

Sofia University St. Kliment Ohridski

Overview of Femtoscopic Studies in Small Collision Systems

Dimitar Mihaylov

17th Workshop on Particle Correlations and Femtoscopy 4 th November 2024, Toulouse

Part 1: The emission source in small systems

Dimitar Mihaylov

17th Workshop on Particle Correlations and Femtoscopy 4 th November 2024, Toulouse

Part 2: Connecting femtoscopy and coalescence

Dimitar Mihaylov

17th Workshop on Particle Correlations and Femtoscopy 4 th November 2024, Toulouse

[Lisa et al.](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533) [Ann.Rev.Nucl.Part.Sci.55:357-402, 2005](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533)

two-particle relative momentum q = 2⋅*k**

$\Psi(\vec{k}^*,\vec{r}^*)$ two-particle wave function

$$
C(k^*) = \frac{N_{\text{SE}}(k^*)}{N_{\text{ME}}(k^*)} = \int S(r^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1
$$

[Lisa et al.](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533) [Ann.Rev.Nucl.Part.Sci.55:357-402, 2005](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533)

two-particle relative momentum q = 2⋅*k**

$\Psi(\vec{k}^*,\vec{r}^*)$ two-particle wave function

$$
C(k^*) = \frac{N_{\text{SE}}(k^*)}{N_{\text{ME}}(k^*)} = \int S(r^*) \Big| \Psi(\vec{k}^*, \vec{r}^*) \Big|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1
$$

<400 MeV/c

[Lisa et al.](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533) [Ann.Rev.Nucl.Part.Sci.55:357-402, 2005](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533)

two-particle relative momentum q = 2⋅*k**

$\Psi(\vec{k}^*,\vec{r}^*)$ two-particle wave function

C(k*) ⬆ **Attraction** ⬇ **Repulsion** 1 k* k*

[Lisa et al.](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533) [Ann.Rev.Nucl.Part.Sci.55:357-402, 2005](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533)

two-particle relative momentum q = 2⋅*k**

$\Psi(\vec{k}^*,\vec{r}^*)$ two-particle wave function

7

$$
C(k^*) = \frac{N_{\text{SE}}(k^*)}{N_{\text{ME}}(k^*)} = \int S(r^*) \Big| \Psi(\vec{k}^*, \vec{r}^*) \Big|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1
$$

Femtoscopy @ LHC *two-particle relative momentum q = 2*⋅*k* Koonin-Pratt equation [Lisa et al.](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533)* $\Psi(\vec{k}^*,\vec{r}^*)$ [Ann.Rev.Nucl.Part.Sci.55:357-402, 2005](https://www.annualreviews.org/doi/10.1146/annurev.nucl.55.090704.151533) two-particle wave function $C(k^*) = \frac{N_{\mathrm{SE}}(k^*)}{N_{\mathrm{ME}}(k^*)} = \int \left| S(r^*) \right| \Psi(\vec{k}^*,\vec{r}^*) \Big|^2 d^3r^* \xrightarrow{k^* \to \infty} 1$
Measure interaction**FIX**

Femtoscopy @ LHC *ππ correlations*

- **ππ correlations well described by a Cauchy source** (exp. correlation) in small coll. systems
- Also measured by *CMS* [JHEP 03 \(2020\) 014](https://link.springer.com/article/10.1007/JHEP03(2020)014) *LHCb [JHEP 12 \(2017\) 025](https://link.springer.com/article/10.1007/JHEP12(2017)025)*

- Equivalent studies and use of Lévy distribution in HI collisions by *CMS* [PRC 109 \(2024\) 2](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.109.024914)
- **● The non-Gaussian profile (in small systems) may be related to production from resonances**

Femtoscopy @ LHC *Emission source*

 k_{T} (m_{T}) scaling observed in p-Pb and Pb-Pb collision and associated with collectivity

Study of the pp and pΛ, using a Gaussian source, revealed mT scaling. The source size is different for different species.

- Study of the pp and pΛ, using a Gaussian source, revealed mT scaling. The source size is different for different species.
- **A hypothesis:**

Gaussian "primordial core" **common for all species** modified by decays of short lived resonances.

Based on statistical hadronization model ⅔ of all protons and Λs are produced like that. Resonances decaying into Λs, on average, live longer. <cτ> for protons c.a. 1.7 fm/c \langle <c τ > for \wedge s c.a. 4.7 fm/c

- Study of the pp and pΛ, using a Gaussian source, revealed mT scaling. The source size is different for different species.
- The **breakthrough** of the Resonance Source Model (RSM) A "primordial core" **common for all species** modified by decays of short lived resonances.
- Any baryon-baryon pair will follow this scaling, and the source size can be extracted based on the <mT> of the measured pairs!
- This allows for **precision studies of the strong interaction**.

Based on ALICE Coll. *[Phys.Lett.B 811 \(2020\) 135849](https://doi.org/10.1016/j.physletb.2020.135849)*

- The validity extended to mesons!
- The Cauchy ππ source explained by the combination of Gaussian core + short lived resonances.

New RUN3 results for pp correlations in pp collisions at 13.6 TeV

The CECA model *A generalization of the RSM*

● MC simulation of single particles and resonances.

The CECA model *A generalization of the RSM*

- MC simulation of single particles and resonances.
- Assume a common ellipsoidal 'hadronization surface'. The latter serves as a source of spatial-momentum correlations, leading to mT scaling.

The CECA model *A generalization of the RSM*

- MC simulation of single particles and resonances.
- Assume a common ellipsoidal 'hadronization surface'. The latter serves as a source of spatial-momentum correlations, leading to mT scaling.
- Decay the resonances and form pairs, extract the corresponding 2- and N-particle source.

The CECA model *The resulting pp source*

- MC simulation of single particles and resonances.
- Assume a common ellipsoidal 'hadronization surface'. The latter serves as a source of spatial-momentum correlations, leading to mT scaling.
- Decay the resonances and form pairs, extract the corresponding 2- and N-particle source.

The CECA model *Simultaneous fit of pp and pΛ*

[Mihaylov and Gonzalez Gonzalez,](https://link.springer.com/article/10.1140/epjc/s10052-023-11774-7) *EPJC* [83 \(2023\) 7, 590](https://link.springer.com/article/10.1140/epjc/s10052-023-11774-7)

 $4f$

 3.5

ALICE data (pp)
 $m_T \in [1.20, 1.26)$ GeV

Fit (CECA)

The CECA model *A generic mT scaling*

The CECA model

An open question: Can we reproduce the saturation of the ALICE RUN3 data?

22

The CECA model

An open question: Can we reproduce the saturation of the ALICE RUN3 data?

23

And so much more was done !

And so much more was done !

Low energy scattering experiments in high energy collisions @

p \bullet \bullet \bullet \bullet \bullet \bullet \bullet **Small collision systems from @ the WPCF**

Novel constraints for the multi-strange meson-baryon interaction using correlations
by Oton Vazquez Doce. Tue @ 9:00 by Oton Vazquez Doce, Tue @ 9:00

Accessing the strong interaction in three-hadron systems via proton-deuteron femtoscopy
by Bhawani Singh, Wed @ 14:10 by Bhawani Singh, Wed @ 14:10

Chiral symmetry restoration studies with Femtoscopy by Maximillian Korwieser, Thu @ 15:55

p Demystifying the interior of neutron stars with femtoscopy at ALICE by Marcel Lesch, Fri @ 13:55

The exhaustive list of recent ALICE femtoscopy measurements

Part 2: Connecting femtoscopy and coalescence

Coalescence studies for light nuclei *Motivation: Indirect search for dark matter*

- Antinuclei cosmic rays: possible "smoking gun" signature of dark matter
- **Essentially free of astrophysical background**
- **● Calculations require antinuclei production**/annihilation

Coalescence studies for light nuclei *Motivation: Indirect search for dark matter*

ALICE Coll, *[Nature Physics](https://www.nature.com/nphys)* volume 19, pages 61–71 (2023)

- Antinuclei cosmic rays: possible "smoking gun" signature of dark matter
- **Essentially free of astrophysical background**
- **● Calculations require antinuclei production**/annihilation

Femtoscopy @ LHC *p-d correlations*

Femtoscopy @ LHC *p-d correlations*

Bhawani Singh, Wed @ 14:10

ALICE Coll., [PRX 14 \(2024\) 3, 031051](https://journals.aps.org/prx/abstract/10.1103/PhysRevX.14.031051)

- Treating the system as three-body, including wave function symmetrization, works! *Kievsky et al.* [PRC 108 \(2023\) 6, 064002](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.108.064002)
- **The potential used is AV18**.
- N.B. Genuine three-body forces are not required, <4% precision needed to probe them.

q = 2⋅*k**

Coalescence @ LHC *Light nuclei formation*

Coalescence model:

- Nucleons close in phase space => possibility to coalescence
- Coalescence parameter B_A \Rightarrow probability for the nucleons to coalesce

$$
B_A = \frac{E_A \frac{d^3 N_A}{d^3 p_A}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}\right)^A}
$$

Coalescence @ LHC *Light nuclei formation*

Coalescence model:

- Nucleons close in phase space => possibility to coalescence
- Coalescence parameter B_A => probability for the nucleons to coalesce

$$
B_{A} = \frac{E_{A} \frac{d^{3} N_{A}}{d^{3} p_{A}}}{\left(E_{p} \frac{d^{3} N_{p}}{d^{3} p_{p}}\right)^{A}} = A \left(\frac{4\pi}{3} \frac{p_{0}^{3}}{m_{N}}\right)^{A-1}
$$

Simple coalescence models assume that nucleons coalesce if their k^* is below a threshold p_0

Coalescence @ LHC *Light nuclei formation*

Coalescence model:

- Nucleons close in phase space => possibility to coalescence
- Coalescence parameter B_{Λ} => probability for the nucleons to coalesce

$$
B_A = \frac{E_A \frac{d^3 N_A}{d^3 p_A}}{\left(E_p \frac{d^3 N_p}{d^3 p_p}\right)^A} = A \left(\frac{4\pi}{3} \frac{p_0^3}{m_N}\right)^{A-1}
$$
\n
$$
= \int d^3 \zeta \frac{\Psi(\vec{r} + \vec{\zeta}/2) \Psi^*(\vec{r} - \vec{\zeta}/2) \exp(i\vec{q} \cdot \vec{\zeta})}{\text{Nucleus wave function. Relative momenta}} \frac{E_A \frac{1}{2\sigma^2}}{\text{Source size}}
$$

- **Simple coalescence models assume that nucleons** coalesce if their k^* is below a threshold p_0
- Advanced coalescence models make use of quantum mechanical treatment, via the **Wigner formalism**

[M. Kachelrieß, EPJA 56 \(2020\)](https://link.springer.com/article/10.1140/epja/s10050-019-00007-9)

of the nucleons

p

d

[Mahlein et al., EPJC 83 \(2023\) 9, 804](https://link.springer.com/article/10.1140/epjc/s10052-023-11972-3)

Coalescence studies for light nuclei *B2 measurements vs predictions (pp collisions)*

- The $B_2(p_T)$ is reproduced using the Wigner formalism
- The **Argonne V18** potential used to evaluate the deuteron wave function can describe both p-p and p-d correlations
- The **source size** is taken from **p-p correlations**

Coalescence studies for light nuclei *pT spectrum reproduced as well!*

Going forward *ToMCCA*

A summary *And thank you for your attention!*

- A common source in small collision systems allowing to study the FSI with high precision using femtoscopy
- Advancements in the source modelling
- Femtoscopy and coalescence can relate the emission source to momentum distributions of light nuclei

A teaser as an outlook:

• Some very interesting new developments related to πd correlations, relevant for the coalescence sturdies. *Will trade details for drinks over dinner!*