

Recent Results of Baryon Correlations at RHIC-STAR

Ke Mi (for the STAR Collaboration) **Central China Normal University**

XVIIth edition of the International Workshop on Particle Correlations and Femtoscopy (WPCF2024) 4th-8th November, 2024, Toulouse, France

5th Nov, 2024

In part supported by

Outline

- 2. Motivation
- 3. RHIC-STAR Experiment
- 4. Results
 - p-d, d-d, d- Λ corr
 - p- Ξ , Λ - Λ , p- Ω co
- 5. Summary & Outlook

1. Femtoscopy and Two-particle Correlation Function

relation at
$$\sqrt{s_{NN}} = 3 \text{ GeV}$$

orrelation at $\sqrt{s_{NN}} = 200 \text{ GeV}$

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/05

o In high energy collisions, Femtoscopy is inspired by Hanbury **Brown and Twiss (HBT) interferometry, but different scale** (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

<u>Experimental</u>

 $\frac{N_{same}(k^*)}{N_{mixed}(k^*)}$

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/05

o In high energy collisions, Femtoscopy is inspired by Hanbury **Brown and Twiss (HBT) interferometry, but different scale** (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/05

o In high energy collisions, Femtoscopy is inspired by Hanbury **Brown and Twiss (HBT) interferometry, but different scale** (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

✓ Two-particle correlation function: Model $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*,\vec{r})|^2 d^3\vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum Nature 178 1046-1048(1956) \vec{r} : relative distance ALICE Coll. Nature 588, 232–238 (2020) R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

2024/11/05

o In high energy collisions, Femtoscopy is inspired by Hanbury **Brown and Twiss (HBT) interferometry, but different scale** (~several fm)

→ Spatial and temporal extent of emission source

→ Final-state Interactions (Coulomb, Strong interaction) \rightarrow Bound state

Motivation

- Formation mechanism of light nuclei are under debate ⇒ Coalescence : final-state interaction
 - ⇒ Thermal : produced directly from fireball
- Indirect approach of many body interactions

J.Cleymans et al, Phys.Rev.C 74, 034903 (2006) K. Blum et al, Phys.Rev.C 99, 04491 (2019) St. Mrówczyński and P. Słoń, Acta Physica Polonica B 51, 1739 (2020) St. Mrówczyński and P. Słoń, Physical Review C 104, 024909 (2021)

2024/11/05

Motivation

Formation mechanism of light nuclei are under debate ⇒ Coalescence : final-state interaction

⇒ Thermal : produced directly from fireball

- **Indirect approach of many body interactions**
- Nucleon-nucleon (N-N), hyperon-nucleon (Y-N) and hyperon-hyperon (Y-Y) interactions \Rightarrow Equation of state of matter inside neutron stars
 - \Rightarrow (Strange) Dibaryons, have never been found experimentally

Possible bound state:

H-dibaryon $\Rightarrow \Lambda + \Lambda / p + \Xi^{-}$

(Strange)Dibaryon $\Rightarrow p + \Omega$

Experimental measurements are needed!

Phys.Rev.C 99, 064905 (2019) Phys.Rev.C 84, 064910 (2011) Phys. Rev. C 83 (2011) 015202

2024/11/05

Dibarvon	Particle	Mass	Decay
		(MeV)	
	f_0	980	$\pi\pi$
	a_0	980	$\pi\eta$
	K(1460)	1460	$K\pi\pi$
	$\Lambda(1405)$	1405	$\pi\Sigma$
	$\Theta^{+}(1530)$	1530	KN
	Η	2245	$\Lambda\Lambda$
	$N\Omega$	2573	$\Lambda \Xi$

Motivation

Formation mechanism of light nuclei are under debate ⇒ Coalescence : final-state interaction

⇒ Thermal : produced directly from fireball

- **Indirect approach of many body interactions**
- Nucleon-nucleon (N-N), hyperon-nucleon (Y-N) and hyperon-hyperon (Y-Y) interactions ⇒ Equation of state of matter inside neutron stars
 - ⇒ (Strange) Dibaryons, have never been found experimentally

Possible bound state:

H-dibaryon $\Rightarrow \Lambda + \Lambda / p + \Xi^{-}$

(Strange)Dibaryon $\Rightarrow p + \Omega$

Experimental measurements are needed!

Phys.Rev.C 99, 064905 (2019) *Phys.Rev.C* 84, 064910 (2011) Phys. Rev. C 83 (2011) 015202

2024/11/05

RHIC-STAR Experiment

Particle Identification & Reconstruction

2024/11/05

Results — p-d, d-d Correlation

o First measurements of p-d/d-d correlation functions at STAR

o Clear depletion in low k*

- **Coulomb repulsive & strong** interaction
- o Fitted with L-L model simultaneously, in different centrality:
 - Different R_G
 - **Common spin-averaged** f_0 and d_0

STAR: arXiv:2410.03436v1 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905 R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

Results — p-d, d-d Correlation

Simulated with SMASH model, consider two deuteron formation mechanism:

- **Direct production (grey band)**
 - Hadronic scattering
 - Fail to describe data at certain k*
- **Coalescence production (orange band)**
 - Wigner function
 - Well description to data
 - **<u>Coalescence</u>** is the dominant process for deuteron formation in the highenergy nuclear collisions

STAR: arXiv:2410.03436v1 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905

Results — p-d, d-d Correlation

- Extracted source size (R_G) with LL model
 - Centrality dependence: $R_G^{central} > R_G^{peripheral}$
 - $< m_T >$ dependence: $R_G^{p-d} > R_G^{d-d}$
- Using same fit, source size from SMASH (R_G^{SMASH}) closely matches the data
- The root mean square (RMS) values from SMASH 0 are larger than R_G
 - Dynamical expansion of the system

STAR: arXiv:2410.03436v1

Results — p-d, d-d Interaction

- **Extracted spin-averaged final state interaction** Ο parameters (f_0 , d_0) with LL model
- For both p-d and d-d interaction, the spin-averaged 0 f_0 is negative
- **Combination of repulsive interactions in quartet (quintet)** spin state for p-d (d-d) along with the presence of bound states (³He for p-d and ⁴He for d-d)
- **For p-d interaction, the is** f₀ **consistent with theory** 0 calculation and low-energy scattering experiment measurement
- Support the feasibility of extracting interaction parameters with femtoscopy technique

STAR: arXiv:2410.03436v1

Results — d- Λ **Correlation**

 \Rightarrow Strong enhancements at small k^* range -> Attractive interactions

* Λ feed-down correction not applied

2024/11/05

First measurement of d- Λ **CF at STAR**

 \Rightarrow Simultaneously fit to data in different centralities with L-L approach

Consider two-spin components: D (doublet, S = 1/2), Q (quartet, S=3/2)

EPJ Web Conf. 296 (2024) 14010 R. Lednicky, et al, Sov.J.Nucl.Phys. 35 (1982) 770

Results — d- Λ **Interaction**

- **o** First experimental extraction of strong interaction parameters of d- Λ
- Successfully separate two spin components in d- Λ f_0 (D) = -20 $^{+3}_{-3}$ fm, d_0 (D) = 3 $^{+2}_{-1}$ fm $f_0(\mathbf{Q}) = \mathbf{16}^{+2}_{-1} \text{ fm}, \ d_0(\mathbf{Q}) = \mathbf{2}^{+1}_{-1} \text{ fm}$
 - Negative f_0 in doublet state -> ${}^3_{\Lambda}$ H bound state
 - Positive f_0 in quartet state -> Attractive interaction

Results — d- Λ **Interaction**

2024/11/05

 \Rightarrow Open a new way to constrain $^{3}_{\Lambda}$ H properties

EPJ Web Conf. 296 (2024) 14010 H.Bethe, Phys.Rev 76, 38 (1949)

 $\frac{\mathbf{I}}{-\mathbf{f}_0} = \gamma - \frac{\mathbf{I}}{2} \mathbf{d}_0 \gamma^2$

 $\mu_{d\Lambda}$: reduced mass

K.Mi - CCNU - WPCF2024

 γ : binding momentum

Results — p-E Correlation

2024/11/05

Results — p- Ξ Interaction

Results — Λ - Λ **Correlation**

- STAR published Λ - Λ CF at 200 GeV in Au+Au collisions with run10, run11 data
- From fitting with analytical LL function, $f_0(\Lambda\Lambda) = -1$ fm • Repulsive interaction concluded from publish paper (without feed-down correction) • More detailed study are needed to draw further conclusions

2024/11/05

• Re-do Λ - Λ CF in Au+Au collisions at 200 GeV with high-statistics run14, run16 data

PRL 114, 022301 (2015) **EPJ Web of Conferences 259, 11015 (2022)**

Results — $p-\Omega$ Correlation

- **o** Data supports the existence of bound state

• Compared with theory calculations qualitatively, VIII potential is in better agreement

Phys.Lett. B 790 (2019) 490

Summary

- o Femtoscopy measurements from HIC provides a unique tool to explore strong interactions and evolution dynamics
- o p-d, d-d interaction
 - First determination of p-d / d-d interaction parameter at STAR
 - <u>Coalescence</u> is the dominant process for deuteron formation in the high-energy collisions
- \circ d- Λ interaction
 - First experimental measurements of f_0 and d_0 in d- Λ pairs
 - Provide a new way to explore hyper-nuclei properties
- **ο** p-Ξ, Λ - Λ , p- Ω interaction
 - Attractive interaction in p- Ξ pair: $f_0 \sim 0.69$ fm
 - High statistics data is needed for studying Y-N / Y-Y interaction

Outlook:

More than 10 times statistics from BES-II

- ***** Emission source size vs. energy, rapidity
- ***** Baryon correlations with different species

2024/11/05

Backup: proton- Λ correlation

$$f_0 = 2.32^{+0.12}_{-0.11} fm$$
, $d_0 = 3.54^{+2.69}_{-1.26} fm$

Results — d- Λ **Correlation**

2024/11/05

 \Rightarrow R_G: spherical Gaussian source extracted with L-L approach

⇒ Collision dynamics as expected o Centrality dependence: $R_G^{central} > R_G^{peripheral}$ $\circ < m_T >$ dependence: $R_G(p - \Lambda) > R_G(d - \Lambda)$

EPJ Web Conf. 296 (2024) 14010

