Three-dimensional source sizes and shapes of hadron emission in EPOS

<u>Emese Árpási</u> ELTE Eötvös Loránd University, Budapest

Introduction, motivation

 Lévy shape of the pion source function seen in many experiments (see talks of S. Lökös, S. Bhosale, B. Pórfy)
 these are mostly angle-averaged 1D analysises

$$s(\mathbf{x}, \mathbf{p}) = \mathcal{L}(\alpha, R; \mathbf{x}) = \frac{1}{(2\pi)^3} \int d^3 \mathbf{q} e^{i\mathbf{q}\mathbf{x}} e^{-\frac{1}{2}|\mathbf{q}^T R^2 \mathbf{q}|^{\alpha/2}}$$

s: single particle phase-space density (emission function) spherical symmety: \mathbf{R}^2 = diag(R^2, R^2, R^2)

The distribution is stable under convolution:
 D(r) pair-source (autoconvolution of s)
 will also be Lévy-stable, with the same alpha

$$s(\mathbf{x}, \mathbf{p}) = \mathcal{L}(\alpha, R; \mathbf{x}) \Rightarrow D(\mathbf{r}) = \mathcal{L}(\alpha, 2^{1/\alpha}R; \mathbf{r})$$

 \blacktriangleright Motivation: does the Lévy shape show up in 3D too? \rightarrow check in EPOS!

- Divides the time evolution into different stages
- > Initial state traced back to the **parton model** of the strongly interacting particles
- > Interaction of the partons (quarks and gluons) based on the Lund String Model
- > Next stage governed by **viscous hydrodynamic expansion**
- > Hadronization is modeled with well-established fragmentation functions
- Interacting hadronic gas state (with inelastic scatterings and decays) described by the UrQMD model up until kinetic freeze-out
- Takes almost all of the important theoretical components of the description of heavy-ion collisions into account

3D analysis

 $> \sqrt{s_{NN}} = 200 \text{ GeV Au+Au collisions generated by the EPOS program package}$ > Event-by-event and 3-dimensional investigation of the pion pair-source > D(r) pion pair source function fitted with Lévy distribution $D(\alpha, R^2, \vec{r}) = \frac{1}{(2\pi)^3} \int d^3 \vec{q} e^{i \vec{q} \vec{r}} e^{-\frac{1}{2} |\vec{q}^T R^2 \vec{q}|^{\alpha/2}} R^2 = \text{diag}(2^{1/\alpha} R_{out}^2, 2^{1/\alpha} R_{side}^2, 2^{1/\alpha} R_{long}^2)$

 \succ Separated the measurements into **centrality and** m_T **classes**

 \succ 3 dimensional pair-distribution ⇒ 1 dimensional projections (out, side, long)

 \Rightarrow fitting 1 dimensional Lévy-functions to the projections

$$\mathcal{L}(r, R_{out, side, long}, \alpha) = \frac{1}{\pi} \int_0^\infty dq \, \cos qr \, e^{-\frac{1}{2} |qR_{out, side, long}|^\alpha}$$

Fitting projections simultaneously: 4 free parameters (α, R_{out,side,long})
 Results consistent with full 3D fit, but this method is much faster

3D analysis – example single event fit

Good description by elliptically contoured Lévy-stable distribution

- Such fits repeated for thousands of events
- Event-by-event mean and standard deviation of parameters extracted
- \succ Note: fitting with three different α consistent value in all directions!

Results – Lévy exponent α

Every-exponent: $\alpha \approx 1.2 - 1.7$, not Gaussian ($\alpha < 2$)

Small dependence on m_T

 \succ Decrease with increasing $N_{part} \rightarrow$ opposite trend compared to PHENIX

 $\geq \langle \alpha \rangle_{m_T}$ vs PHENIX \rightarrow good agreement for peripheral, deviation for central

> Centrality trend driven by particle density, long-range Coulomb scattering?

Three-dimensional source sizes and shapes of hadron emission in EPOS

Results – Lévy scales Rosl

 \succ Lévy scale: different values for the different projections ($R_l > R_o > R_s$)

 \blacktriangleright Lévy scale is decreasing with increasing $m_T \rightarrow$ collective behavior

Three-dimensional source sizes and shapes of hadron emission in EPOS

Results – angle averaged Lévy-scale

$$R_{avg} = \sqrt{(R_o^2 + R_s^2 + R_l^2)/3}$$

average R values
 vs. new final
 1D PHENIX analysis
 (talk by S. Lökös)

Really good agreement with the experiment!

EPOS seems to describe the source scales well

Three-dimensional source sizes and shapes of hadron emission in EPOS

Summary

3-dimensional pion pair source investigated in 200 GeV Au+Au collisions generated with EPOS

- Source shape described well by 3D Lévy-stable distributions on an event-by-event basis
 - > In 1D the observed Lévy shape is **not due to angle-, nor event-averaging**
 - ➢ Event-by-event 3D Lévy → due to Lévy walk in scatterings & decays
- Parameters compared to new final PHENIX angle-averaged results
 - Exponent (α) agrees with experiment for peripheral,
 deviates for central events, opposite centrality trend observed
 - > Average scale (R_{avg}) captured well by the model, shows good agreement with PHENIX

Thank you for your attention!