

Sofia University St. Kliment Ohridski

17th Workshop on Particle Correlations and Femtoscopy 4th November 2024, Toulouse

Part 1: The emission source in small systems

ALICE

17th Workshop on Particle Correlations and Femtoscopy 4th November 2024, Toulouse

Dimitar Mihaylov

Part 2: Connecting femtoscopy and coalescence

ALICE

Dimitar Mihaylov

17th Workshop on Particle Correlations and Femtoscopy 4th November 2024, Toulouse

<u>Lisa et al.</u> Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

two-particle relative momentum $q = 2 \cdot k^*$

$\Psi(ec{k}^*,ec{r}^*)$ two-particle wave function

$$C(k^*) = \frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1$$

Lisa et al. Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

two-particle relative momentum $q = 2 \cdot k^*$

$\Psi(\vec{k}^{*},\vec{r}^{*})$ two-particle wave function

$$C(k^*) = \frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1$$

<400 MeV/c

Lisa et al. Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

two-particle relative momentum $q = 2 \cdot k^*$

$\Psi(\vec{k}^{*},\vec{r}^{*})$ two-particle wave function

$$C(k^*) = \frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1$$

<u>Lisa et al.</u> Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

two-particle relative momentum $q = 2 \cdot k^*$

$\Psi(\vec{k}^{*},\vec{r}^{*})$ two-particle wave function

$$C(k^*) = \frac{N_{\rm SE}(k^*)}{N_{\rm ME}(k^*)} = \int S(r^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1$$

Femtoscopy @ LHC $\pi\pi$ correlations

- $\pi\pi$ correlations well described by a Cauchy **source** (exp. correlation) in small coll. systems
- Also measured by CMS JHEP 03 (2020) 014 LHCb JHEP 12 (2017) 025

- Equivalent studies and use of Lévy distribution in HI collisions by CMS PRC 109 (2024) 2
- The non-Gaussian profile (in small systems) may be related to production from resonances

Femtoscopy @ LHC Emission source

*k*_T (*m*_T) scaling observed in p-Pb and Pb-Pb collision and associated with collectivity

 Study of the pp and pΛ, using a Gaussian source, revealed mT scaling. The source size is different for different species.

- Study of the pp and p∧, using a Gaussian source, revealed mT scaling. The source size is different for different species.
- A hypothesis:

Gaussian "primordial core" **common for all species** modified by decays of short lived resonances.

Based on statistical hadronization model $\frac{2}{3}$ of all protons and Λ s are produced like that. Resonances decaying into Λ s, on average, live longer. <ct> for protons c.a. 1.7 fm/c <ct> for protons c.a. 4.7 fm/c

- Study of the pp and pA, using a Gaussian source, revealed mT scaling. The source size is different for different species.
- The breakthrough of the Resonance Source Model (RSM) A "primordial core" common for all species modified by decays of short lived
 - resonances.
- Any baryon-baryon pair will follow this scaling, and the source size can be extracted based on the <mT> of the measured pairs!
- This allows for precision studies of the strong interaction.

- The validity extended to mesons!
- The Cauchy ππ source explained by the combination of Gaussian core + short lived resonances.

New RUN3 results for pp correlations in pp collisions at 13.6 TeV

The CECA model A generalization of the RSM

• MC simulation of single particles and resonances.

The CECA model A generalization of the RSM

- MC simulation of single particles and resonances.
- Assume a common ellipsoidal 'hadronization surface'. The latter serves as a source of spatial-momentum correlations, leading to mT scaling.

The CECA model A generalization of the RSM

- MC simulation of single particles and resonances.
- Assume a common ellipsoidal 'hadronization surface'. The latter serves as a source of spatial-momentum correlations, leading to mT scaling.
- Decay the resonances and form pairs, extract the corresponding 2- and N-particle source.

The CECA model The resulting pp source

- MC simulation of single particles and resonances.
- Assume a common ellipsoidal 'hadronization surface'. The latter serves as a source of spatial-momentum correlations, leading to mT scaling.
- Decay the resonances and form pairs, extract the corresponding 2- and N-particle source.

The CECA model Simultaneous fit of pp and pΛ

r* (fm)

Mihaylov and Gonzalez Gonzalez. EPJC 83 (2023) 7, 590

40

3.5

ALICE data (pp) $m_T \in [1.20, 1.26)$ GeV

₫

Fit (CECA)

 r^* (fm)

The CECA model A generic mT scaling

The CECA model

An open question: Can we reproduce the saturation of the ALICE RUN3 data?

22

The CECA model

An open question: Can we reproduce the saturation of the ALICE RUN3 data?

23

And so much more was done !

And so much more was done !

Low energy scattering experiments in high energy collisions @

Small collision systems from *(@)* @ the WPCF

Novel constraints for the multi-strange meson-baryon interaction using correlations by Oton Vazquez Doce, Tue @ 9:00

Accessing the strong interaction in three-hadron systems via proton-deuteron femtoscopy by Bhawani Singh, Wed @ 14:10

Chiral symmetry restoration studies with Femtoscopy by Maximillian Korwieser, Thu @ 15:55

Demystifying the interior of neutron stars with femtoscopy at ALICE by Marcel Lesch, Fri @ 13:55

exhaustive list of recent ALICE oscopy measurements

	<u>PRC 99 (2019) 2. 024001</u>	p-p, p-A, A-A (metho	ds)
	<u>PLB 797 (2019), 134822</u>	Λ-Λ	
	PRL 123 (2019), 112002	р—Ξ	
	PRL 124 (2020) 092301	p–K	
	PLB 805 (2020), 135419	ρ–Σ0	
	PLB 811 (2020), 135849	p-p, p-Λ	
	Nature 588 (2020) 232-238	$p = \Xi, p = \Omega$	
	PRL 127 (2021), 172301	р-ф	
	PLB 822 (2021) 136708	p–K	
	PRC 103 (2021) 5. 055201	л_К	
	PLB 833 (2022), 137272	p–A	
	PLB 829 (2022), 137060	baryon–(anti)baryon	
	PRD 106 (2022) 5, 052010	p–D	
	PLB 833 (2022) 137335	K0–K0, Kch–K0	
	PLB 844 (2022), 137223	Λ-Ξ	
I	EPJA 59 (2023) 7, 145	р–р–р, р–р–Л	
	<u>EPJA 59 (2023) 12, 298</u>	p-p-K	
	EPJC 83 (2023) 4. 340	p–K	
	<u>PLB 845 (2023), 138145</u>	Л-К	
	PRX 14 (2024) 3. 031051	p–d, K–d	
			- OL

Part 2: Connecting femtoscopy and coalescence

Coalescence studies for light nuclei

Motivation: Indirect search for dark matter

ALICE Coll, <u>Nature Physics</u> volume 19, pages 61–71 (2023)

- Antinuclei cosmic rays: possible "smoking gun" signature of dark matter
- Essentially free of astrophysical background
- Calculations require antinuclei production/annihilation

Coalescence studies for light nuclei

Motivation: Indirect search for dark matter

ALICE Coll, <u>Nature Physics</u> volume 19, pages 61–71 (2023)

- Antinuclei cosmic rays: possible "smoking gun" signature of dark matter
- Essentially free of astrophysical background
- Calculations require antinuclei production/annihilation

Femtoscopy @ LHC *p-d correlations*

two-particle relative momentum $q = 2 \cdot k^*$

Femtoscopy @ LHC *p-d correlations*

Bhawani Singh, Wed @ 14:10

ALICE Coll., PRX 14 (2024) 3, 031051

- Treating the system as three-body, including wave function symmetrization, works! Kievsky et al. PRC 108 (2023) 6, 064002
- The potential used is AV18.
- N.B. Genuine three-body forces are not required, <4% precision needed to probe them.

 $a = 2 \cdot k^*$

Coalescence @ LHC Light nuclei formation

Coalescence model:

- Nucleons close in phase space
 => possibility to coalescence
- Coalescence parameter B_A
 => probability for the nucleons to coalesce

$$B_A = \frac{E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d}^3 p_A}}{\left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d}^3 p_p}\right)^A}$$

two-particle relative momentum $q = 2 \cdot k^*$

Coalescence @ LHC Light nuclei formation

Coalescence model:

- Nucleons close in phase space
 => possibility to coalescence
- Coalescence parameter B_A
 => probability for the nucleons to coalesce

$$B_A = \frac{E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d}^3 p_A}}{\left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d}^3 p_p}\right)^A} = A \left(\frac{4\pi}{3} \frac{p_0^3}{m_N}\right)^{A-1}$$

• Simple coalescence models assume that nucleons coalesce if their k* is below a threshold p₀

two-particle relative momentum $q = 2 \cdot k^*$

Coalescence @ LHC Light nuclei formation

Coalescence model:

- Nucleons close in phase space
 => possibility to coalescence
- Coalescence parameter B_A
 => probability for the nucleons to coalesce

- Simple coalescence models assume that nucleons coalesce if their k* is below a threshold p_n
- Advanced coalescence models make use of quantum mechanical treatment, via the Wigner formalism

M. Kachelrieß, EPJA 56 (2020)

d

<u>Mahlein et al., EPJC 83 (2023) 9, 804</u>

two-particle relative momentum $q = 2 \cdot k^*$

Coalescence studies for light nuclei *B*₂ measurements vs predictions (pp collisions)

- The B₂(p_T) is reproduced using the Wigner formalism
- The **Argonne V18** potential used to evaluate the deuteron wave function can describe both p-p and p-d correlations
- The source size is taken from p-p correlations

Mahlein et al., EPJC 83 (2023) 9, 804

Coalescence studies for light nuclei

pT spectrum reproduced as well!

Going forward

A summary And thank you for your attention!

- A common source in small collision systems allowing to study the FSI with high precision using femtoscopy
- Advancements in the source modelling
- Femtoscopy and coalescence can relate the emission source to momentum distributions of light nuclei

A teaser as an outlook:

 Some very interesting new developments related to πd correlations, relevant for the coalescence sturdies.
 Will trade details for drinks over dinner!