

Novel constraints for the multi-strange meson-baryon interaction using correlation measurements Otón Vázquez Doce (INFN - Frascati)

WPCF 2024 - 17th Workshop on Particle Correlations and Femtoscopy Toulouse, November 5th 2024

(Multi-)strange meson-baryon systems and exotic states

Interactions between mesons and baryons involving strangeness

 \rightarrow Landmark for hadron-hadron interaction studies

Presence of a rich coupled-channel dynamics

- → Systems sharing same quantum numbers (B,S,Q) relatively close in mass
- \rightarrow On- and off-shell processes from one channel to the other

Several candidates for exotic states with molecular nature

- \rightarrow Typically observed close to channel thresholds
- \rightarrow Main example given by the **two-pole** Λ (1405) state
 - J. M.M. Hall et al. Phys. Rev. Lett. 114 (2015) 13
 - U. G. Meißner Symmetry 12 (2020) 6, 981
- \rightarrow New Belle-ALICE data: Analogous behaviour in the S=-2 sector!
 - Ξ (1620)- Ξ (1690): coupled to \overline{K} - Λ , \overline{K} - Σ , $\Xi\pi$.

S=-1 meson-baryon interaction: **KN interaction**

Large attractive interaction in isospin I=0 channel

 \rightarrow Responsible for formation of $\Lambda(1405)$ below (and very close to) $\overline{K}N$ threshold

Chiral SU(3) EFT \Rightarrow Molecular state with two poles $\overline{K}N-\Sigma\pi$

Scattering calculation on the lattice

-> Coupled channel analysis find 2 poles; still not physical masses. J. Bulava et al., arXiv:2307.10413 [hep-lat]

S=-1 meson-baryon interaction: **KN interaction**

Large attractive interaction in isospin I=0 channel

 \rightarrow Responsible for formation of $\Lambda(1405)$ below (and very close to) $\overline{K}N$ threshold

Chiral SU(3) EFT \Rightarrow Molecular state with two poles $\overline{K}N-\Sigma\pi$

Scattering calculation on the lattice

-> Coupled channel analysis find 2 poles; still not physical masses. J. Bulava et al., arXiv:2307.10413 [hep-lat]

Experimentally: studied with different approaches but scarce statistics available from scattering data above $\overline{K}N$ threshold

Phot expe		otoproduction periments	antiKaonic hydrogen	Scattering experiments
Λπ	Σπ	Σπ	Κ̈́N	
1250-1255	1327-1337		1432-1437	/
		Λ(1405)		

S=-1 meson-baryon interaction: **KN interaction**

Large attractive interaction in isospin I=0 channel

 \rightarrow Responsible for formation of $\Lambda(1405)$ below (and very close to) $\overline{K}N$ threshold

Chiral SU(3) EFT \Rightarrow Molecular state with two poles $\overline{K}N-\Sigma\pi$

Scattering calculation on the lattice

→ Coupled channel analysis find 2 poles; still not physical masses. J. Bulava et al., arXiv:2307.10413 [hep-lat]

Experimentally: studied with different approaches but scarce statistics available from scattering data above $\overline{K}N$ threshold

Femtoscopy delivers the most precise data above K⁻-p threshold

 \rightarrow Crucial input for low-energy chiral effective potentials

Data:

ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020) ALICE Coll. Eur. Phys. J. C 83, 340 (2023) ALICE Coll., Phys. Lett. B 822, 136708 (2021)

Strong interaction: Kyoto model

K. Miyahara et al., Phys. Rev. C98, 2, (2018) 025201

→ Strength of coupled channels significantly reduced in small systems

Y. Kamiya et al., Phys. Rev. Lett. 124, 132501 (2020)

Femtoscopy provides a quantitative test of coupled channels

Data: ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020)
 ALICE Coll. Eur. Phys. J. C 83, 340 (2023)
 ALICE Coll., Phys. Lett. B 822, 136708 (2021)
 Strong interaction:K. Miyahara et al., Phys. Rev. C98, 2, (2018) 025201

Femtoscopy provides a quantitative test of coupled channels

Data: ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020)
 ALICE Coll. Eur. Phys. J. C 83, 340 (2023)
 ALICE Coll., Phys. Lett. B 822, 136708 (2021)
 Strong interaction:K. Miyahara et al., Phys. Rev. C98, 2, (2018) 025201

Correlation function with coupled channels: $C_{\mathrm{K}^{-}\mathrm{p}}(k^{*}) = \int d^{3}r^{*}S_{\mathrm{K}^{-}\mathrm{p}}(r^{*})|\psi_{\mathrm{K}^{-}\mathrm{p}}(k^{*},r^{*})|^{2} + \sum_{i}\omega_{j}\int d^{3}r^{*}S_{j}(r^{*})|\psi_{j}(k^{*},r^{*})|^{2}$ ω^{prod} production yields (thermal model) $\omega_j = \alpha_j \times \omega_i^{\text{prod}}$ + production p₋ spectrum (blast-wave) + pair kinematics ALICE TF+BW **⊠**K⁰n • K⁰n $\pi\Sigma$ \mathbf{I} $\pi\Sigma$ Differential study across coll. systems The model does not reproduce the strength of the $\overline{K}{}^0\text{-}n$ channel \rightarrow +

0.8

1.2

1.4

1.6 r_{core} (fm)

Femtoscopy provides a quantitative test of coupled channels

Data: ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020)
 ALICE Coll. Eur. Phys. J. C 83, 340 (2023)
 ALICE Coll., Phys. Lett. B 822, 136708 (2021)
 Strong interaction:K. Miyahara et al., Phys. Rev. C98, 2, (2018) 025201

1.2

1.4

1

0.8

1.6 $r_{\rm core}$ (fm)

The quest to unveil the I=1 $\overline{K}N$ interaction:

Femtoscopy can complement current effort by SIDDHARTA-2 antiKaonic-deuterium measurement

The quest to unveil the I=1 KN interaction:

Femtoscopy can complement current effort by SIDDHARTA-2 antiKaonic-deuterium measurement

Sensitivity to

S=-1 meson-baryon interaction

KN interaction description with effective chirally models able to describe the data in a wide energy range

- \rightarrow Help on fixing of the NLO constants
- \rightarrow Incorporate channels sensitive to the I=1 component

Accessing the Ξ^-K^+ system with femtoscopy

Femtoscopy delivers precise data at low

momenta on the interaction between Ξ and kaons \rightarrow Important constraints for **I=1 channel** of

S=-1 meson-baryon interaction

Modeled assuming Lednický-Lyuboshits wavefunction with Coulomb (S-wave only) R. Lednický, Phys. Part. Nucl. 40: 307-352 (2009)

- \rightarrow Coulomb + strong repulsive interaction assumption agrees with the data
- \rightarrow Determination of scattering length from

best fit: $\Re f_0 = -0.61 \pm 0.02(stat) \pm 0.07(syst)$ $\Im f_0 = 0.41 \pm 0.04(stat) \pm 0.11(syst)$

Constraining the Ξ^-K^+ scattering parameters

Heat map: Comparison of data with modeling assuming different values of $(\Re f_0, \Im f_0)$

→ Delivered in terms of number of standard deviations (n_a) in $k^* \in [0,250]$ MeV/c

Allowed values for f_0 from state-of-the-art chiral calculations at next-to-leading order and phenomenological potentials constrained to available scattering data \Rightarrow Higher precision constraints can be delivered with femtoscopy

Moving to the S=-2 sector

Scattering experiments challenging with increasing strangeness

 $\rightarrow \Xi$ (1620) lying across the $\overline{K}\Lambda$ threshold as molecular candidate, poorly known: $\pi\Xi$ -K Λ molecule? Intensive searches via <u>spectroscopy measurements</u>

 \rightarrow Combine different production mechanisms/decay channels to reveal the nature of the state

Femtoscopy approach: accessing the interaction between the constituents

Accessing the S=-2 meson-baryon interaction

AK⁰ femtoscopy studied in Pb–Pb collisions by CMS (see the next talk by R. Pradhan) and ALICE

ALICE studied also ΛK^+ and ΛK^- pairs both in Pb–Pb and pp collisions

→ Determination of the real and imaginary part of the scattering length and effective range using the Lednicky model

Data:

- Pb-Pb:
 CMS Coll. Phys. Lett. B 857 (2024) 138936

 ALICE Coll. Phys. Rev. C 103 (2021)

 pp:
 ALICE Coll. Phys. Lett. B 845 (2023) 138145
- Sf_0 (fm) d_0 (fm) 1.4 ALICE pp Vs = 13 TeV Pb-Pb data $\land \Lambda - K^+ \oplus \overline{\Lambda} - K^-$ High Mult. (0-0.17% INEL > 0) $\Lambda - K^- \oplus \overline{\Lambda} - K^+$ pp data Theory predictions $\bullet \Lambda - K^+ \oplus \overline{\Lambda} - K^-$ Liu et al. $\Lambda - K^{\dagger} = \Lambda - K$ $\Lambda - K^- \oplus \overline{\Lambda} - K^+$ (non res.) ♦ Mai et al. Λ− K⁺ -2O Mai et al. A-K O Ramos et al. A-K-0.8 Nishibuchi et al. Λ-Κ⁻ -40.6 0 -60.4 -8 0.2 -10 Ľh 0.6 .8 -0.6-0.40.2 0.4 $\Re f_0$ (fm)

Accessing the S=-2 meson-baryon interaction

 $C(k^*)$

Study of the resonant structures present in the measured ΛK^{-} correlation function in pp collisions ALICE Coll. Phys. Lett. B 845 (2023) 138145

Accessing the S=-2 meson-baryon interaction

Study of the resonant structures present in the measured ΛK^{-} correlation function in pp collisions ALICE Coll. Phys. Lett. B 845 (2023) 138145

First experimental evidence of $\Xi(1620) \rightarrow \Lambda K^{-}$

1700

1750

ALICE pp $\sqrt{s} = 13 \text{ TeV}$

1819.6 MeV/c2

350

400

k* (MeV/c)

 $\circ \Lambda - \mathsf{K}^- \oplus \overline{\Lambda} - \mathsf{K}^+$

Ξ(1690):

250

1692.4 MeV/c2

300

1650

1672.2 MeV/c2

°°°°°°°°°°°°°°°°°°°°°

150

200

Ω:

1618.5 MeV/c2

100

ALI-PUB-562693

35

30

25

20

15

10

5

50

Arbitrary Units

$K^{-}\Lambda$ correlations and the S=-2 meson-baryon sector

Study of the resonant structures present in the measured $\Lambda K^$ correlation function in pp collisions ALICE Coll. Phys. Lett. B 845 (2023) 138145

Low k^* region description including $\Xi(1620)$: → Interplay between resonant (Flatté-like) and nonresonant interaction

\Rightarrow $\Xi(1620)$ and $\Xi(1690)$ properties

- Overall compatible with previous Belle and LHCb results
- Indication of a large coupling of $\Xi(1620)$ to ΛK^-

Femtoscopy data as a constraint

Employ ALICE data in pp to **constrain effective chiral potentials** to explore this multi-strange sector V. Mantovani Sarti et al. arXiv: 2309.08756

<u>Fit the parameters</u> of state–of–the–art U χ PT NLO Lagrangian that **dynamically generates** the Ξ (1620) and Ξ (1690) states in the coupled channels approach

- \rightarrow large sensitivity of femtoscopy data to NLO LECs
- → $\underline{\Xi(1620)}$: not a $\pi\Xi$ -KA molecule but a narrower $\eta\Xi$ bound state with small or negligible coupling to other channels

 $\rightarrow \underline{\Xi(1690)}$: K Σ quasi-bound state

The $\Xi^- \pi^+$ correlation in HI collisions

STAR Preliminary data in Au-Au collisions

P. Chaloupka arXiv:nucl-ex/0510064

Enhancement in the <u>low k* region described by</u> <u>Coulomb FSI</u>

Lednicky model to describe <u>the resonant part (Ξ^*) </u> <u>through resonant strong interaction</u>

- R. Lednicky, Phys.Part.Nucl.Lett. 8 (2011) 9, 965-968
- → Large sensitivity to the height of the $\Xi(1530)$ region to the system size and effects of Ξ elliptic flow

The $\Xi^- \pi^+$ correlation in pp collisions

Several states visible in the measured correlation

- $\Xi(1530)^0 \rightarrow \Xi^- \pi^+$ (B.R. 100%)
- $\Xi(1620)$ and $\Xi(1690)$ as observed by Belle

Evidence of strong attractive interaction Rather <u>shallow</u> attractive <u>interaction</u>

> $\Re f_0 = 0.089^{\pm 0.007(stat)}_{\pm 0.009(syst)}$ $\Im f_0 = 0.007^{\pm 0.003(stat)}_{\pm 0.005(syst)}$

C(k*)

otonvd@cern.ch

Conclusions and outlook

Femtoscopy is a **complementary tool** to provide precision data on hadron-hadron interactions to **study exotic states**

- → Delivers often the most precise data at low momenta in many channels, in some cases the only data!
 - Novel high-precision constraints on S=-1 and S=-2 baryon interactions available with correlation data
 - Input for low-energy effective chiral lagrangians

⇒ Possibility to explore other relevant systems and extend them to other sectors (charm!) with **ongoing experiments!**

Thank you for your attention!