Three-dimensional source sizes and shapes of hadron emission in EPOS

Emese Árpási ELTE Eötvös Loránd University, Budapest

Introduction, motivation

➢**Lévy shape of the pion source function seen in many experiments** (see **talks of S. Lökös, S. Bhosale, B. Pórfy**) \Rightarrow these are mostly angle-averaged 1D analysises

$$
s(\boldsymbol{x},\boldsymbol{p}) = \mathcal{L}(\alpha,R;\boldsymbol{x}) = \frac{1}{(2\pi)^3} \int d^3\boldsymbol{q} e^{i\boldsymbol{q}\boldsymbol{x}} e^{-\frac{1}{2}|\boldsymbol{q}^T R^2 \boldsymbol{q}|^{\alpha/2}}
$$

 $spherical$ *symmety:* $\boldsymbol{R^2}$ = diag(R^2, R^2, R^2) *s: single particle phase-space density (emission function)*

 \triangleright The distribution is stable under convolution: \Rightarrow D(r) pair-source (autoconvolution of s) will also be Lévy-stable, with the same alpha

$$
s(x, p) = \mathcal{L}(\alpha, R; x) \Rightarrow D(r) = \mathcal{L}(\alpha, 2^{1/\alpha} R; r)
$$

 \triangleright **Motivation:** does the Lévy shape show up in 3D too? \rightarrow check in EPOS!

- ➢Divides the time evolution into **different stages**
- ➢Initial state traced back to the **parton model** of the strongly interacting particles
- ➢Interaction of the partons (quarks and gluons) based on the Lund String Model
- ➢Next stage governed by **viscous hydrodynamic expansion**
- ➢**Hadronization** is modeled with well-established fragmentation functions
- \triangleright Interacting hadronic gas state (with inelastic scatterings and decays) described by the **UrQMD** model up until kinetic freeze-out
- \triangleright Takes almost all of the important theoretical components of the description of heavy-ion collisions into account

3D analysis

 $\triangleright \sqrt{s_{NN}}$ = 200 GeV Au+Au collisions generated by the EPOS program package ➢**Event-by-event and 3-dimensional investigation of the pion pair-source** \triangleright D(r) pion pair source function fitted with Lévy distribution $D(\alpha, R^2, \vec{r}) = \frac{1}{(2\pi)^3} \int d^3\vec{q} e^{i\vec{q}\vec{r}} e^{-\frac{1}{2}|\vec{q}^T R^2 \vec{q}|}$ $R^2 = \text{diag}(2^{1/\alpha} R_{out}^2, 2^{1/\alpha} R_{side}^2, 2^{1/\alpha} R_{long}^2)$ 1 $\frac{1}{(2\pi)^3} \int d^3 \vec{q} e^{i \vec{q} \vec{r}} e^{-\vec{r}}$ 1 $\frac{1}{2}|\vec{q}^T R^2 \vec{q}|^{\alpha/2}$

 \triangleright Separated the measurements into **centrality and** m_T **classes**

 $≥$ 3 dimensional pair-distribution $⇒$ 1 dimensional projections (out, side, long)

⇒ fitting 1 dimensional Lévy-functions to the projections

$$
\mathcal{L}(r, R_{out,side, long}, \alpha) = \frac{1}{\pi} \int_0^{\infty} dq \cos qr \, e^{-\frac{1}{2}|qR_{out,side, long}|^{\alpha}}
$$

 \triangleright Fitting projections simultaneously: 4 free parameters (α , $R_{out.side, long}$) \triangleright Results consistent with full 3D fit, but this method is much faster

3D analysis – example single event fit

➢Good description by **elliptically contoured Lévy-stable distribution**

- \triangleright Such fits repeated for thousands of events
- ➢Event-by-event mean and standard deviation of parameters extracted
- \triangleright Note: fitting with three different α consistent value in all directions!

Results – Lévy exponent α

 \triangleright Lévy-exponent: $\alpha \approx 1.2 - 1.7$, not Gaussian ($\alpha < 2$)

- \triangleright Small dependence on m_T
- \triangleright Decrease with increasing $N_{part} \rightarrow$ opposite trend compared to PHENIX

 $\langle \alpha \rangle_{m_T}$ vs PHENIX \rightarrow good agreement for peripheral, deviation for central

➢Centrality trend driven by particle density, long-range Coulomb scattering?

Three-dimensional source sizes and shapes of the state of the stat hadron emission in EPOS

$Results - Lévy scales R_{os1}$

 \triangleright Lévy scale: different values for the different projections ($R_l > R_o > R_s$)

 \triangleright Lévy scale is decreasing with increasing $m_T \rightarrow$ collective behavior

Three-dimensional source sizes and shapes of the state of the state of the state $7/9$ hadron emission in EPOS

Results – angle averaged Lévy-scale

$$
R_{avg} = \sqrt{(R_o^2 + R_s^2 + R_l^2)/3}
$$

 \triangleright average R values vs. new final 1D PHENIX analysis (talk by S. Lökös)

 \triangleright Really good agreement with the experiment!

➢EPOS seems to describe the source scales well

Three-dimensional source sizes and shapes of the state of the state of the state $\frac{8}{9}$ hadron emission in EPOS

Summary

➢**3-dimensional pion pair source** investigated in 200 GeV Au+Au collisions generated with EPOS

- ➢Source shape described well by **3D Lévy-stable distributions** on an **event-by-event** basis
	- ➢In 1D the observed Lévy shape is **not due to angle-, nor event-averaging**
	- ➢**Event-by-event 3D Lévy** → **due to Lévy walk in scatterings & decays**
- ➢**Parameters compared to new final PHENIX angle-averaged results**
	- \triangleright Exponent (α) agrees with experiment for peripheral, deviates for central events, opposite centrality trend observed
	- \triangleright Average scale (R_{avg}) captured well by the model, shows good agreement with PHENIX

Thank you for your attention!