

Heavy-flavor femtoscopy in heavy-ion collisions at STAR

Priyanka Roy Chowdhury

(for the *STAR Collaboration*)

Warsaw University of Technology, Poland

17th Workshop on Particle Correlations and Femtoscopy, WPCF

4 - 8 November 2024, Toulouse, France

Supported in party by

Heavy-ion Collisions (HIC)

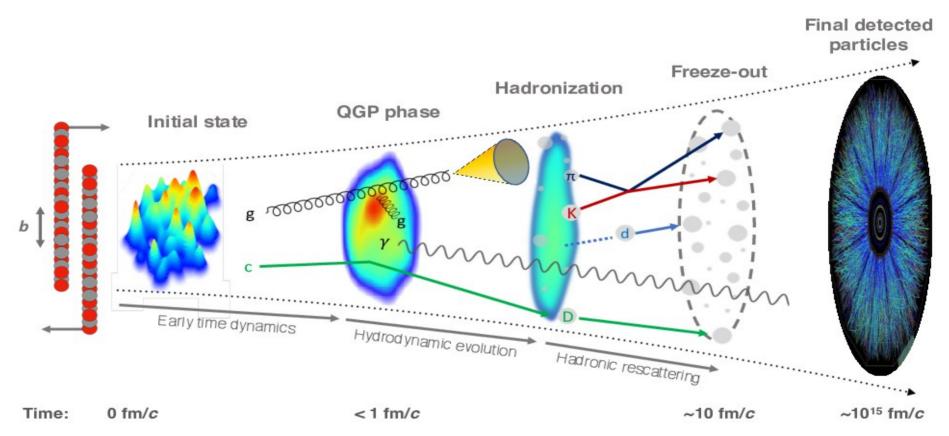


Figure 1: Evolution of heavy-ion collision

Heavy flavors in HIC

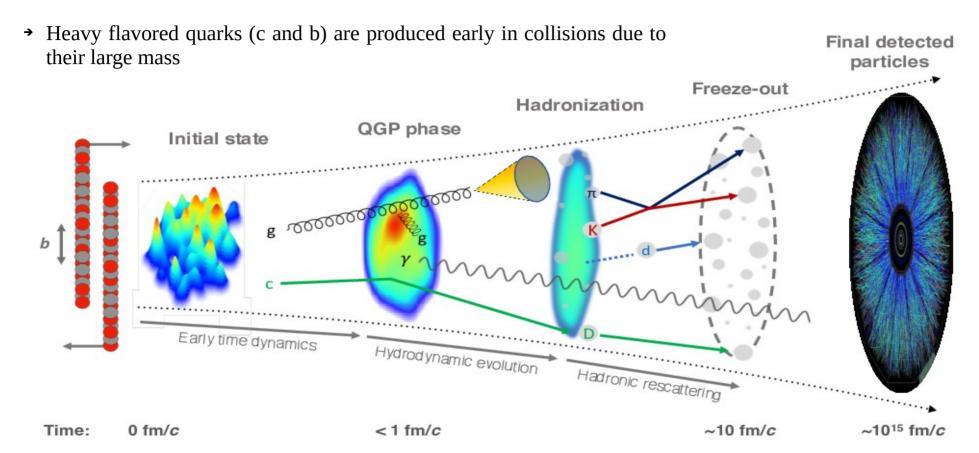
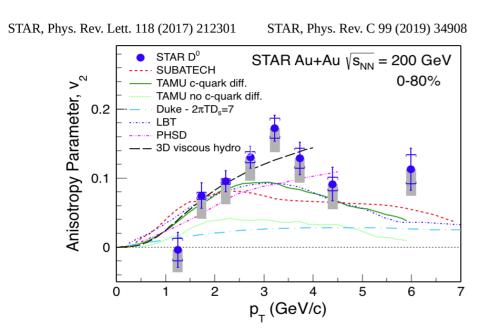



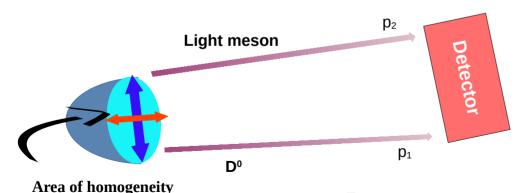
Figure 1: Evolution of heavy-ion collision

Motivation: charm interaction with QGP

→ Significant D⁰ elliptic flow and suppression of D⁰ meson at high p_T are observed in heavy-ion reactions at RHIC



Figure 2: D⁰ anisotropy vs. transverse momentum


Figure 3: Nuclear modification factor, $R_{AA}(a)$ D^0 , (b) $\pi^{+/-}$ & $h^{+/-}$

- → Strong interaction of charm quarks with the quark-gluon plasma and their thermalization
- → New observables to constrain different models and understand production mechanism

Physics outcomes

- → Two-particle femtoscopic correlations are sensitive to the interactions in the final state as well as to the extent of the region from which correlated particles are emitted
- → Average distance between emission points of correlated pairs (D⁰-hadron) is known as 'length of homogeneity'
- → Femtoscopy may provide additional information about the correlation between charmed mesons and light mesons at the freeze-out

Proton D^0 / \overline{D}^0 Hadron Gas QGP $(\tau_0 < 1 \text{ fm/c})$

Figure 4: c/c as a probe of QGP medium and final-state interaction

Extraction of interaction parameters

The Lednicky–Lyuboshitz analytical model connects the correlation function with final-state strong interaction parameters

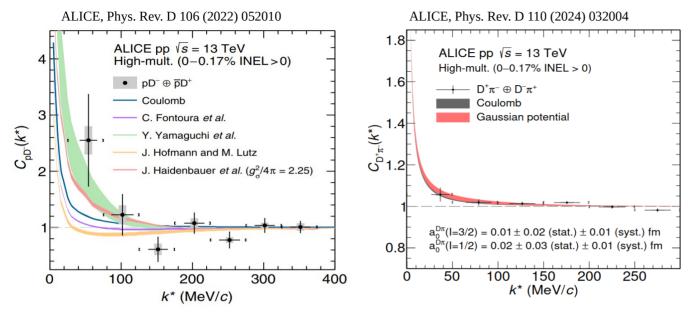
$$C(k^*) = 1 + \sum_{s} \rho_s \left[\frac{1}{2} \left| \frac{f^s(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^s}{2\sqrt{\pi}r_0} \right) + \frac{2\Re(f^s)(k^*)}{\sqrt{2}r_0} F_1(Qr_0) - \frac{\Im(f^sk^*)}{r_0} F_2(Qr_0) \right]$$
(1)

where , $f^{s}(k^{*})$ is the scattering amplitude for singlet (s = 0) or triplet (s = 1) state

 ρ_s is fraction of pairs with a given spin s ($\rho_0 = \frac{1}{4}$ and $\rho_1 = \frac{3}{4}$)

$$Q=2k^*$$
, $F_1(z)=\int_0^z dx \, e^{x^2-z^2}/z$, $F_2(z)=(1-e^{-z^2})/z$

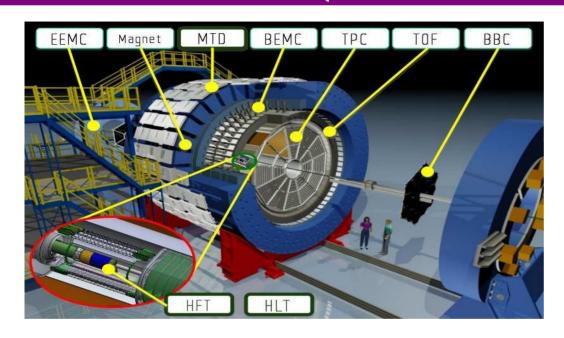
This model assumes, average separation vector (\vec{r}^*) from eq. (1), follows Gaussian distribution


$$dN^{3}/d^{3}r^{*} e^{-r^{*2}/4r_{0}^{2}}$$
 (2)

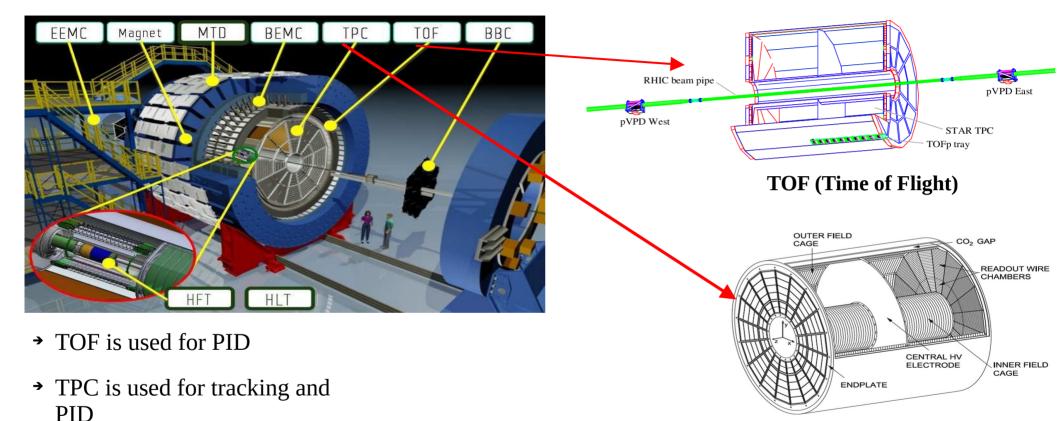
where, r_0 is the effective radius of the correlated source

STAR, Phys. Rev. C 74 (2006) 064906

D-hadron femtoscopy in p+p at LHC

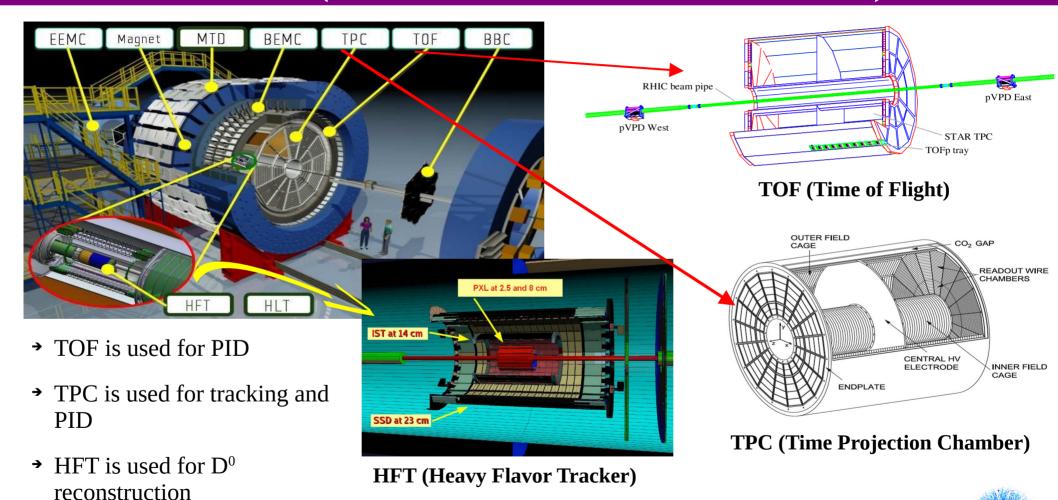


- First studies of D-hadron interactions in pp collisions at $\sqrt{s} = 13$ TeV by the ALICE experiment
- → ALICE data for both p-D and D- π pairs are compatible within (1.1 1.5) σ with the theory predictions obtained from the hypothesis of Coulomb only interaction


Figure 5: $C(k^*)$ for (left) pD and (right) πD pairs and interaction behavior of D^{\pm} at final state

- → Small values of $a_{\pi D}$ (scattering length) \rightarrow ALICE measurement suggests strong interactions in the hadronic phase of heavy-ion collision are small (parameters are consistent with 0)
- → Possiblity to learn something new about nuclear medium or QGP by measuring the source size or length of homogeneity in Au+Au system

STAR (Solenoidal Tracker At RHIC)



STAR (Solenoidal Tracker At RHIC)

TPC (Time Projection Chamber)

STAR (Solenoidal Tracker At RHIC)

Particle Identification (PID)

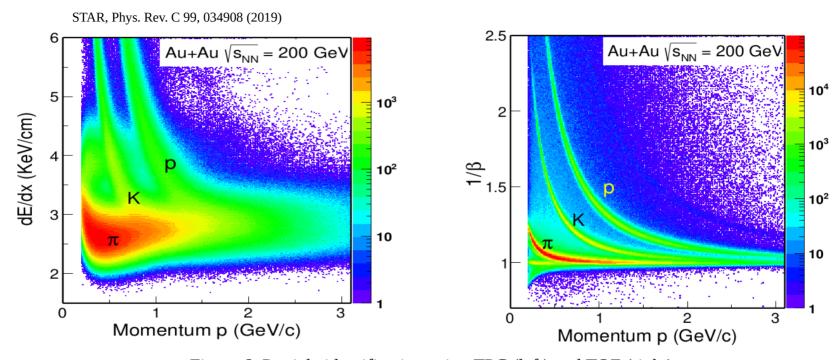
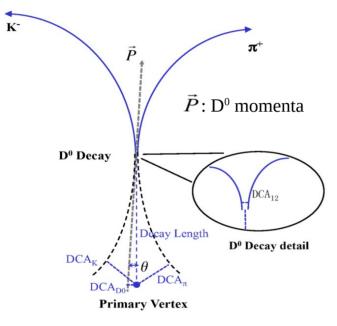



Figure 6: Particle identification using TPC (left) and TOF (right)

- \rightarrow dE/dx bands for π and K overlap around 0.7 GeV/c; K and p bands overlap beyond 1.2 GeV/c
- → To distinguish between π , K and p at higher momenta (> 0.7 GeV/c), TOF information was required

Dataset and D^0 meson reconstruction

STAR, Phys. Rev. C 99, 034908 (2019)

cτ ≈ 123 μm

 $1.6 < D^0$ mass window $< 2.2 \text{ GeV/c}^2$

 $D^0 \rightarrow mixture \ of \ D^0 \ (K^-\pi^+) \ and \ \overline{D}{}^0 \ (K^+\pi^-)$

Dataset:

- → Au+Au, 200 GeV, collected in Run 2014
- → Trigger: Minimum bias
- \rightarrow Centrality: 0 80%
- → 490 M good minimum bias events

D⁰ reconstruction:

- → Decay length distance between decay vertex and primary vertex (PV)
- → Distance of Closest Approach (DCA) between:
 - a) K^{-} & π^{+} DCA₁₂
 - b) π^+ & PV DCA $_{\pi}$
 - c) K- & PV DCA_K
 - d) D^0 & PV DCA_{D0}
- $\rightarrow \theta$ angle between \vec{P} & decay length

D⁰ invariant mass & signal purity

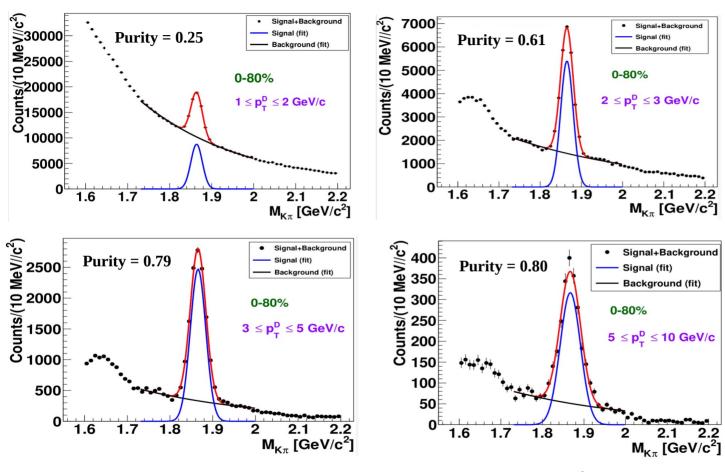
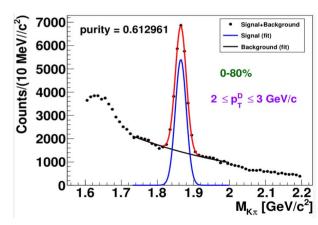



Figure 7: p_T dependence of $K\pi$ invariant mass distribution and D^0 signal purity

- Unlike-sign (K⁻π⁺) pairs from SE construct 'signal'
- Like-sign (K⁻π⁻ and K⁺π⁺) pairs from SE and unlike-sign Kπ pairs from ME represent 'background'
- → Invariant mass range for D⁰ signal: 1.82 1.91 GeV/c²
- → D⁰ signal and background are fitted with respectively Gaussian and exponential function
- \rightarrow D⁰ purity: Signal $\overline{(Signal + Background)}$
- → Higher D⁰ signal purity with increasing p_T bin

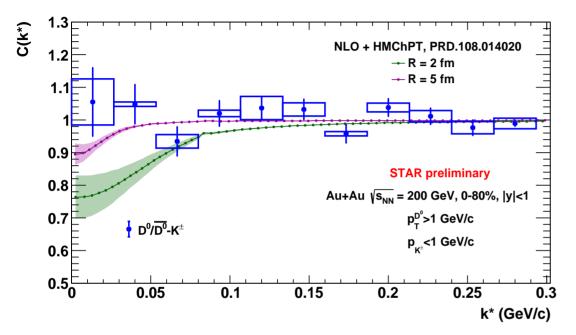
Correction of raw correlation function

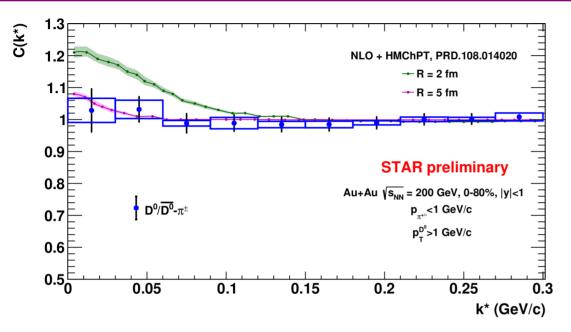
- → Correlation function $C(k^*)$ for D^0/\overline{D}^0 $h^{+/-}$ pairs: $C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{R(\vec{k}^*)}$.
 - $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distribution for correlated and uncorrelated pairs; $\mathcal{N} \rightarrow$ normalization factor
- → Pair-purity corrected correlation function: $C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) 1}{\text{PairPurity}} + 1$, (4) where PairPurity = **D**⁰ **purity** * **hadron purity**
- \rightarrow $C_{\text{measured}}(k^*)$ is the raw correlation function calculated using Eq. (3)
- → D⁰-hadron pair purity correction is required to remove the contribution from combinatorial background (Do candidates reconstructed from like-sign $K\pi$ pairs within selected mass range)

Correction of raw correlation function

- → Correlation function $C(k^*)$ for D^0/\overline{D}^0 $h^{+/-}$ pairs: $C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{B(\vec{k}^*)}$. (3)
 - $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distribution for correlated and uncorrelated pairs; $\mathcal{N} \rightarrow$ normalization factor
- → Pair-purity corrected correlation function: $C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) 1}{\text{PairPurity}} + 1$, (4) where PairPurity = \mathbf{D}^0 purity * hadron purity
- \rightarrow $C_{\text{measured}}(k^*)$ is the raw correlation function calculated using Eq. (3)
- → D⁰-hadron pair purity correction is required to remove the contribution from combinatorial background (D⁰ candidates reconstructed from like-sign $K\pi$ pairs within selected mass range)
- → Average D⁰ purity ~ 37%, 1 GeV/c $< p_T < 10$ GeV/c
- → Kaon purity ~ $(97 \pm 3 \text{ (syst.)})\%$, $p_K < 1 \text{ GeV/c}$
- → Pion purity ~ $(99.5 \pm 0.5 \text{ (syst.)})\%$, $p_{\pi} < 1 \text{ GeV/c}$
- → Proton purity ~ $(99.5 \pm 0.5 \text{ (syst.)})\%$, p_p < 1.2 GeV/c

Results: $D^0/\overline{D}^0-K^{+/-}$ correlation




Figure 8: $C(k^*)$ for D^0 -K pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of $C(k^*)$ for D^0 -K channel using source radii of 2 fm and 5 fm respectively

- → $C(k^*)$ measured for D^0 - K^+ , D^0 - K^- , \overline{D}^0 - K^+ and \overline{D}^0 - K^- with kaon momentum < 1 GeV/c and $D^0 p_T > 1 \text{ GeV/c}$
- → Theory predictions are estimated for D⁰-K⁺ channel using next-to-leading order (NLO) Heavy Meson Chiral Perturbation Theory (HMChPT) scheme
- → Resonance effect of D_{S0}* (2317)[±] (DK bound state) is NOT visible due to large source size or large experimental uncertainties

NLO + HMChPT: M. Albaladejo et al., Phys. Rev. D 108, 014020

→ STAR data shows no significant correlations, but the data is also consistent with theoretical model predictions with emission source size of 5 fm or larger

Results: $D^0/D^0-\pi^{+/-}$ correlation

- → C(k*) calculated for D⁰-π⁺, D⁰-π⁻, \overline{D}^0 π⁺ and \overline{D}^0 -π⁻ with π momentum < 1
 GeV/c and D⁰ p_T > 1 GeV/c
- → Theory calculations consist of D⁰-π⁺ and D⁺-π⁰ channels using next-to-leading order (NLO) Heavy Meson Chiral Perturbation Theory (HMChPT) scheme

NLO + HMChPT: M. Albaladejo et al., Phys. Rev. D 108, 014020

Figure 9: $C(k^*)$ for D^0 - π pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of $C(k^*)$ for D- π channel using source radii of 2 fm and 5 fm respectively

→ We do not observe significant correlations, but STAR data is consistent with theoretical model predictions with emission source size of 5 fm or larger

Results: $D^0/\overline{D}^0-p^{+/-}$ correlation

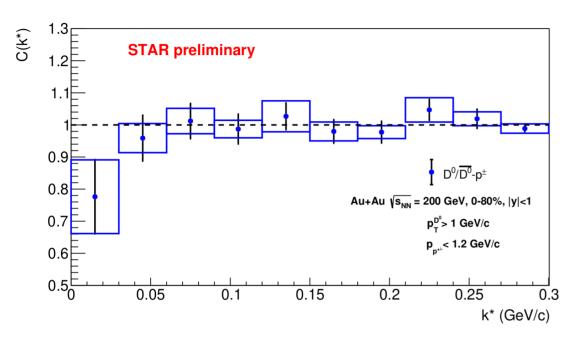
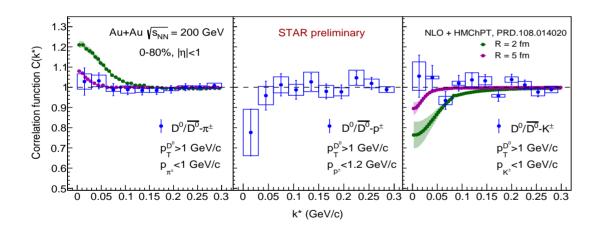


Figure 10: C(k*) for D⁰-p pairs with systematic uncertainties (blue brackets)


- → $C(k^*)$ contains D^0-p^+ , D^0-p^- , \overline{D}^0-p^+ and \overline{D}^0-p^- with proton momentum < 1.2 GeV/c and $D^0p_T > 1$ GeV/c
- → No theory prediction available

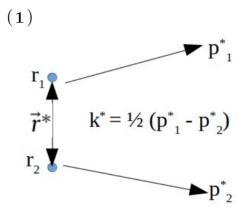
- → We do not observe significant correlations between D⁰-p pairs
- → Suggesting large emission source size

Summary & future plans

- → D-meson femtoscopy is applicable to probe the interaction behavior of charmed hadron and the phase space geometry of emission source
- → Correlation studies between D⁰ and charged hadrons, provide consistent results with no significant correlation and large emission source size (~ 5 fm or larger)

Even though current statistical precision is not sufficient to make decisive conclusions but good prospects for improving precision of the measurement

→ Theoretical inputs are required to connect the observed correlation functions and interaction parameters of charm and light quarks before hadronization


Femtoscopic correlation

- → Femtoscopic correlations are observed between pair of particles with low relative momentum
- Correlations are measured as a function of the reduced momentum difference (k*) of the pair of particles in rest frame

$$C(\vec{k}^*) = \int S(\vec{r}^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3r^*,$$

where, $S(\vec{r}^*) \rightarrow$ source emission function $\vec{r}^* \rightarrow$ relative separation vector $\Psi(\vec{k}^*, \vec{r}^*) \rightarrow$ pair wave function

- Femtoscopic Correlation → QS + FSI
 - Quantum Statistics [QS]: Bose-Einstein / Fermi-Dirac
 - Final-State-Interaction [FSI]: Strong & Coulomb interaction
 - ightharpoonup Only strong interaction contributes to $D^0/\overline{D^0}$ -h[±] femtoscopy

Femtoscopic correlation & k*

Freeze-out dynamics

→ Properties of nuclear medium

Example – source size measured at RHIC with Kaons compatible with model calculations employing hydrodynamics

→ Local thermal equilibrium

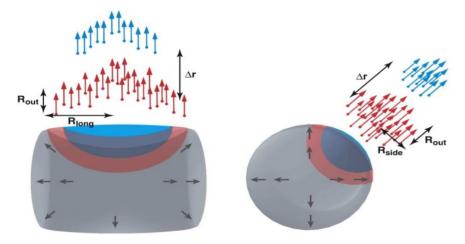


Figure 6: Emission source phase-space

M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 2005.55:357-402

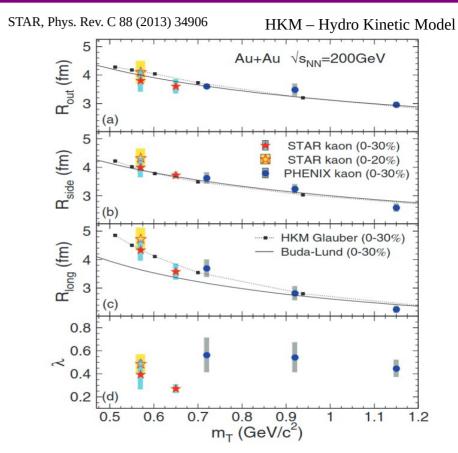


Figure: m_T dependence of 3-D source size using Kaon femtoscopy

Theory prediction of CF for $D\pi$ channels

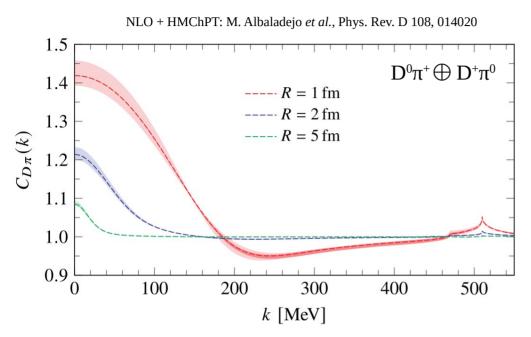


Figure: Correlation functions for $D\pi$ channels predicted for R=1, 2 and 5 fm sources represented by red, blue and green dashed lines respectively. Corresponding bands show uncertainties with 68% CL

→ Interaction in I = 3/2 sector ($D^0\pi^-$) is weaker and repulsive

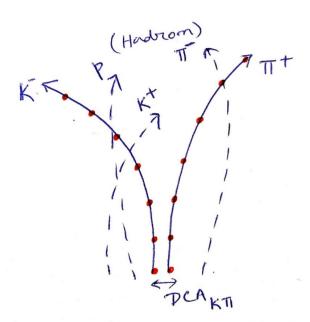
• Isospin combinations for $D\pi$ channels

$$egin{align} C_{D^+\pi^0} &= rac{2}{3}\,C_{3/2}^{D\pi} + rac{1}{3}\,C_{1/2}^{D\pi}, \ & \ C_{D^0\pi^+} &= rac{1}{3}\,C_{3/2}^{D\pi} + rac{2}{3}\,C_{1/2}^{D\pi}, \ & \ C_{D^0\pi^-} &= C_{3/2}^{D\pi}, \ \end{pmatrix}$$

- → Predicted CF for $D^0\pi^+$ and $D^+\pi^0$ channels considered only $I = \frac{1}{2}$ state
- → Depletion at $k \sim 215$ MeV for R = 1 fm source, produce due to presence of the lightest D_0^* state $[D_0^*(2135)]$
- → For R = 2 fm and 5 fm sources, the minimum is present but diluted

Correction of detector effects

1. Self correlation: Possible correlation between D^0 candidates and their daughters were removed


Hadron (chosen for pairing with D^0) track id \neq Track id of D^0 (π^+K^-)

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k^* . This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_D^0 - \pi$ and $K_D^0 - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied following condition.

No. of hit points / Max no. of hit points > 0.51

Possible detector effects

3. Track merging:

Merging of tracks inside TPC

Approach 1:

- $\delta r(i)$ < mean TPC distance separation \rightarrow 'merged' hits
- \rightarrow δ r(i) distance between TPC hits of two tracks
- → Pair of tracks with fraction of merged hits > 5% were removed as 'merged tracks'
- → The technique was adopted from HBT approachApproach 2:
- ⇒ $\delta r(i) < threshold → 'merged' hits$
 - Approach 3:
- **SE/ME of \Delta \eta vs \Delta \phi distribution** → no dip around 0 → negligible effect of merged tracks
- With variation of merging cuts → Negligible effect on correlation value, no correction applied

Selection criteria

Event cuts

- $|V_{z}| < 6.0$ cm.
- $|V_z V_z^{VPD}| < 3.0 \text{ cm}.$
- $|V_{y}| > 1.0e^{-5}$ cm.
- $|V_v| > 1.0e^{-5}$ cm.
- $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$

Track cuts

- $p_T > 0.5 \text{ GeV/c}$
- |dca| > 0.0050 cm.
- nHitsFit >= 20
- $|\eta| <=1.0$

PID cuts for π , K & p

- $|n\sigma_{\pi}| < 3.0$
- $|n\sigma_K| < 2.0$
- $|n\sigma_p| < 2.0$
- $\left| \frac{1}{\beta} \frac{1}{\beta_n} \right| < 0.03$
- $\left|\frac{1}{\beta} \frac{1}{\beta_{\kappa}}\right| < 0.03$
- $\left| \frac{1}{\beta} \frac{1}{\beta_{p}} \right| < 0.03$
- $\frac{nHitsFit}{nHitsFitMax} > 0.51$