

LÉVY-STABLE SOURCES FROM SPS THROUGH RHIC TO LHC

MÁTÉ CSANÁD (FOR THE EÖTVÖS UNIVERSITY GROUP) WPCF 2024, TOULOUSE NOVEMBER 4, 2024

WPCF 2024

welcomes you in Toulouse France

OVERVIEW OF LÉVY FEMTOSCOPY RESULTS AT WPCF

Measurements

- Monday 15:25: Sándör Lökös, Centrality dependence of Lévy-stable two-pion correlations at PHENIX
- Tuesday 17:00: Sneha Bhosale, 3D measurements of pion HBT correlations at STAR
- Tuesday 17:25: Barnabás Pórfy, Energy scan results with Lévy type femtoscopy at NA61/SHINE

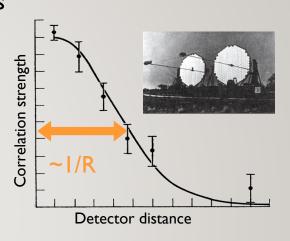
Simulations

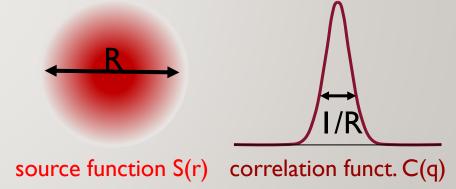
- Wednesday 16:20: Dániel Kincses, Lévy walk of pions in heavy-ion collisions
- Wednesday 16:35: Emese Árpási, 3D source sizes and shapes of hadron emission in EPOS
- Wednesday 17:15: László Kovács, Event-by-event two-kaon source function with EPOS

Phenomenology

- Tuesday 17:40: Márton Nagy, Coulomb and strong final state interactions with Lévy sources
- Monday I I:35: Máté Csanád, this talk ©

HBT OR FEMTOSCOPY IN HIGH ENERGY PHYSICS

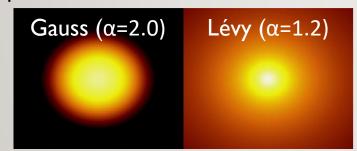

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
 - Intensity correlations vs detector distance ⇒ source size
 - Measure the sizes of apparently point-like sources!
- Goldhaber et al: applicable in high energy physics
- Understanding: Glauber, Fano, Baym, ...
 Phys. Rev. Lett. 10, 84; Rev. Mod. Phys. 78 1267, ...
 - Momentum correlation C(q) related to source S(r)

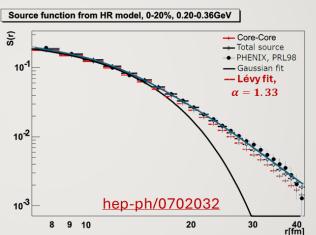

$$C(q) \cong 1 + \left| \int S(r)e^{iqr}dr \right|^2$$
 (under some assumptions)

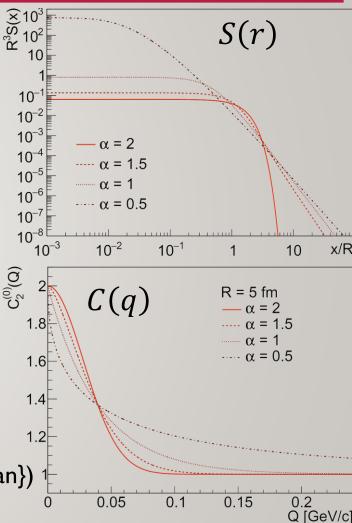
• Also with distance distribution D(r):

$$C(q) \cong 1 + \int D(r)e^{iqr}dr$$

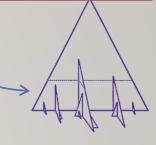
- Neglected: pair reconstruction, final state interactions, multi-particle correlations, coherence, ...
- What is the source shape? Can be explored via femtoscopy

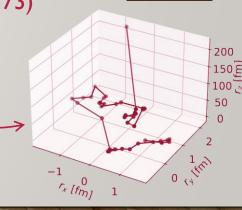



LEVYWALK MODELS RIEIII


LÉVY DISTRIBUTIONS IN HEAVY ION PHYSICS

- Central limit theorem (diffusion) and thermodynamics lead to Gaussians
- Measurements suggest phenomena beyond Gaussian distribution
- Lévy-stable distribution: $\mathcal{L}(\alpha, R; r) = \frac{1}{2\pi} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - From generalized central limit theorem
 - Power-law tail $\sim r^{-1-\alpha}$
 - Special cases: $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy


- Shape of the correlation functions with Lévy source:
 - $C_2(q)=1+\lambda\cdot e^{-|qR|^{lpha}}; \alpha=2$: Gaussian; $\alpha=1$: exponential Csörgő, Hegyi, Zajc, Eur.Phys.J. C36 (2004) 67-78
- Sidenote: Lévy-stable \neq not Gaussian (but {Lévy-stable, $\alpha < 2$ } \subset {not Gaussian})
- A possible reason for Lévy source: Lévy flight or Lévy walk

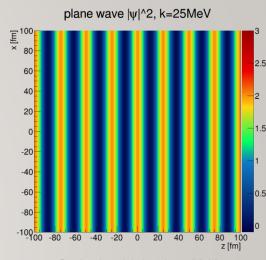


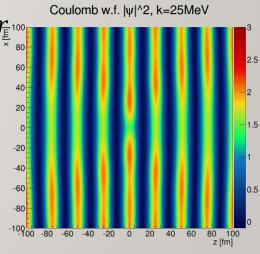
WHY DO LÉVY SHAPES APPEAR, WHY IS IT IMPORTANT?

- A more comprehensive list of possible reasons:
 - Jet fragmentation (Csörgő, Hegyi, Novák, Zajc, Acta Phys. Polon. B36 (2005) 329-337)
 - See also talk by Yacine Mehtar-Tani at ExploreQGP workshop in Belgrade, 2023
 - Important in e^+e^- and other small systems
 - Critical phenomena (Csörgő, Hegyi, Novák, Zajc, AIP Conf. Proc. 828 (2006) no. 1, 525-532)
 - Important in the 3-30 GeV region?
 - Directional or event averaging, non-sphericality (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)
 - Ruled out by event-by-event and 3D analyses
 - Lévy walk (BJP37(2007); PRB103(2021), Entropy24(2022); PLB847(2023); arXiv:2409.10373)
 - Only plausible explanation at high energies (see talk by D. Kincses on Wed)
- Importance of utilizing Lévy sources, leaving α as parameter:
 - Measuring α and R: quark-hadron transition, critical point, etc
 - Measuring λ : In-medium mass modification, coherent pion production

6/17

INTERACTIONS

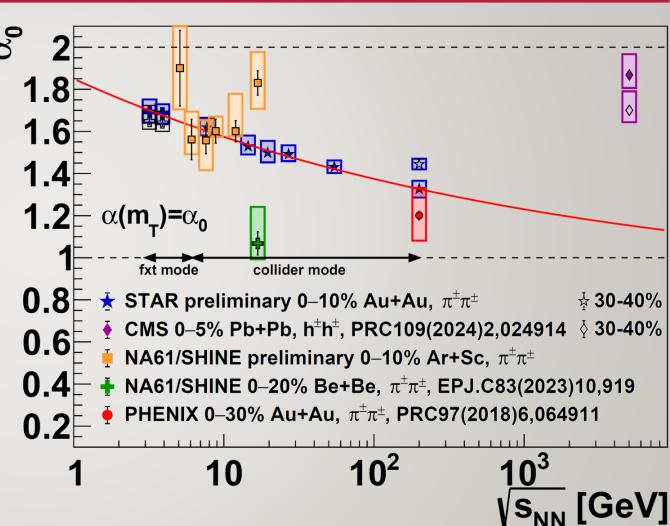

• Plane-wave result, based on $\left|\Psi_{2,q}^{(0)}(r)\right|^2=1+e^{iqr}$, for pair source D(r)


$$C_2(q,K) \cong \int D(r,K) \left| \Psi_{2,q}^{(0)}(r) \right|^2 dr = 1 + \int D(r,K) e^{iqr} dr$$

- If there are interactions, solve Schrödinger eq: $\Psi_{2,q}^{(0)}(r) \to \Psi_{2,q}^{(\mathrm{int})}(r_1,r_2)$
- For Coulomb, solution is known: $\left|\Psi_{2,q}^{(C)}(r)\right|^2 = \frac{\pi\eta}{e^{2\pi\eta}-1} \cdot \text{(hypergeometric expression)}$
- Direct fit with this, or the usual iterative Coulomb-correction:

$$C_{\text{Bose-Einstein}}(q)K(q)$$
, where $K(q) = \int D(r,K) \left| \Psi_{2,q}^{(C)}(r) \right|^2 dr / \int D(r,K) \left| \Psi_{2,q}^{(0)}(r) \right|^2 dr$

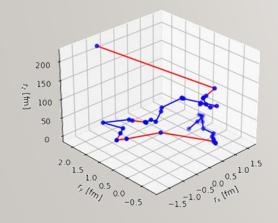
- Complication: need for integrating power-law tails
 - Precalculated in a tabular form, iterative fitting, e.g., PHENIX, PRC97(2018)064911
 - Interpolating functional form, see Csanád, Lökös, Nagy, Phys.Part.Nucl. 5 I (2020)238
 - Role of the strong interaction, see Kincses, Nagy, Csanád, PRC102(2020)064912
 - Recent method: EPJC83(2023)1015, code at github.com/csanadm/CoulCorrLevyIntegral
- Many new results, also for the strong interaction: see talk by M. Nagy on Tuesday

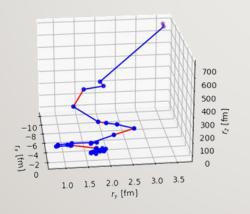


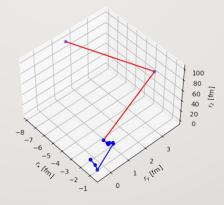
7/17

PION SOURCE SHAPE EVOLUTION, SPS-RHIC-LHC

- NA61: Be+Be at 17 GeV
 and Ar+Sc at 5-17 GeV
- STAR Au+Au at 3-200 GeV (also 3D now!)
- CMS: Pb+Pb at 5 TeV
- Opposite centrality trends in STAR and CMS?
- Opposite energy dependence trends?
 - Weak minimum at NA61 in Ar+Sc
 - Decrease with energy at STAR in Au+Au
 - Increase from STAR to CMS
- Origin of nonmonotonicity?
 - Difference in momentum acceptance & PID?
- Possible analysis in O+O vs Au+Au
- What do models say?






8/17

LÉVY PROCESSES IN NATURE AND IN SCATTERING

- Lévy walk and Lévy flight: known in ecology, climatology, etc.
 - If stepsize distribution has no finite width:
 generalized central limit theorem, Lévy-stable limiting distributions
- In HIC: increasing mean free path, stepsize increase
 - Seen in expansion under Coulomb potential in solid-state physics
- Observed in UrQMD [arXiv:2409.10373], without Coulomb
 - See talk by D. Kincses on Wednesday

E. I. Kiselev, Phys. Rev. B 103, 235116 (2021)

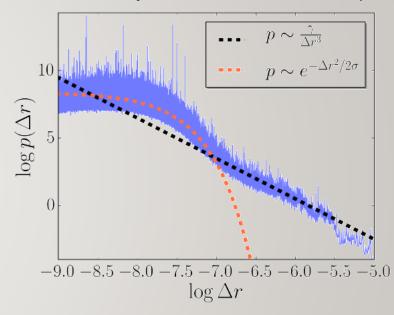
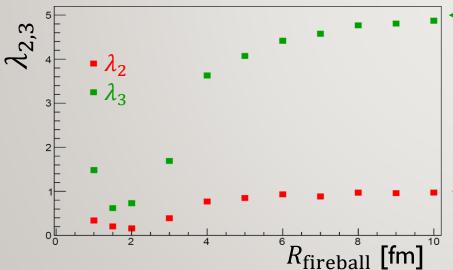
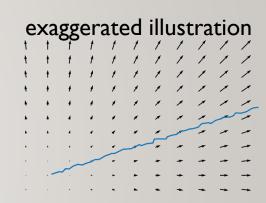
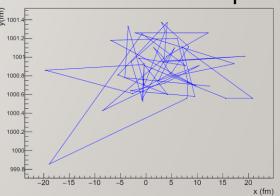



Figure 1. The Figure shows the step size distribution $p(\Delta r)$ of a random walk as performed by Coulomb interacting, diffusing particles in two dimensions. At large step sizes, the distribution clearly follows the $p \sim \Delta r^{-3}$ power-law which leads to the superdiffusive dynamics described by Eq. (1). The data was obtained by integrating the system of coupled Langevin equations of Eq. (56).

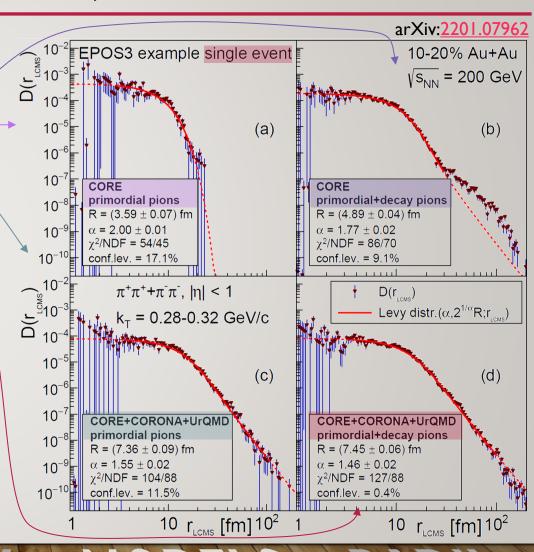
CHARGED CLOUD: ANOTHER INTERESTING EFFECT


- Coulomb potential: infinite range, affecting evolution for a long time
- Solid-state physics (as mentioned on previous slide): may cause Lévy flight and power-law tails
- Another interesting effect: distortion of flight paths after kinetic freeze-out
 - Phase shift, similarly to an Aharonov-Bohm effect (arXiv:2007.07167 and arXiv:2410.15525)
- Phase shift decreases correlation strengths

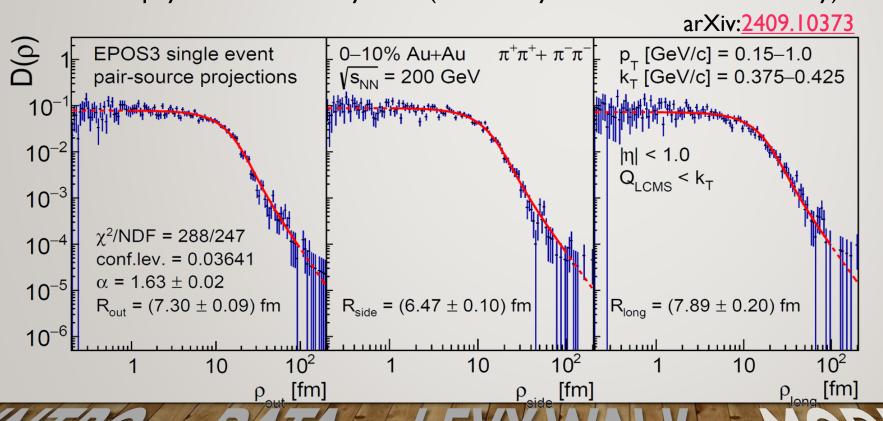

 $\lambda_3 = 5$

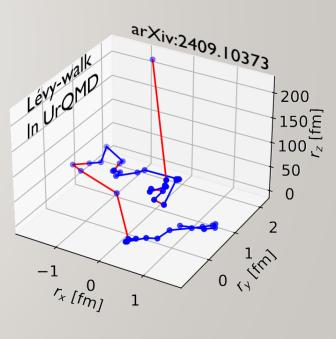
No A-B effect, pure core, fully chaotic source

$$\lambda_2 = 1$$


simulated transverse path

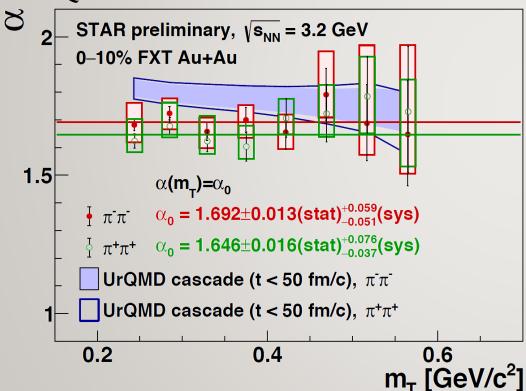
LÉVY SHAPES IN SINGLE EPOS EVENTS, ID

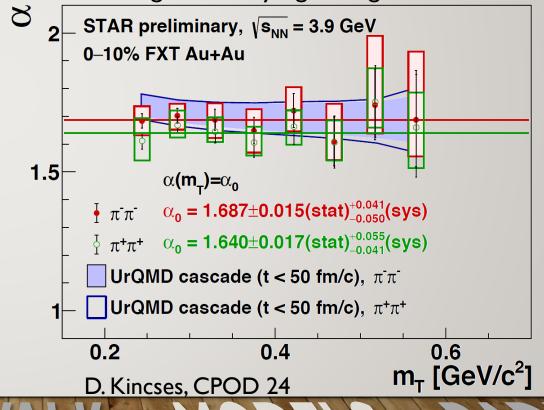

- EPOS model: parton-based Gribov-Regge theory (PBGRT)
 - Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903, .
- Source observed in four stages:
 - a) CORE, primordial pions: close to Gaussian
 - b) CORE, with decay products: power-law structures
 - c) CORE+CORONA+UrQMD, primordial pions: Lévy shape
 - d) CORE+CORONA+UrQMD, with decay products: Lévy shape
 - Radii in the four stages (one example event) $3.59 \text{ fm} \rightarrow 4.89 \text{ fm} \rightarrow 7.36 \text{ fm} \rightarrow 7.45 \text{ fm}$
 - Shape (α) change: 2.00 \rightarrow 1.77 \rightarrow 1.55 \rightarrow 1.46
- Can one relate the observed HBT radii to the hydro phase homogeneity lengths?
- More investigations needed…
- Related talks by D. Kincses, E. Árpási, L. Kovács on Wed



LÉVY SHAPES IN SINGLE 3D EPOS EVENTS, 3D

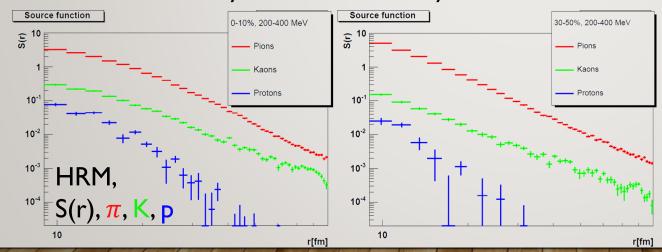
- What if the Lévy shapes appeared only because of directional averaging?
- Let's check 3D event shapes in EPOS! \rightarrow Also Lévy, with similar α and radii (as those in ID)
- Clear physical reason: Lévy walk (see talk by D. Kincses on Wednesday)

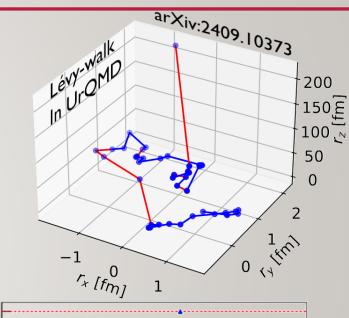


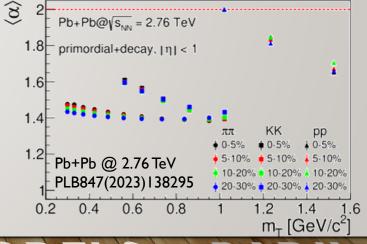


URQMD COMPARED TO STAR DATA AT 3.2 AND 3.9 GEV

- Non-Gaussian values ($\alpha < 2$); small systematic difference between $\pi^-\pi^-$ and $\pi^+\pi^+$ pairs
- 3.9 and 3.2 GeV compatible, no m_T dependence observed
- UrQMD within uncertainties no other effect but rescattering and decays, good agreement

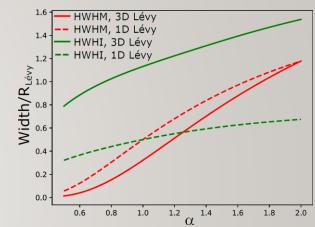


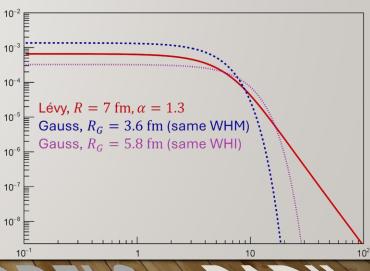




SO WHEN DO THE POWER-LAW TAILS FORM?

- Based on EPOS: apparently Gaussian in hydro phase
- Power-law tails due to Lévy-walk: scattering processes
 - 2-by-2, decay, coalescence, etc
- How to test? Particle type dependence!
 - Based on cross-sections: $\alpha(p) > \alpha(\pi) > \alpha(K)$ Humanic, IJMPE15(2006)197, Csanád, Csörgő, Nagy, BJP37(2007)1002
 - Not confirmed by EPOS! Role of decays and inelastic collisions?

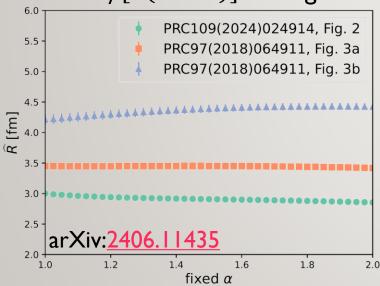


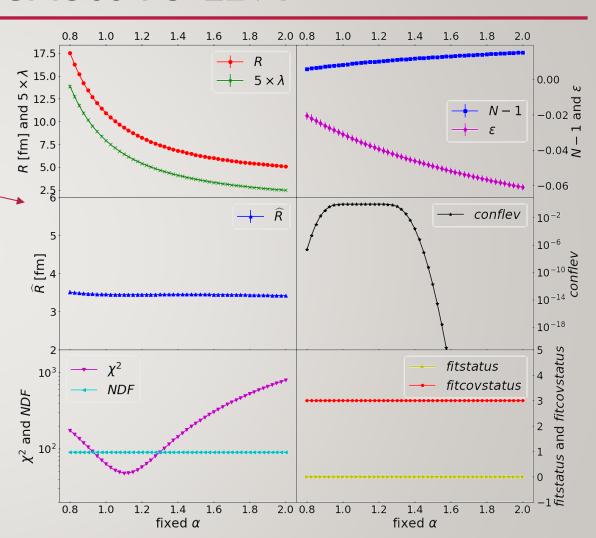

SOURCE SIZE MEASURE CHANGE WITH α

• No tail if $\alpha=2$, power law and RMS = ∞ if $\alpha<2$, in practice: depends on cutoff

arXiv:2401.01249

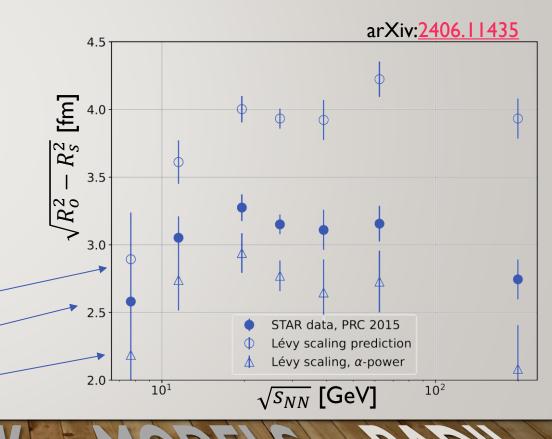
- What do Gaussian HBT radii mean? Important also w.r.t. CEP search
- Alternative measures:
 - HWHM: (half) width at half maximum
 - HWHI: (half) width at half integral
 - Width (normalized by R) nontrivially depends on α
- Relations for 3D Gauss: HWHM $\approx 1.17 \cdot R_G$, HWHI $\approx 1.54 \cdot R_G$
- Relations for Lévy $\alpha = 1.3$: HWHM $\approx 0.61 \cdot R_L$, HWHI $\approx 1.27 \cdot R_L$
- Thus (e.g.) $\alpha = 1.3$ and $R_L = 7$ fm "means":
 - Same HWHM Gaussian: $R_G \approx 3.6$ fm
 - Same HWHI Gaussian: $R_G \approx 5.8$ fm





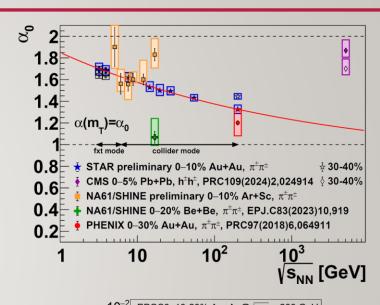
RESCALING HBT RADII FROM GAUSS TO LÉVY

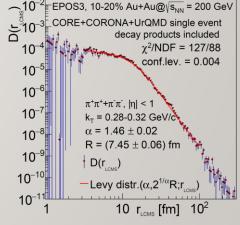
- Source shape and size entangled in Gaussian radii
- Fits possible with many α values
 - Some statistically acceptable, some not
 - Fits to PHENIX HBT paper PRC 2018, Fig 3a
- $\hat{R} = R/[\lambda(1+\alpha)]$ scaling observed generally



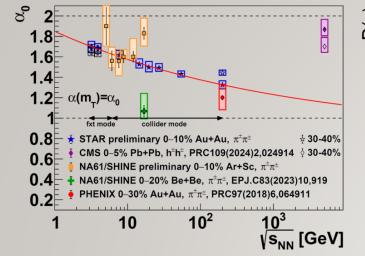
ENERGY DEPENDENCE OF LÉVY SOURCE SIZE?

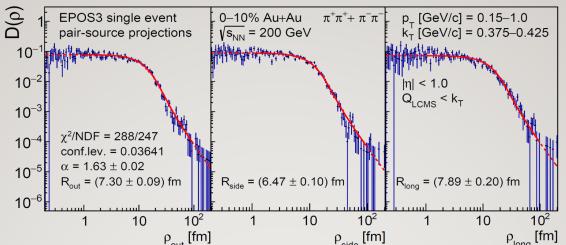
- $\hat{R} = \frac{R}{\lambda(1+\alpha)}$ doesn't depend on α , can estimate $R_{\text{free }\alpha} = R_{\text{Gauss}} \frac{\lambda_{\text{free }\alpha}(1+\alpha)}{\lambda_{\text{Gauss}}(1+2)}$
 - Assuming trends of α and λ as $A \cdot \sqrt{s_{NN}}^B$, with $A_{\alpha} = 1.85$, $B_{\alpha} = -0.06$, $A_{\lambda} = 0.6$, $B_{\lambda} = 0.06$
- Different trends of guesstimated $R_{\text{Lévy}}$ and R_{Gauss}
- Caused by shape change with $\sqrt{s_{NN}}$
- Connection of $\sqrt{R_o^2 R_s^2}$ to emission duration: based on Gaussian sources,
- Maybe $(R_o^{\alpha} R_s^{\alpha})^{1/\alpha}$ for Lévy source, Csörgő, Hegyi, Zajc, EPJC36(2004)67
- Importance of measuring $R_{o,s,l}$ with free α

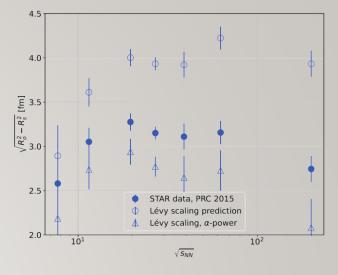

 \widehat{R} scaling guesstimate for Lévy radii original Gaussian radii α -powered version

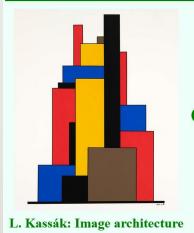


CONCLUSIONS AND OUTLOOK


- Lévy sources from SPS to RHIC and LHC, in 3D as well
 - Lévy α : between I and 2, increases with $\sqrt{s_{NN}}$?
 - Interesting centrality and collision energy dependence
 - Lévy R: hydro scaling, relation to Gaussian through HWHM/HWHI
 - Lévy λ : signs of η' in-medium mass modification (see talk by S. Lökös)
- Possible reasons:
 - Jet fragmentation → not dominant in AA collisions
 - Critical phenomena → maybe at lowest RHIC energies and SPS?
 - Directional averaging → good fits and same Lévy exponent in 1D and 3D
 - Event averaging → event-by-event simulations show Lévy
 - Resonance decays → part of the reason, not enough alone
 - Hadronic rescattering, Lévy walk → explains results
- Questions to be answered:
 - When measuring α , what effects need to be considered?
 - Can there be anomalous hydrodynamics in the quark stage?
 - What is the role of finite size and finite time in critical power-laws?







THANK YOU FOR YOUR ATTENTION

If you are interested in further developments:

http://zimanyischool.kfki.hu/24/

ZIMÁNYI SCHOOL 2024

24th ZIMÁNYI SCHOOL WINTER WORKSHOP ON HEAVY ION PHYSICS

December 2-6, 2024

Budapest, Hungary

József Zimányi (1931 - 2006)

