Femtoscopy analysis of ultrasoft pion trap at energies available at the CERN Large Hadron Collider

Wioleta Rzęsa (Warsaw University of Technology) WPCF 2024 (Toulouse, France)

Collisions of relativistic particles and heavy ions

 $\exists \rightarrow$

Image: A marked and A marked

Is there a "pattern" between the tracks? Femtoscopy

$$C(k^{*}) = \int S(r^{*}) |\Psi(k^{*}, r^{*})|^{2} d^{3}r^{*}$$

< □ > < □ >

Source function

Wave function

Te - 14

Homogeneity

In femtoscopy we study the space-time spread of particles from the emitter identified as its **homogeneity region**.

Homogeneity region \rightarrow area of the source from which particles are emitted with similar velocities and directions \rightarrow it is not the overall source!

where $R_{AB} = \sqrt{R_A^2 + R_B^2}$ is the homogeneity length for particles A and B of the pair.

How to reflect 3D shape with only one R? PRF frame*

A center-of-mass of the pair is at rest

 \rightarrow Not trivial average over 3 directions. \rightarrow Gaussian based definition:

$$S(r) \sim exp\left(-\frac{r_{out}^2}{2R_{ABout}^2} - \frac{r_{side}^2}{2R_{ABside}^2} - \frac{r_{long}^2}{2R_{ABlong}^2}\right)$$

$$\downarrow$$

$$S(r^*) \sim r^{*2}exp\left(\frac{r^{*2}}{2R_{AB}^2}\right)$$

 $k_{\rm A}^* = -k_{\rm B}^*$

Observed scalings of the source sizes

→ ∃ →

Image: A matrix

3

A linear scaling

 \rightarrow A linear scaling of the femtoscopic radii is universally observed versus cube root of the final state mean particle multiplicity $\langle dN_{ch}/d\eta \rangle^{1/3}$. \rightarrow Observed for different momentum and particle types.

The more particles produced in the collision the bigger femtoscopic volume.

A power-law scaling

 \rightarrow The radii versus the pair transverse momentum exhibit a power-law-like scaling in pair transverse mass m_{T} .

 \rightarrow Observed for all femtoscopic radii and all particle types.

 $m_{\rm T} = \sqrt{\langle k_{\rm T} \rangle^2 + m_0^2}$, where k_{τ} is pair mean transverse momentum $k_{\tau} = |\mathbf{p}_{\tau 1} + \mathbf{p}_{\tau 2}|/2$, and m_0 is particle mass)

But where this m_T scaling come from?

Image: A matrix

3

Collective flow

The particles gain velocity due to hydrodynamic expansion originating from the non zero pressure gradient of the fireball.

4 10 5

-

Collective motion

All particles emitted close to each other, in radial direction pointing outwards from the center gain a common velocity, β_f from the collectivity.

The process drives the space-time evolution of the system. It should apply to all particles.

Collective motion

All particles emitted close to each other, in radial direction pointing outwards from the center gain a common velocity, β_f from the collectivity.

The process drives the space-time evolution of the system. It should apply to all particles.

In addition each particle gain a random thermal velocity, β_t .

Collective motion

$$\langle x_{out} \rangle = \frac{\langle r\beta_f \rangle}{\left\langle \sqrt{\beta_t^2 + \beta_f^2} \right\rangle}$$

If β_f is dominant \rightarrow all particles are emitted from the **edge** of the source

If β_t is dominant \rightarrow all particles are emitted from the **whole** source

If β_f and β_t are similar \rightarrow for different p_T we should observe different source sizes and asymmetry (shift).

Consequence of flow

As observed $p_{\rm T}$ grows, the region were pairs with similar velocity and direction can be emitted gets smaller and shifted toward the edge of the source.

Power-law?

But what if power-law is not so universal description?

< 🗇 🕨

Simulation study of ultra-soft pions

< □ > < □ >

3

Modeling the hydrodynamic of heavy-ion collisions

 \rightarrow integrated HydroKinetic Model: **iHKM**

 \rightarrow hydrodynamic model LHYQUID coupled to the statistical hadronisation code THERMINATOR2: LHYQUID+THERMINATOR2

The two models differ in the initial conditions and the way of modeling the system evolution.

Both well describe measured data.

November 7, 2024

16 / 26

۱۸	/D	CE	20	2/
V١	/ P	СГ	20	24

E 990

イロト イロト イヨト イヨト

-

イロト イヨト イヨト イヨト

 $\langle \mathrm{d}N/\mathrm{d}\eta \rangle^{1/3}$ dependence

3.0

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$m_{\rm T}$ dependence

$\mathrm{d}R/\mathrm{d}m_T ~ \textbf{dependence}$

Constant slope in low m_T in R_{inv} and transverse directions of 3D

The 16

< □ > < □ >

Emission position vs time

model 1 pions iHKM, PbPb vs., =5.02TeV, 0-5%, k, = 0.00-0.05 GeV/c LHYQUID+THERINATOR2, PbPb (5,10)=5.02TeV, 0-5%, k_ = 0.00-0.05 GeV ultra-soft 1500 1000 500 τ_{LCMS} (fm/*c*) τ_{LCMS} (fm/c) HKM, PbPb (5_{NN}=5.02TeV, 0.5%, k₊ = 0.35-0.45 GeV/c 4500 pions 4000 3500 3000 -2500 normal -2000 1500 1000 500 τ_{LCMS} (fm/c) τ_{LCMS} (fm/*c*)

model 2

2500

2000

100

Soft pions are kept inside and escape the system later than other pions.

Trap?

The gradient of density is not equal in the radial directions: it is more strong at the periphery, and less strong in the center, where soft hadrons mostly come from.

The hadrons stay together for a longer time
Very low transverse collective velocity;
Smaller density gradient in the center as compared to non-central and periphery parts.

The initially highest density in the geometrical center \rightarrow this high-mass-density region is difficult to expand because of the relatively small transverse pressure gradient in the center.

Condensation of pions?

Bose-Einstein condensation of pions in heavy-ion collisions at the CERN Large Hadron Collider (LHC) energies

Viktor Begun^{1,2} and Wojciech Florkowski³

¹Institute of Physics, Jan Kochanowski University, PL-25406 Kielce, Poland ²Bogolyubov Institute for Theoretical Physics, 03680 Kiev, Ukraine ³The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland (Dated: July 6, 2018)

Image: A math back of the second s

⁶⁶ Our study shows that the pion condensate rate in the present data is 2% in the most central collisions and 7 - 8% in peripheral collisions (with a sudden increase to 19% in the most peripheral collisions).²⁹

200

300 p₊ [MeV/c]

100

Velocity dependence

$$\beta = k_T/m_T$$
, fitted with: $R(\beta) = \frac{a}{e^{(\beta-b)/c}+1}$

 β decreases \rightarrow R became similar

Idea: such value could be used to determine an extrapolated value of the radii for ultra-soft pions, instead of the historically used power-law m_T scaling.

24 / 26

Conclusions from the ultra-soft pion's simulations

The power-low description of pion's source size $m_{\rm T}$ -scaling is not the best solution for ultra-soft region \rightarrow especially in 1D source study the description with the power-law is not satisfactory.

PHYSICAL REVIEW C covering nuclear physics											
Highlights	Recent	Accepted	Collections	Authors	Referees	Search	Press	About	Editorial Te	eam 🥱	
Open Acc	ess										
Femto the C	Femtoscopy analysis of ultrasoft pion trap at energies available at the CERN Large Hadron Collider										
W. Rzesa, G. Kornakov, A. R. Kisiel, Yu. M. Sinyukov, and V. M. Shapoval Phys. Rev. C 110 , 034904 – Published 6 September 2024											
Article	References	No Citir	g Articles	PDF	HTML	xport Citation					
>	ABS Femtos availab given t	TRACT scopy studies of the collider ene to m_T depende	of pion radiation in rgies, both theore ncy of pion femto	n heavy-ion co tically and ex scopy radii, us	ollisions have be perimentally. In sually approxim	een conducte all these stud ated by a pov	d extensivel lies special ver-law func	- y at all attention is tion at	ls Va 20	isue ol. 110, Iss. 3 — September 024	

-

Thank you for your attention!

→ ∃ →

3