinematic cuts: p > 2 GeV/c $p_T > 150 \text{ MeV/c}$ $2.0 < \eta < 4.9$
- Corrections:
 - Fake tracks suppressed by multivariate classifier while secondary tracks by IP cuts
 - Remaining effects taken into account by per track weights depending on track purity and track efficiency

DATA SAMPLES AND ACTIVITY CLASSES

- 1.1×10^8 minimum bias p-Pb and Pb-p events selected from the set about 10 times larger
- High multiplicity events with at least 2200 hits in VELO
- Strong dependence on the number of particles produced in the collision
 - The hit multiplicity in the VELO is proportional to the global counterpart
 - Five activity classes defined as fractions of the hit-multiplicity distributions of the minimum-bias samples

Near-side ridge:

- Present in both beam configurations for high activity events
- More pronounced for Pb-p collisions

RIDGE EVOLUTION

• One-dimensional projections of the correlation function on $\Delta \varphi$:

$$Y(\Delta\phi) \equiv \frac{1}{N_{\rm trig}} \frac{\mathrm{d}N_{\rm pair}}{\mathrm{d}\Delta\phi} = \frac{1}{\Delta\eta_b - \Delta\eta_a} \int_{\Delta\eta_a}^{\Delta\eta_b} \frac{1}{N_{\rm trig}} \frac{\mathrm{d}^2 N_{\rm pair}}{\mathrm{d}\Delta\eta \mathrm{d}\Delta\phi} \mathrm{d}\Delta\eta$$

- Short range correlations, including the jet peak, excluded by averaging the twodimensional yield over interval from $\Delta \eta_a = 2.0$ to $\Delta \eta_b = 2.9$
- Correlation structures extracted by using the zero-yield-at-minimum (ZYAM) method

RIDGE EVOLUTION

- Near-side maximum observed for $1 < p_T < 2 \text{ GeV}$
- Away-side ridge amplitude increases with event activity and decreases towards higher $p_{\rm T}$
- Correlation stronger for Pb-p in each activity class

SUMMARY

- First measurements of angular correlations in the unique acceptance of LHCb detector
- Near-side ridge smaller than the away-side
- Near-side ridges more pronounced for Pb-Pb than small systems indicate stronger collective flow in heavy ion collisions
- The near-side ridge effect observed in both p-Pb and Pb-p beam configurations, most pronounced for $1.0 < p_T < 2.0~{\rm GeV/c}$
- The correlation structures on the near and away sides grow with increasing event activity
- Ridge is stronger in the Pb direction for each event activity class
- Observed long-range correlation compatible in both hemispheres for identical absolute activity

QUESTIONS AND COMMENTS

BACKUP SLIDES

- Classes defined as fractions of full distribution
- The 0-3% class is a sub-sample of 0-10% class

THE P-Pb EVENT

Typical pA collision in LHCb

- Comparable distributions in the LHCb acceptance for p-p and p-Pb
- Higher multiplicity for Pb-b events

22

THE RIDGE IN COMMON ABSOLUTE ACTIVITY RANGES

- Similar number of charged particles emitted in the forward direction
- Five narrow activity bins
- Observed long-range correlations become compatible within the uncertainties

Common absolute	$\mathcal{N}_{\mathrm{VELO}}^{\mathrm{hit}}$ -range	p+Pb	Pb+p
activity bin	in $Pb+p$ scale	$\langle N_{ch} \rangle_{ m MC}$	$\langle N_{ch} \rangle_{\rm MC}$
Bin I	2200 - 2400	62.8 ± 6.6	64.4
Bin II	2400 - 2600	68.4 ± 7.1	67.0
Bin III	2600 - 2800	73.7 ± 7.6	76.4
Bin IV \checkmark	2800 - 3000	79.2 ± 7.9	82.4
Bin V	3000 - 3500	86.7 ± 8.2	92.9

Different bins than before

