

Measurements of (anti)(hyper)nuclei with ALICE

Ramona Lea for the ALICE Collaboration

University of Brescia ramona.lea@cern.ch

17th edition of the Workshop on Particle Correlations and Femtoscopy (WPCF 2024)

Light nuclei in heavy-ion collisions

- The study of light (anti)(hyper)nuclei is very important:
	- Production mechanism is not well understood
		- How/when do they form?
			- "early" at chemical freeze-out (thermal production)
			- or "late" at kinetic freeze-out (coalescence)?
		- Do they suffer for the dissociation by rescattering?
	- Low binding energy (few MeV) "Snowballs in hell": nuclei formation is very sensitive to chemical freeze-out conditions and to the dynamics of the emitting source
	- Baseline for exotic bound state searches
	- Light nuclei measurements in high energy physics can be used to estimate the background of secondary anti-nuclei in dark matter search

Antinuclei production

- Antinuclei can be a sign of Dark Matter annihilation:
	- Background: production in the collisions between cosmic rays (CR) and the interstellar medium (ISM) (pp and p-A collisions)
		- Nuclei production must be known very well!

ALT-PUB-532052

Hypernuclei production

- Hypernuclei can be used to study nucleon-hyperon (N-Y) interaction
	- Production of exotic bound states
	- Determination of the equation of state
		- Application to neutron stars

[D. Lonardoni et al., PRL 114, 092301 \(2015\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.092301)

[D. Logoteta et al., EPJA 55 \(2019\) 11, 207](https://doi.org/10.1140/epja/i2019-12909-9)

Production models

- Statistical hadronization models (SHMs)
	- \circ describe the yields of light-flavoured hadrons $\frac{1}{3}$ by requiring thermal and hadron-chemical equilibrium
		- **■** Parameters: (T, V, μ_B)
	- light (anti)(hyper)**nuclei** are treated as **point-like objects**

07/11/2024 Ramona Lea - WPCF 2024

Production models: Statistical hadronization models

- Statistical hadronization models (SHMs)
	- describe the yields of light- flavoured hadrons by requiring thermal and hadron-chemical equilibrium
		- **■** Parameters: (T, V, μ_B)
	- light (anti)(hyper)**nuclei** are treated as **point-like objects**
	- Canonical ensemble (CSM): local conservation of quantum numbers (S, Q and B)
	- Central Xe–Xe collisions: π, K, ϕ , p, d, ³He
		- \circ $T_{\text{chem}} = (154.2 \pm 1.1)$ MeV (Similar to the one obtained in Pb–Pb collision)
		- $V = (3626 \pm 298)$ fm³
		- \degree x²/NDF = 0.83

Production models: Coalescence

● Coalescence

- Nuclei are formed by nucleons emitted at freeze-out hypersurface
- Coalescence calculations incorporate the **size of nuclei**
	- convolution between nucleon phase-space distribution and Wigner function of the nucleus

[J. I. Kapusta, PRC 21, 1301 \(1980\)](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.21.1301)

[Mahlein et al., EPJC 83 \(2023\) 9, 804](https://link.springer.com/article/10.1140/epjc/s10052-023-11972-3)

Production models: Coalescence

● Coalescence

- Nuclei are formed by nucleons emitted at freeze-out hypersurface
- Coalescence calculations incorporate the **size of nuclei**
	- convolution between nucleon phase-space distribution and Wigner function of the nucleus
- Coalescence parameter B_A , related to formation probability via coalescence:

[J. I. Kapusta, PRC 21, 1301 \(1980\)](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.21.1301)

[Mahlein et al., EPJC 83 \(2023\) 9, 804](https://link.springer.com/article/10.1140/epjc/s10052-023-11972-3)

$$
E_A \frac{\mathrm{d}^3 N_A}{\mathrm{d} p_A^3} = B_A \left(E_p \frac{\mathrm{d}^3 N_p}{\mathrm{d} p_p^3} \right)^2
$$

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (d*E*/d*x*), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade).

ALICE Collaboration Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (d*E*/d*x*), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade).

TPC: d*E***/d***x* **in gas**

Separation of (anti)nuclei thanks to their large mass (and charge)

ALICE Collaboration Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (d*E*/d*x*), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade).

TPC: d*E*/d*x* in gas

- Separation of (anti)nuclei thanks to their large mass (and charge)
- **TOF: measurements of velocity** *β* = *v*/*c*
	- *p* = *γβm* → mass

ALI-PERF-141622

ALICE Collaboration Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: specific energy loss (d*E*/d*x*), time of flight, transition radiation, Cherenkov radiation, calorimetry and decay topology (V0, cascade).

Production spectra of nuclei

- ALICE measured production spectra of nuclei in pp, p–Pb, Xe–Xe and Pb–Pb collisions at mid-rapidity
- Measurements in classes of multiplicity or centrality
	- related to system size

[arXiv:2405.19826](https://arxiv.org/abs/2405.19826)

- Smooth evolution of d/p and 3He/p ratios with the system size
	- A=2 : multiplicity dependence is well reproduced by both **CSM** and **coalescence**
	- A=3 : ratio fairly described by the **coalescence** approach at low and high charged-particle multiplicity densities. Tension at intermediate multiplicities (10-40 charged particles)

Constraining nuclei wave function

- A recent study shows that ALICE measurements in HM collisions of:
	- proton production yields
	- proton source radius
- Proton production yields

roton source radius

allow for the prediction of the deuteron spectrum via $\sum_{n=1}^{\infty}$ event-by-event coalescence with no free parameters!

Hypertriton production

- Lightest known hypernucleus consisting of (p, n, Λ)
- Mass = $2.991 \text{ GeV}/c^2$
- $B_{\Lambda} = 0.13 \pm 0.05$ MeV ($B_{d} = 2.2$ MeV, $B_{t} = 8.5$ MeV, $B_{3He} = 7.7$ MeV)
- $\frac{3}{4}$ H has a large size:
	- \circ d_{d−} = 10.79 fm, r (d) = 1.96 fm

<https://hypernuclei.kph.uni-mainz.de/>

[F. Hildenbrand and H.-W. Hammer, Phys. Rev. C 100, 034002](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.100.034002)

Hypertriton production in pp

● SHM and **coalescence** predictions for ³_ΛH are very different at low multiplicity

- [Phys. Rev. Lett. 128 \(2022\) 252003](https://doi.org/10.1103/PhysRevLett.128.252003)
- K.-J. Sun, et al. [Phys. Lett. B 792, 132 \(2019\)](http://dx.doi.org/10.1016/j.physletb.2019.03.033)
- **N.** V. Vovchenko, et al. [Phys. Lett. B 785, 171 \(2018\).](http://dx.doi.org/10.1016/j.physletb.2018.08.041)

Hypertriton production in pp

- **● SHM** and **coalescence** predictions for ³_ΛH are very different at low multiplicity
- $\frac{3}{\Lambda}$ H measured in Run 3 by ALICE with good precision

 $\overline{6}$

Hypertriton production in pp

- **● SHM** and **coalescence** predictions for ³_ΛH are very different at low multiplicity
- $\frac{3}{\Lambda}$ H measured in Run 3 by ALICE with good precision
- $\frac{3}{\Lambda}$ H/Λ is compared with the prediction of CSM and coalescence model
	- Two-body coalescence model provides the best description of data

➤ **Hypertriton in pp clearly favours coalescence**

● ³_{Λ}H has also been recently measured in Pb–Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

[arXiv:2405.19839](https://arxiv.org/abs/2405.19839)

- $\frac{3}{4}$ H has also been recently measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
	- More precise wrt Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV

C [arXiv:2405.19839](https://arxiv.org/abs/2405.19839)

- $\frac{3}{4}$ H has also been recently measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
	- \circ More precise wrt Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
- 3 ΛH/ 3He shows good agreement with **coalescence**, assuming B_{$_{\Lambda}$} = 164 ± 43 keV

Com [arXiv:2405.19839](https://arxiv.org/abs/2405.19839)

- $\frac{3}{4}$ H has also been recently measured in Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
	- \circ More precise wrt Pb–Pb at $\sqrt{s_{NN}}$ = 2.76 TeV
- 3 ΛH/ 3He shows good agreement with **coalescence**, assuming B_{$_{\Lambda}$} = 164 ± 43 keV

- \bullet p_{τ} -differential measurement is also in agreement with **blast-wave** with common parameters with other nuclei
	- Large statistical uncertainties → Ongoing $p_{_{\rm T}}$ -differential analyses with Run 3 data are fundamental to disentangle the two models

Q [arXiv:2405.19839](https://arxiv.org/abs/2405.19839)

4He in Pb–Pb collisions

- ALICE has measured the production spectra for (anti)⁴He in Pb-Pb
- ⁴He is more bound and compact than lighter nuclei:
	- \circ $E_{\rm B}$ (⁴He) ~ 28 MeV, *r*(⁴He) ~ 1.7 fm
- \bullet p_{τ} spectra are well reproduced by a blast-wave function, using common parameters with the other nuclei

[Phys. Lett. B 858 \(2024\) 138943](https://doi.org/10.1016/j.physletb.2024.138943)

4He in Pb–Pb collisions

- ALICE has measured the production spectra for (anti)⁴He in Pb-Pb
- 4 He is more bound and compact than lighter nuclei:
	- \circ $E_{\rm B}$ (⁴He) ~ 28 MeV, *r*(⁴He) ~ 1.7 fm
- \bullet p_{τ} spectra are well reproduced by a blast-wave function, using common parameters with the other nuclei
- The parameter B_4 is compared with **SHM+blast wave** and **coalescence** predictions
	- **SHM describes nuclei with A = 4 better** \Box [Phys. Lett. B 858 \(2024\) 138943](https://doi.org/10.1016/j.physletb.2024.138943)

- **SHM** predicts hypernuclei with $A = 4$ in Pb–Pb collisions
	- they are rare:
		- \blacksquare penalty factor for increasing A: \sim 300
		- suppression due to strangeness content

A. Adronic, private communication, based on ◯◯ [A. Andronic et al., PLB 697 \(2011\) 203-207](https://www.sciencedirect.com/science/article/pii/S0370269311001006?via%3Dihub)

- SHM predicts hypernuclei with $A = 4$ in Pb–Pb collisions
	- they are rare:
		- \blacksquare penalty factor for increasing A: \sim 300
		- suppression due to strangeness content
- Some factors may enhance the yield $(x 4)$:
	- \circ larger binding energy wrt A = 3
	- existence of excited states dN $\frac{dN}{dy} \propto 2J+1$
	- spin degeneracy

[M. Schäfer et al., PRC 106, L031001 \(2022\)](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.106.L031001)

- SHM predicts hypernuclei with $A = 4$ in Pb–Pb collisions
	- they are rare:
		- \blacksquare penalty factor for increasing A: \sim 300
		- suppression due to strangeness content
- Some factors may enhance the yield $(x 4)$:
	- \circ larger binding energy wrt A = 3
	- existence of excited states
	- spin degeneracy
- In Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, ALICE has observed:
	- 4 _ΛH \rightarrow ⁴He + π^{-}
	- \circ 4 _{Λ}He → ⁴He + p + π^{-}

- SHM predicts hypernuclei with $A = 4$ in Pb–Pb collisions
	- they are rare:
		- \blacksquare penalty factor for increasing A: \sim 300
		- suppression due to strangeness content
- Some factors may enhance the yield $(x 4)$:
	- \circ larger binding energy wrt A = 3
	- existence of excited states
	- spin degeneracy
- In Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, ALICE has observed:
	- 4 _ΛH \rightarrow ⁴He + π^{-}
	- 4 _{Λ}He → ⁴He + p + π^{-}
- Yields in agreement with **SHM** prediction that includes feed-down from excited states
	- ➤ **SHM describes hypernuclei with A = 4 well**

1 [arXiv:2410.17769](https://arxiv.org/abs/2410.17769)

- Anisotropic flow measures the momentum anisotropy of final-state particles
	- It is sensitive to a different production in-plane and out-of-plane
	- Can be used to test production mechanisms

- Anisotropic flow measures the momentum anisotropy of final-state particles
	- It is sensitive to a different production in-plane and out-of-plane
	- Can be used to test production mechanisms
- ALICE has measured v_2 for (anti-)³He in Run3
	- Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.36 TeV

	 more differential both in p_{T} and centrality, more precise than in Run 2

- Anisotropic flow measures the momentum anisotropy of final-state particles
	- It is sensitive to a different production in-plane and out-of-plane
	- Can be used to test production mechanisms
- ALICE has measured v_2 for (anti-)³He in Run3 Pb–Pb collisions at \sqrt{s}_{NN} = 5.36 TeV \circ more differential both in *p*_τ and *c*
	- more differential both in p_{τ} and centrality, more precise than in Run 2
- Data are compared with the predictions of blast-wave and **coalescence** model
	- ➤ **coalescence is favoured**

- Anisotropic flow measures the momentum anisotropy of final-state particles
	- It is sensitive to a different production in-plane and out-of-plane
	- Can be used to test production mechanisms
- ALICE has measured v_2 for (anti-)³He in Run3 Pb–Pb collisions at \sqrt{s}_{NN} = 5.36 TeV \circ more differential both in *p*_τ and *c*
	- more differential both in p_{τ} and centrality, more precise than in Run 2
- Data are compared with the predictions of blast wave and coalescence model
	- ➤ **coalescence is favoured**
- Flow of hypertriton has been measured for the first time:
	- **○ compatible with 3He, but large uncertainties currently**

- In cosmic rays interstellar medium collisions (anti)nuclei are mainly produced at forward rapidity:
	- important to study nuclear production vs rapidity

A. K. Blum Phys. Rev. C 109, L031904

- In cosmic rays interstellar medium collisions (anti)nuclei are mainly produced at forward rapidity:
	- \circ important to study nuclear production vs rapidity
- Measurement of p and d production in rapidity intervals (|y|<0.7)

[arXiv:2407.10527](https://arxiv.org/abs/2407.10527)

- In cosmic rays interstellar medium collisions (anti)nuclei are mainly produced at forward rapidity:
	- \circ important to study nuclear production vs rapidity
- Measurement of p and d production in rapidity intervals (|*y*|<0.7)
- \bullet *B*₂ is measured as a function of p_{T} and *y*:
	- data are compared with predictions from coalescence (PYTHIA and EPOS+**Coalescence**)
	- \blacktriangleright the shape is correctly reproduced, the magnitude not

[arXiv:2407.10527](https://arxiv.org/abs/2407.10527)

- Production of (anti)(hyper)nuclei measured at mid-rapidity in pp, p–Pb, Xe–Xe and Pb–Pb
	- light nuclei (E_B ~ MeV) are reproduced by both **SHM** and **coalescence**
	- loosely bound objects such 3 ΛH (*B*^Λ ~ 100 keV) are described better by **coalescence** as it includes nuclei size in the estimation
- With Run 3, some measurements that were possible only in Pb–Pb collisions will be accessible also in small systems
	- Measurements will help to disentangle the different production models providing a clearer understanding of the dynamics underlying nuclei formation dynamics

Backup slides

Event-by-event coalescence

Possible to implement event-by-event coalescence, with probability:

$$
\mathcal{P}(r_0,q)=\int d^3r_\mathrm{d}\int d^3r H_\mathrm{pn}(\vec{r},\vec{r}_\mathrm{d};r_0)\mathcal{D}(\vec{q},\vec{r})
$$

- \circ r_{o} is the size of the emitting source
- *q* is the relative p-n momentum
- Two-particle emitting source: average two-particle distance
- Wigner transform of the deuteron wavefunction
- production measurements to constrain the nuclear wave function

Rapidity dependence of coalescence

- Model predictions based on ALICE measurements are used as input to calculate antideuteron flux from cosmic rays
- **But typically ALICE measurements** cover midrapidity (|y|<0.5) while astrophysical models extrapolate to the forward region

[Kfir Blum](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.109.L031904) [Phys. Rev. C 109, L031904](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.109.L031904)

³_ΛH *p*_T spectra in Pb–Pb

[arXiv:2405.19839](https://arxiv.org/abs/2405.19839)M

ALI-PUB-577118

[arXiv:2407.10527](https://arxiv.org/abs/2407.10527)

Deuteron production in PYTHIA

- PYTHIA 8.3:
	- d production via ordinary reactions
	- Energy dependent cross sections parameterized based on data

Reactions:

- $p + n \rightarrow \gamma + d$
- \bullet p + n $\rightarrow \pi^0$ + d
- $p + n \rightarrow \pi^0 + \pi^0 + d$
- \bullet p + n \rightarrow π ⁺ + π ⁻ + d
- \bullet p + p $\rightarrow \pi^+$ + d
- $p + p \rightarrow \pi^+ + \pi^0 + d$
- \bullet n + n \rightarrow π ⁻ + d
- \bullet n + n \rightarrow π ⁻ + π ⁰ + d

Light nuclei flow measurement

Angular distribution of reconstructed charged particles can be expanded into a Fourier series w.r.t. symmetry plane $\psi_{\boldsymbol{n}}$:

$$
E\frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left(n\left(\phi - \psi_n\right)\right) \right)
$$

$$
v_n = \left\langle \cos\left(n\left(\phi - \psi_n\right)\right) \right\rangle
$$

- Elliptic flow (v_2) is sensitive to the system evolution:
	- It probes initial conditions and constraints particle production mechanisms
- The measurement of light nuclei v_n will help in the understanding of particle production mechanisms
	- Do light nuclei follow the mass ordering observed for lighter particles?
	- Do light nuclei follow a quark/baryon number scaling (coalescence) or follow mass scaling (hydro)?

Flow analysis method

- \bullet v₂ is measured using the scalar product method
	- Hits measured by V0A (2.8 < η < 5.1) and V0C (-3.7 < η < -1.7) are used as reference particles
	- \circ Deuteron candidates are the particles of interest (|η|<0.8)
- The contribution to the measured elliptic flow (v_2^{Tot}) due to misidentified deuterons (v_2^{Bkg}) was removed by studying the azimuthal correlations versus ΔM (ΔM = m_{τ _{OF} - $m_{\sf d}}$)

$$
v_n(\Delta M)=v_n^{\text{sig}}\frac{N^{\text{sig}}}{N^{\text{tot}}}(\Delta M)+v_n^{\text{bkg}}(\Delta M)\frac{N^{\text{bkg}}}{N^{\text{tot}}}(\Delta M)\frac{\sum\limits_{\substack{\hat{\alpha}\\ \text{g. 0.3}}}^{\widehat{\alpha}}\widehat{\sigma}_{0.3}}{\sum\limits_{\substack{\hat{\alpha}\\ \text{g. 0.2}}}^{\widehat{\alpha}}\widehat{\sigma}_{0.3}}\widehat{\sigma}_{0.3}^{\text{ALICE Pb-Pb}\sqrt{s_{NN}}=5.02\text{ TeV}}
$$

The yields N^{Sig} and N^{Bkg} are extracted from fits of the invariant mass distribution obtained with the TOF detector

[Phys. Rev. C 102 \(2020\) 055203](https://link.aps.org/doi/10.1103/PhysRevC.102.055203)

$$
24 \qquad \qquad \blacksquare
$$

07/11/2024 Ramona Lea - WPCF 2024

 $v_n\{\text{SP}\} = \frac{\left\langle u_{n,i}(p_T,\eta)\cdot \frac{Q_n^*}{M}\right\rangle}{\sqrt{\left\langle \frac{Q_{n,A}^*}{M_A}\cdot \frac{Q_{n,B}^*}{M_B}\right\rangle}}$

 $2.2 \le p_{\tau} < 2.4$ GeV/c

 0.1