

Demystifying the interior of neutron stars with femtoscopy at ALICE

Marcel Lesch on behalf of the ALICE Collaboration

Technical University of Munich

08th of November 2024 WPCF 2024, Toulouse France

- Final product of supernova explosions
- Very compact objects:
 - M ≈ 1-2 M_☉
 - R ≈ 10–15 km (~ size of Toulouse area!)

- Final product of supernova explosions
- Very compact objects:
 - M ≈ 1−2 M_☉
 - R ≈ 10–15 km (~ size of Toulouse area!)
- Very dense and rather cold objects:
 - extreme densities of several ρ_0
 - $T_{max} \sim few MeV$

• EoS dependent on the particle composition and the possible interactions between them

- EoS linked to masses and radii of neutron stars via TOV equations
- Pure neutron matter (PNM) supports heavy neutron stars of $\rm 2M_{\odot}$

Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

Neutron stars and the hyperon puzzle

• High baryonic densities allow for the existence of strange particles, e.g. Λ hyperons

High baryonic densities allow for the existence

Neutron stars and the hyperon puzzle

- of strange particles, e.g. Λ hyperons
- However: EoS softens with appearance of Λ hyperons
 - \rightarrow cannot support heavy neutron stars

Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

ALICE

Neutron stars and the hyperon puzzle

- High baryonic densities allow for the existence of strange particles, e.g. Λ hyperons
- However: EoS softens with appearance of Λ hyperons
 - \rightarrow cannot support heavy neutron stars
- Three-body interactions such as ΛNN play an important role

Adapted from D. Lonardoni et al., PRL 114, 092301 (2015)

Two-body femtoscopy

ALICE

L. Fabbietti and V. Mantovani Sarti and O. Vazquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377-402

Two-body femtoscopy

L. Fabbietti and V. Mantovani Sarti and O. Vazquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377-402

Two-body femtoscopy

L. Fabbietti and V. Mantovani Sarti and O. Vazquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377-402

- Source modelling involves
 - core source of primordial particles (Gaussian)
 - contributions from short-lived resonances

$$S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \otimes (\text{Resonance contributions})$$

ALICE, PLB 811 135849, 2020

- Source modelling involves
 - core source of primordial particles (Gaussian)
 - contributions from short-lived resonances

 $S(r) = \frac{1}{(4\pi r_{core}^2)^{3/2}} \exp\left(-\frac{r^2}{4r_{core}^2}\right) \otimes (\text{Resonance contributions})$

ALICE, PLB 811 135849, 2020

- Resonance contributions
 - dependent on the particle species
 - fixed from statistical hadronization model and EPOS
- Particle-emitting source can be studied using particle pairs with known interaction

A common baryon hadron source in pp collisions!

- Particle-emitting source studied with
 - pp ALICE, PLB 811 135849, 2020
 - pK⁺ ALICE, <u>arXiv:2311.14527</u>
 - π[±]π[±] ALICE, <u>arXiv:2311.14527</u>
 - $p\pi^{\pm}$ (paper in preparation)
- Common source for all hadrons in highmultiplicity pp collisions!
- Source scaling allows to extract the source size of particle pairs with unknown interaction
- \rightarrow Possibility to study interaction for exotic pairs (strange and charm sector)

Source studies in LHC Run 3 pp collisions

- Particle-emitting source studied with ALICE in LHC Run 3 MB pp collisions
- First ever multi-differential studies of the source using pp correlations
 - dependent on the pair $m_{\rm T}$
 - dependent on the multiplicity
- Paper in preparation

- CECA source model, D. Mihaylov (04th of November 11:10)
- Source in Run 3 Pb–Pb collisions with ALICE, G. Romanenko (04th of November 12:00)

- Scattering data limited to relative momenta above 40 MeV
- ΣN coupling not visible in scattering data
- χEFT NLO13 and NLO19 can both describe the available scattering data

NLO13: J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) NLO19: J.Haidenbauer, U. Meiβner, Eur.Phys.J.A 56 (2020)

$p\Lambda$ scattering data

- Scattering data limited to relative momenta above 40 MeV
- ΣN coupling not visible in scattering data
- χEFT NLO13 and NLO19 can both describe the available scattering data
- ΣN coupling drives the behaviour of Λ at finite density
 → important for the EoS of NS

NLO13: J.Haidenbauer, N.Kaiser et al., NPA 915, 24 (2013) NLO19: J.Haidenbauer, U. Meiβner, Eur.Phys.J.A 56 (2020)

$p\Lambda$ results before and after femtoscopy

$p\Lambda$ results with femtoscopy

ALICE, PLB 833 (2022), 137272

$p\Lambda$ results with femtoscopy

- New insights into $\Lambda N \Sigma N$ dynamics
- NLO19 potentials favoured:
 - \rightarrow weaker $\Lambda N \Sigma N$ coupling
 - \rightarrow significant attraction of Λ at high densities
 - \rightarrow large Λ NN three-body repulsion needed

Constraints on χ_{eft} -models

• Femtoscopic data by ALICE constrains the allowed phase-space of scattering lengths in triplet and singlet states! D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550

Constraints on χ_{eft} -models

• Femtoscopic data by ALICE constrains the allowed phase-space of scattering lengths in triplet and singlet states! D. Mihaylov, J. Haidenbauer and V. Mantovani Sarti, PLB 850 (2024) 138550

Constraining the Λ in-medium behaviour

- Evaluation of the in-medium single-particle potential U_Λ based on two-body interaction only
 → results in -36.3 ± 1.3(stat.)^{+2.5}_{-6.2}(syst.)MeV
- More bound than the semi-empirical value of $U_\Lambda \approx -30 \; \text{MeV} \; \text{from hypernuclei studies}$

 \rightarrow Repulsive three-body ANN interaction needed!

Just one of many

Accessing three-body interactions

Study of hadron-deuteron interactions

- Performed by ALICE with the study of K-d and p-d system
- Recently published in PRX 14 (2024) 031051

More on hadron-deuteron systems: Talk by B. Singh, 06th of November 13:55

Accessing three-body interactions

 p_1

 p_2

 p_3

Study of hadron-deuteron interactions

- Performed by ALICE with the study of K-d and p-d system
- Recently published in PRX 14 (2024) 031051

More on hadron-deuteron systems: Talk by B. Singh, 06th of November 13:55

Study correlations among three unbound hadrons

Use Lorentz-invariant hyper-momentum Q₃

$$Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{13}^2}$$

 Accessible in the experiment

 $C(Q_3) = \mathcal{N} \frac{N_{\text{same}}(Q_3)}{N_{\text{mixed}}(Q_3)}$

and in the theory:

 $C(Q_3) = \int S(\rho) |\Psi(Q_3, \rho)|^2 \rho^5 d\rho$ A. Kievsky, et al., Phys.Rev.C 109 (2024) 3, 034006

Accessing $3 \rightarrow 3$ scattering processes!

First experimental study of ppp and $pp\Lambda$

Theoretical studies on $pp\Lambda$

- Three-particle emission source modelled as three single-particle emitters constrained to data
- Modelling includes experimental corrections (e.g. feed-down)
- Gauss NLO19 (600): 40% effect of three-body interactions
- Most interesting region $Q_3 < 100 \text{ MeV}$ not yet accessed by data

The future of experimental $pp\Lambda$ Data

What to take home

- Neutron Stars as a laboratory for nuclear matter at extreme conditions
- ALICE delivers a wide range of experimental results accessing
 - hadron-emitting source
 - exotic two-body interactions
 - three-body hadronic interactions
- ALICE femtoscopy data as an important input and constraint for theoretical models

What to take home

- Neutron Stars as a laboratory for nuclear matter at extreme conditions
- ALICE delivers a wide range of experimental results accessing
 - hadron-emitting source
 - exotic two-body interactions
 - three-body hadronic interactions
- ALICE femtoscopy data as an important input and constraint for theoretical models

THANK YOU! 34

Backup

marcel.lesch@tum.de, WPCF 2024, 08.11.2024
ALICE - A Large Ion Collider Experiment

- pp at \sqrt{s} = 13 TeV
- 10⁹ high-multiplicity (HM) events (Run 2)
- Direct detection of charged particles (protons, kaons, pions, deuterons)
- Very good PID capabilities of the detector resulting in very pure samples (protons ~ 98%, pions 99%)

Neutron Stars

- EoS dependent on the particle composition and the possible interactions between them
- EoS linked to masses and radii of neutron stars via TOV equations

Neutron Stars and the Hyperon Puzzle

- Chemical potential $\mu = m + Fermi energy$
- Fermi energy increases with density
 - $\rightarrow \mu_n = \mu_{\Lambda}$: conversion into baryons with strangeness (hyperons)

- Situation more complex: Appearance of multiple hyperon species possible, also Ξ and Σ
- Modelling of hyperons at large densities depends on hyperon-nucleon interactions
 → constrain from experimental data needed

The $p\Sigma^0$ Interaction

- Reconstruction of Σ^0 via decay to $\Lambda + \gamma$
- $p\Sigma^0$ compatible to the baseline
- $p\Sigma^0$ femtoscopy already possible in Run 2
 - → stay tuned for data of Run 3 for higher statistics!

The "strangest" System: $p\Xi^-$

- Reconstruction of Ξ^- via decay to $\Lambda + \pi^-$
- Coulomb interaction only cannot describe the data
 - \rightarrow attractive strong interaction needed
- Lattice QCD calculations for pΞ⁻ by HAL QCD collaboration HAL QCD, Nucl.Phys.A 998 (2020) 121737
- One of the first direct tests of Lattice QCD

ALI-PUB-483401

Single Particle Potential of Ξ^-

- HAL QCD potential of $p\Xi^-$ tested/verified with femtoscopic data
- Extraction of single-particle potential U_Ξ by HAL QCD Collaboration
 → predictions in PNM:
 - $U_{\Xi} \sim + 6 \text{ MeV}$ HAL QCD Coll., PoS INPC2016 (2016) 277
 - \rightarrow stiffening of the EoS

Updating the EoS

Two-body interaction **LICE** pp $\sqrt{s} = 13$ TeV Š ah-mult. (0-0.17% INEL>0 • $p - \Lambda \oplus \overline{p} - \overline{\Lambda}$ pair Fit NI O19 (600) Residual p-Σ⁰: χEFT Besidual n–∓[−] ⊕ n–∓⁽ Cubic baselir (* 1.06 (* 1.04 (* 1.04 Š 1 ALICE pp √s = 13 TeV High-mult. (0-0.072% INEL>0) $\circ p - \Sigma^0 \oplus \overline{p} - \overline{\Sigma^0}$ - χEFT (NLO) - ESC16

Mass vs Radius relation for hyperon stars

Source in pp Collisions

- Nuclear force with short range of a few fm
- Emission of particle pairs in pp collisions at close distances

 \rightarrow Ideal for studying the short-ranged strong interaction

Two-particle correlation function of $p\pi^+$

Fitting of data of $p\pi^+$

$$C_{\text{total}} = \mathcal{N} \times C_{\text{bckg}} \times \left[\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}})\right] + \left[N_{\Delta} P S(p_{\text{T}}, T) \times Sill(M_{\Delta}, \Gamma_{\Delta})\right]$$

Fitting of data of $p\pi^+$

$$C_{\text{total}} = \mathcal{N} \times C_{\text{bckg}} \times \left[\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}})\right] + \left[N_{\Delta} P S(p_{\text{T}}, T) \times Sill(M_{\Delta}, \Gamma_{\Delta})\right]$$

Background contribution

• Correlated background due to "mini-jet" contribution from hadronization process

Background contribution

- Correlated background due to "mini-jet" contribution from hadronization process
- Background modelled with MC simulations using Pythia:
 - Obtain MC correlation function for pairs with common and non-common partonic origin (ancestors) separately
 - Use common $C_{\rm c}$ and non-common $C_{\rm nc}$ as templates to build the background
 - $C_{\text{bckg}} = \mathcal{N} \times [w_c C_c + (1 w_c) C_{\text{nc}}]$

Fitting of data of $p\pi^+$

$$C_{\text{total}} = \mathcal{N} \times C_{\text{bckg}} \times \left[\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}}) \right] + \left[N_{\Delta} P S(p_{\text{T}}, T) \times Sill(M_{\Delta}, \Gamma_{\Delta}) \right]$$

• Background C_{bckg} via MC templates, controlled by w_c

Fitting of data of $p\pi^+$

 $C_{\text{total}} = \mathcal{N} \times C_{\text{bckg}} \times [\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}})] + N_{\Delta} PS(p_T, T) \times Sill(M_{\Delta}, \Gamma_{\Delta})$

- Background C_{bckg} via MC templates, controlled by w_c
- Interaction C₀(r_{core}) Coulomb + strong interaction (fixed from scattering lengths)

M. Hoferichter et al., Phys.Rept. 625 (2016) 1–88 M. Hennebach et al., EPJA 50 (2014) 12, 190 M. Hoferichter et al., Phys.Rept. 625 (2016) 1-88.

	$p\pi^+$	pπ ⁻
Scattering Length	-0.125 fm	0.121 fm

Fitting of Data $p\pi^+$

 $C_{\text{total}} = \mathcal{N} \times C_{\text{bckg}} \times [\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}})] + N_{\Delta} PS(p_{\text{T}}, T) \times Sill(M_{\Delta}, \Gamma_{\Delta})$

- Background C_{bckg} via MC templates, controlled by w_c
- Interaction C₀(r_{core}) Coulomb + strong interaction (fixed from scattering lengths)

M. Hoferichter et al., Phys.Rept. 625 (2016) 1–88 M. Hennebach et al., EPJA 50 (2014) 12, 190

• Resonance description: Sill distribution $Sill(M_{\Delta}, \Gamma_{\Delta})$, M_{Δ} fixed to 1215 MeV

F. Giacosa et al., EPJA 57 (2021) 12

• $PS(p_T, T)$ phase-space factor

$$PS(p_{\mathrm{T}},T) \propto \frac{m}{\sqrt{m^2 + p_{\mathrm{T}}^2}} \times \exp\left(-\frac{\sqrt{m^2 + p_{\mathrm{T}}^2}}{T}\right)$$

• Fit between between 0 and 450 MeV in k*

Fitting of the $p\pi^+$ correlation function

 Fit procedure repeated for different pair transverse mass ranges

•
$$m_{\rm T} = \sqrt{\overline{m}^2 + k_{\rm T}^2}$$
 and
 $\vec{k}_{\rm T} = \frac{1}{2} [\vec{p}_{\rm T,1} + \vec{p}_{\rm T,2}]$

Core radius scaling $p\pi^+$

- *r*_{core}: size of emission source of **primordial** particles
- r_{core} of pπ⁺ follows common scaling of pp, pK⁺, π[±]π[±] in pp collisions

ALICE, PLB, 811:135849, 2020 ALICE, <u>arXiv:2311.14527</u>, EPJC in press

→ Common emission source for all hadrons

Fitting of data $p\pi^+$

 $C_{\text{total}} = \mathcal{N} \times C_{\text{bckg}} \times [\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}})] + N_{\Delta} PS(p_{\text{T}}, T) \times Sill(M_{\Delta}, \Gamma_{\Delta})$

- Background C_{bckg} via MC templates, controlled by w_c
- Interaction C₀(r_{core}) Coulomb + strong interaction (fixed from scattering lengths)

M. Hoferichter et al, Phys.Rept. 625 (2016) 1-88 M. Hennebach et al, Eur.Phys.J.A 50 (2014) 12, 190

Sill distribution Sill(M_Δ, Γ_Δ), M_Δ fixed to 1215 MeV
 F. Giacosa et al, Eur.Phys.J.A 57 (2021) 12

• $PS(p_T, T)$ phase-space factor

$$PS(p_{\mathrm{T}},T) \propto \frac{m}{\sqrt{m^2 + p_{\mathrm{T}}^2}} \times \exp\left(-\frac{\sqrt{m^2 + p_{\mathrm{T}}^2}}{T}\right)$$

Fit between between 0 and 450 MeV in k*

- Overall normalisation N
- W_{c}
- r_{core}
- Scaling of $\Delta^{++} N_{\Delta}$
- T (kinetic decoupling temp.)
- Width of Δ^{++}

About the life of the Δ^{++}

About the life of the Δ^{++}

Rescattering of the Δ^{++}

- Paper: Tom Reichert, Marcus Bleicher, <u>Nucl.Phys.A 1028 (2022) 122544</u>
- Study of kinetic mass shifts of $\rho(770)$ and K*(892) in Au+Au reactions at E_{beam} = 1.23 AGeV with UrQMD
- Fitting of Data with PS x BW
- However: Temperature not fixed to chemical freezout but free parameter

Rescattering of the Δ^{++}

- Paper: Tom Reichert, Marcus Bleicher, <u>Nucl.Phys.A 1028 (2022) 122544</u>
- Study of kinetic mass shifts of $\rho(770)$ and K*(892) in Au+Au reactions at E_{beam} = 1.23 AGeV with UrQMD
- Fitting of Data with PS x BW
- However: Temperature not fixed to chemical freezout but free parameter ("Kinetic Decoupling Temperature")
 - \rightarrow good agreement between UrQMD and fit

About the life of the Δ^{++}

Kinetic decoupling temperature Δ^{++}

• Low "decoupling temperature" of about 25 MeV

ALICE

67

Kinetic decoupling temperature Δ^{++}

- Low "decoupling temperature" of about 25 MeV
- This does not mean that pp collisions are cold! (NeV) $^{\rm (2E21)}_{\rm V^{+V}}$

Kinetic decoupling temperature Δ^{++}

- Low "decoupling temperature" of about 25 MeV
- This does not mean that pp collisions are cold!
- We see a modification of the phase space of resonance due to regeneration phase $\Delta \leftrightarrow N\pi$
- \rightarrow hadronic moshpit for the Δ^{++}

Width & kinetic decoupling temperature Δ^{++}

- Width constant ~ 90 MeV
- Low "decoupling temperature" \rightarrow modification of the phase space of resonance

Fitting of data $p\pi^-$

 $C_{\text{total}} = N \times C_{\text{bckg}} \times [\lambda_{\text{Gen}} C_0 + (1 - \lambda_{\text{Gen}})] + N_{\Delta} PS(p_{\text{T}}, T) \times Sill(M_{\Delta}, \Gamma_{\Delta}) + N_{\Lambda} Gaus(M_{\Lambda}, \Gamma_{\Lambda})$

- Background $C_{bckg} = [1 + N_B(w_cC_c + (1 w_c)C_{NC} 1) + Sill(M_2, \Gamma_2) + Sill(M_3, \Gamma_3)]$
- Interaction C₀ Coulomb + strong interaction (fixed from scattering lengths)

M. Hoferichter et al, Phys.Rept. 625 (2016) 1-88. M. Hennebach et al, Eur.Phys.J.A 50 (2014) 12, 190

• $Sill(M_{\Delta}, \Gamma_{\Delta})$ Sill distribution, M_{Δ} fixed to 1215 MeV

F. Giacosa et al, Eur.Phys.J.A 57 (2021) 12

• $PS(p_T, T)$ phase-space factor

$$PS(p_{\rm T},T) \propto \frac{m}{\sqrt{m^2 + p_{\rm T}^2}} \times \exp\left(-\frac{\sqrt{m^2 + p_{\rm T}^2}}{T}\right)$$

Fit between between 0 and 450 MeV in k*

Free Parameters of the fit:

- Overall normalisation
- $w_c \& N_B$
- r_{core}
- Scaling of $\Delta^0 N_\Delta$
- T (kinetic decoupling temp.)
- Width of Δ^0
- Scaling of Λ N_{Λ}
- Mass of Λ
- Width of Λ

$p\pi^{-}$ - m_{T} interval 2

marcel.lesch@tum.de, WPCF 2024, 08.11.2024

73

$p\pi^{-}$ - m_{T} interval 5

$p\pi^{-}$ - m_{T} interval 6

Backup Three-Body

Other Three-Body Studies

First theoretical results on ppp

- Three-particle emission source modelled as three-single particle emitters constrained to data
- Shape qualitatively describes the data
- Considered effects:
 - pp strong interaction (AV18)
 - Coulomb
 - Pauli-Blocking on three-particle level
 - No three-body forces

The future of ppp studies

Other Three-Body Studies

Neutron Stars and QCD Axions

Impact of axion on the EoS
 → Can lead to stiffer EoS

Reuven Balkin et al, *J. High Energ. Phys.* 2020, 221 (2020) Reuven Balkin et al, arXiv 2307.14418

- Impact of axion on the EoS
 → Can lead to stiffer EoS
- Axion properties linked to in-medium properties of pion

Reuven Balkin et al, *J. High Energ. Phys.* 2020, 221 (2020) Reuven Balkin et al, arXiv 2307.14418

Neutron Stars and QCD Axions

- Impact of axion on the EoS
 → Can lead to stiffer EoS
- Axion properties linked to in-medium properties of pion

Reuven Balkin et al, *J. High Energ. Phys.* 2020, 221 (2020) Reuven Balkin et al, arXiv 2307.14418

Goal: Study of $pp\pi^{\pm}$ interactions using femtoscopy in small colliding systems

 \rightarrow Access dynamics of pions with few nucleons

 p_2

 p_3

π

 $r \sim 1 - 2 \text{ fm}$

On todays Menu

- Sourcing of a scalar reduces the nucleon mass and provides an additional energy density and pressure source
- Neutron stars in the new ground st can be significantly heav- ier than QCD equations of state currently predict

 \mathcal{E}

Three-Body Femtoscopy

- Pair relative momentum not applicable in three-body system
 - \rightarrow Use Lorentz-invariant hyper-momentum Q_3

Three-Body Femtoscopy

• Pair relative momentum not applicable in three-body system \rightarrow Use Lorentz-invariant hyper-momentum Q_3

$$Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{13}^2}$$

• Three-particle correlation functions: $3 \rightarrow 3$ scattering processes

 $\overline{p_1}$

 p_2

 $\overline{p_3}$

Three-Body Femtoscopy

• Pair relative momentum not applicable in three-body system \rightarrow Use Lorentz-invariant hyper-momentum Q_3

$$Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{13}^2}$$

• Three-particle correlation functions: $3 \rightarrow 3$ scattering processes

- Challenge of isolating three-body effects
 - \rightarrow Effects of two-body and potential three-body interactions in the system

 p_1

 p_2

 p_3

Smoking Guns of Three-Body Interactions

• Kubo cumulant decomposition:

R. Kubo, Journal of the Physical Society of Japan 17 no. 7, (1962) 1100–1120

ALICE

Smoking Guns of Three-Body Interactions

• Kubo cumulant decomposition:

R. Kubo, Journal of the Physical Society of Japan 17 no. 7, (1962) 1100–1120

 Lower-order contributions estimated in a data-driven way using the same and mixed events distributions

ALICE

Three-particle correlation function of $pp\pi^+$

- Overall attractive effects in triplet correlation function
- Signal consisting of two-body and potential three-body effects

Two-particle contributions of $pp\pi^+$

Two-body contributions of $pp\pi^+$

ALI-PREL-576383

Three-body effects in $pp\pi^{\pm}$

98

Three-body effects in $pp\pi^{\pm}$

- In both cases cumulant compatible with zero for large Q_3 \rightarrow No three-body effects
- Three-body effects for small $Q_3 < 200 \text{ MeV/}c$
 - Repulsion for $pp\pi^+$
 - Attraction for $pp\pi^-$

Three-Body Effects in $pp\pi^{\pm}$

• Statistical significance:

Q_3 range in GeV	n_{σ} for	
	$pp\pi^+$	$pp\pi^-$
0.04 - 0.16	1.84	2.83
0.16 - 0.68	3.23	8.34
0.04 - 0.68	3.46	8.64

 In both cases cumulant compatible with zero for large Q₃
 → no three-body effects

