Restoring source function from correlation function using Richardson-Lucy algorithm with maximum-entropy regularization Chi-Kin Tam (Western Michigan University) 3 pm, November 6, 2024 (Central European Time) WPCF 2024 - 17th Workshop on Particle Correlations and Femtoscopy

## **Extract Source function**

#### **1D Koonin-Pratt equation**

$$C(q) = 1 + 4\pi \int r^2 S(r) K(q, r) \mathrm{d}r$$

- measure correlation function  $C(q) \propto \mathcal{A}/\mathcal{B}$
- derive the kernel  $K(q,r) = |\Psi|^2 1$
- extract source function S(r)
  - o fit for a Gaussian-shaped source
  - o model-independent method : imaging, deblurring
- → Deblurring : restoration via *Richardson-Lucy algorithm* (Pierre & Pawel, 846, 138247)
- $\rightarrow$  this work : advancement with max-entropy regularization



## **Richardson-Lucy algorithm**

- works for the inverse problem  $\phi(x) = \int \psi(x') P(x|x') dx'$ 
  - $\phi(x)$  : observed data
  - $\psi(x')$  : underlying truth
  - $\circ P(x|x')$  : probability of observing x given x'



# **Richardson-Lucy algorithm**

- works for the inverse problem  $\phi(x) = \int \psi(x') P(x|x') dx'$ 
  - $\phi(x)$  : observed data
  - $\circ \psi(x')$  : underlying truth
  - $\circ \ P(x|x')$  : probability of observing x given x'
- iterative solution :

$$\psi_j^{(r+1)} = \psi_j^{(r)} \left[ \sum_i \frac{\tilde{\phi}_i}{\phi_i^{(r)}} \mathcal{P}_{ij} \right]$$

- images, astrophysics, nuclear physics :  $M_{\rm inv}$  spectrum



source : scikit-image



nebula, from A&A 539, A133 (2012)





(P. Nzabahimana et.al, Phys. Rev. C 107, 064315)

WPCF 2024 - 17th Workshop on Particle Correlations and Femtoscopy

## Richardson-Lucy algorithm [AJ, Vol. 79, p. 745 (1974), J. Opt. Soc. Am. 62, 55-59 (1972)]

$$\psi_j^{(r+1)} = \psi_j^{(r)} \left[ \sum_i \frac{\bar{\phi}_i}{\phi_i^{(r)}} \mathcal{P}_{ij} \right]$$

- known data  $\tilde{\phi}$  from measurement
- fixed transfer matrix  $\ensuremath{\mathcal{P}}$  from theory or simulation
- starts with an initial guess of source ψ<sup>(0)</sup>(x), then for each iteration (r)
   use the forward model to estimate φ<sup>(r)</sup>(x) = ∫ ψ<sup>(r)</sup>(x')P(x|x')dx'
   use the data φ̃ to update the image
- what remains is to recognize the KP equation in the form of forward model

$$C(q) = 1 + 4\pi \int r^2 S(r) K(q, r) \mathrm{d}r \quad \Longleftrightarrow \quad \phi^{(r)}(x) = \int \psi^{(r)}(x') P(x|x') \mathrm{d}x'$$

## application to Konnin-Pratt equation

$$\phi^{(r)}(x) = \int \psi^{(r)}(x') P(x|x') \mathrm{d}x'$$

$$C(q) = 1 + 4\pi \int r^2 S(r) K(q, r) dr$$
$$\lambda_{\text{purity}} = 4\pi \int r^2 S(r) dr$$



- discretization, absorb the purity factor into the kernel.
- normalize before applying the Richardson-Lucy algorithm, i.e.

$$\sum_{i} C_i \Delta q = 1, \quad \sum_{j} S_j \Delta r = 1 \quad \text{and} \quad \sum_{i} \mathcal{K}_{ij} \Delta q = 1$$

• recognize that  $\phi \leftrightarrow C$ ,  $\psi \leftrightarrow S$  and  $\mathcal{K} \leftrightarrow \mathcal{P}$ 

## sanity check - toy model

standard RL :  $\mathcal{S}_{j}^{(r+1)} = \mathcal{S}_{j}^{(r)} \bigg[ \sum_{i} \frac{\tilde{\mathcal{C}}_{i}}{\mathcal{C}_{i}^{(r)}} \mathcal{K}_{ij} \bigg]$ 

- pp correlation with Gaussian source function
- $R_G = 3.5$  fm,  $\lambda_{purity} = 0.8$ , noise-free
- · initial guess is taken as an uniform function
- general shape restored in short iterations properties:
  - positive-definiteness
  - $\circ~$  integral of  ${\cal S}$  is perserved, i.e.  $\sum {\cal S}^{(r+1)} = \sum {\cal S}^{(r)}$
  - $\circ~$  requires regularization if data is noisy
    - $\rightarrow$  total-variation
    - $\rightarrow$  maximum-entropy



#### total-variation regularization [Physica D. (1992) 60, no i-4, 259-268]

$$I_i^{(r)}(\lambda_{\mathrm{TV}}) = \begin{cases} \frac{1}{1 - \lambda_{\mathrm{TV}}} & \text{if } \mathcal{S}_i^{(r)} > \mathcal{S}_{i\pm 1}^{(r)} \\ \frac{1}{1 + \lambda_{\mathrm{TV}}} & \text{if } \mathcal{S}_i^{(r)} < \mathcal{S}_{i\pm 1}^{(r)} \\ 1 & \text{otherwise} \end{cases}$$

• Full iterative update:

$$\mathcal{S}_{j}^{(r+1)} = \mathcal{S}_{j}^{(r)} \bigg[ \sum_{i} \frac{\tilde{\mathcal{C}}_{i}}{\mathcal{C}_{i}^{(r)}} \mathcal{K}_{ij} \bigg] I^{(r)}(\lambda_{\mathrm{TV}})$$



[Pawel and Mizuki, PRC 105, 034608]

#### total variation regularization [Physica D. (1992) 60, no i-4, 259-268]

$$I_i^{(r)}(\lambda_{\mathrm{TV}}) = \begin{cases} \frac{1}{1 - \lambda_{\mathrm{TV}}} & \text{if } \mathcal{S}_i^{(r)} > \mathcal{S}_{i\pm 1}^{(r)} \\ \frac{1}{1 + \lambda_{\mathrm{TV}}} & \text{if } \mathcal{S}_i^{(r)} < \mathcal{S}_{i\pm 1}^{(r)} \\ 1 & \text{otherwise} \end{cases}$$

• Full iterative update:

$$\mathcal{S}_{j}^{(r+1)} = \mathcal{S}_{j}^{(r)} \bigg[ \sum_{i} \frac{\tilde{\mathcal{C}}_{i}}{\mathcal{C}_{i}^{(r)}} \mathcal{K}_{ij} \bigg] I^{(r)}(\lambda_{\mathrm{TV}})$$

- normalization of the "image" is destroyed, i.e.  $\forall r$ 

$$\sum_i \mathcal{S}_i^{(r+1)} 
eq \sum_i \mathcal{S}_i^{(r)}, ext{ in general}$$

→ solution : *maximum-entropy regularization* 



9/22



- define entropy  $\mathbb{S} = -\sum_j \mathcal{S}_j \ln(\mathcal{S}_j/\chi_j)$
- $\chi$  refers to our prior or known solution to S which, of course, does not exist.
- *floating default* : take  $\chi_j = \sum_k \prod_{jk} S_k$  as smoothened version S
  - $\circ$  choose gaussian smoothing kernel  $\implies$  determination of  $\sigma_r$

data term : 
$$\Delta^{H} \mathcal{S}_{j}^{(r)} = \mathcal{S}_{j}^{(r)} \left[ \sum_{i} \frac{\tilde{\mathcal{C}}_{i}}{\mathcal{C}_{i}^{(r)}} \mathcal{K}_{ij} - 1 \right]$$
  
regularization :  $\Delta^{\mathbb{S}} \mathcal{S}_{j}^{(r)} = -\alpha \mathcal{S}_{j} \left[ \mathbb{S} + \ln \frac{\mathcal{S}_{j}}{\chi_{j}} + 1 - \sum_{k} \frac{\mathcal{S}_{k}}{\chi_{k}} \Pi_{kj} \right]$ 

- define entropy  $\mathbb{S} = -\sum_j \mathcal{S}_j \ln(\mathcal{S}_j/\chi_j)$
- $\chi$  refers to our prior or known solution to S which, of course, does not exist.
- *floating default* : take  $\chi_j = \sum_k \prod_{jk} S_k$  as smoothened version S
  - $\circ\,$  choose gaussian smoothing kernel  $\implies\,$  determination of  $\sigma_r$
  - $\circ \alpha$  = regularization strength

$$\begin{aligned} \text{data term} : \Delta^{H} \mathcal{S}_{j}^{(r)} &= \mathcal{S}_{j}^{(r)} \bigg[ \sum_{i} \frac{\tilde{\mathcal{C}}_{i}}{\mathcal{C}_{i}^{(r)}} \mathcal{K}_{ij} - 1 \bigg] \\ \text{regularization} : \Delta^{\mathbb{S}} \mathcal{S}_{j}^{(r)} &= -\alpha \mathcal{S}_{j} \bigg[ \mathbb{S} + \ln \frac{\mathcal{S}_{j}}{\chi_{j}} + 1 - \sum_{k} \frac{\mathcal{S}_{k}}{\chi_{k}} \Pi_{kj} \bigg] \end{aligned}$$

- prepare smoothing matrix  $\Pi$  and kernel  ${\cal K}$
- starts with uniform guess  $\mathcal{S}^{(0)},$  for each iteration (r)
  - $\circ~$  compute the update from data (same as before)
  - $\circ~$  compute the  $\chi$  based on previous iteration (r-1)
  - $\circ~$  compute entropy and ots update in  ${\cal S}$

• converges if 
$$|\Delta^H S_j + \Delta^{\mathbb{S}} S_j| / (|\Delta^H S_j| + |\Delta^{\mathbb{S}} S_j|) \le 1e - 3$$



$$\begin{aligned} \text{data term} : \Delta^{H} \mathcal{S}_{j}^{(r)} &= \mathcal{S}_{j}^{(r)} \bigg[ \sum_{i} \frac{\tilde{\mathcal{C}}_{i}}{\mathcal{C}_{i}^{(r)}} \mathcal{K}_{ij} - 1 \bigg] \\ \text{regularization} : \Delta^{\mathbb{S}} \mathcal{S}_{j}^{(r)} &= -\alpha \mathcal{S}_{j} \bigg[ \mathbb{S} + \ln \frac{\mathcal{S}_{j}}{\chi_{j}} + 1 - \sum_{k} \frac{\mathcal{S}_{k}}{\chi_{k}} \Pi_{kj} \bigg] \end{aligned}$$

- ✓ clear convergenece criteria
- $\checkmark$  conservation of integralby construction,

$$\sum_{j} \Delta^{H} \mathcal{S}_{j}^{(r)} = \sum_{j} \Delta^{\mathbb{S}} \mathcal{S}_{j}^{(r)} = 0$$

- © need to optimize extra parameters
  - $\rightarrow\,$  regularization strength  $\alpha$
  - ightarrow width of smoothing matrix  $\sigma_r$



## optimization of (hyper-)parameters

- for a single correlation function, we need to set
  - $\circ$  purity parameter  $\lambda$
  - $\circ$  regularization strength  $\alpha$
  - $\circ$  width of smoothing matrix  $\sigma_r$
- minimizes  $\chi^2$  of predicted correlation and data

$$C = \mathcal{KS}$$
$$\mathcal{K}_{ij} = 4\pi r_j^2 \left( K(q_i, r_j) + \frac{1}{\lambda} \right) \Delta r$$

$$\Delta^{\mathbb{S}} \mathcal{S}_{j}^{(r)} = -\alpha \mathcal{S}_{j} \bigg[ \mathbb{S} + \ln \frac{\mathcal{S}_{j}}{\chi_{j}} + 1 - \sum_{k} \frac{\mathcal{S}_{k}}{\chi_{k}} \Pi_{kj} \bigg]$$

$$\chi_j = \sum_k \Pi_{jk} \mathcal{S}_k$$
$$\Pi_{jk} \propto \exp\left(-(r_j - r_k)^2/2\sigma_r\right)$$

# optimization of (hyper-)parameters



0.60

0.65 0.70 0.75 0.80 0.85

λ

## Test calculation

 $\rightarrow$  prepare data

0.0010

0.0008

 $S(x) = \frac{1}{2} \left[ \lim_{x \to 0} \frac{1}{2} - \frac{1}{2} \right]$ 

0.0002

0.0000

- $\circ$  gaussian correlation with  $\lambda_{C} = 0.65$  and  $R_{C} = 2.5$  fm
- $\circ$  add noise and perturb  $\rightarrow$  treated as measured data
- sample according to  $C(q) \sim \mathcal{N}(C(q), \delta q)$

truth

fitted

95% CI

98% CI

 $\rightarrow$  for each sample, apply deblurring to restore source function

0.010

0.008

0.004

0.002

0.000

5

r [fm]

 $^{2}S(r)[fm^{-}]$ 0.006

20

- deblurring
- bootstrap uncertainty



5

10

r [fm]

20

truth

fitted

95% CI

98% CI

# Results in pp HiRA data

- $\circ~$  V. Henzl et. al., PRC 85, 014606
- $\circ~^{40}\mathrm{Ca} + ^{40}\mathrm{Ca}$  at 80~AMeV
- $\circ~\text{high}~P_{cms} \in (740,900)~\text{MeV/c}$
- ∘ forward angle  $\theta_{lab} \in (33^{\circ}, 58^{\circ})$

| Parameter       | MEM-RL                          | Gaussian fit                    | Imaging                         |
|-----------------|---------------------------------|---------------------------------|---------------------------------|
| λ               | $0.66\substack{+0.05 \\ -0.05}$ | $0.61\substack{+0.11 \\ -0.08}$ | $0.69\substack{+0.19 \\ -0.12}$ |
| $r_{1/2}$ [fm]  | $4.17\substack{+0.38\\-0.38}$   | $4.20^{+0.29}_{-0.21}$          | $4.06\substack{+0.23 \\ -0.40}$ |
| $\sigma_r$ [fm] | $1.07\substack{+0.24 \\ -0.24}$ | N/A                             | N/A                             |





November 6, 2024

### HiRA10 data - $d\alpha$

#### Decay of excited state $^6Li^* \rightarrow d + \alpha$

- sharp peak at  $q \approx 42 \text{ MeV}/c$ • 2.186 MeV,  $J^{\pi} = 3^+$
- broad peak at  $q\approx 84~{\rm MeV}/c$ 
  - 4.312 MeV,  $J^{\pi} = 2^+$
  - $\circ~5.65~{\rm MeV}, J^{\pi}=1^+$

#### High Resolution Array

- 10cm of long CsI crystal,  $E_{\rm kin} \in (15.0, 131.5) \ {\rm MeV}/A$
- forawrd angle  $\theta_{lab} \in (30^{\circ}, 75^{\circ})$
- angular resolution better than  $0.5^\circ\,$  D. DellAquila et. al, 929, 2019, 162-172





#### HiRA10 data - $d\alpha$

Decay of excited state  $^6Li^* \rightarrow d + \alpha$ 

- sharp peak at  $q \approx 42 \text{ MeV}/c$ • 2.186 MeV,  $J^{\pi} = 3^+$
- broad peak at  $q\approx 84~{\rm MeV}/c$ 
  - 4.312 MeV,  $J^{\pi} = 2^+$
  - $\circ~5.65~{\rm MeV}, J^{\pi}=1^+$



Pierre & Pawel, 846, 138247

- $\rightarrow {}^{40}\mathrm{Ca} + {}^{112}\mathrm{Sn}$  at 140 AMeV
- ightarrow 40% central events, mid-rapidity  $|y_{
  m CMS}| \le 0.15$



## summary and outlook

summary

- $\checkmark$  developed deblurring method for source function with maximum-entropy regularization
- $\checkmark\,$  restored source function from pp and  $d\alpha$  from data
- $\checkmark$  applicable to source from transport models such as AMD and BUU (see Pierre's talk)

 $\checkmark\,$  challenges : discretization, source size characterization, and optimization of parameters upcoming...

 $\,\circ\,$  deblur Ca + Ni and Ca + Sn sources from HiRA10 data

 $\circ ~^{40,48}\text{Ca} + ~^{58,64}\text{Ni}$  at 56, 140 AMeV  $\circ ~^{40,48}\text{Ca} + ~^{112,124}\text{Sn}$  at 56, 140 AMeV

Thoughts...

o restore 2D, 3D source function ?

Resources...

- simple demo code for restoring source function
- web app for experimenting effects of parameters

# Thank you and Q. and A.

## backup - Richardson-Lucy algorithm

- recall the forward model :  $\phi(x) = \int \psi(x') P(x|x') \mathrm{d}x'$
- let Q(x'|x) be the reciprocal of P(x|x'), consider the probability of  $x \in (x + dx)$  and  $x' \in (x' + dx')$ ,

$$Q(x'|x)\phi(x) = P(x|x')\psi(x')$$

- from the normalization of P(x|x'), it follows that  $\psi(x') = \int Q(x'|x)\phi(x)dx$ .
- this suggests an iterative update scheme starting from a guess of  $\psi^{(0)}(x)$ .
  - $\circ~$  use the forward model to estimate  $\phi^{(r)}(x) = \int \psi^{(r)}(x') P(x|x') \mathrm{d}x'$

• updates 
$$\psi^{(r+1)}(x') = \int Q^{(r)}(x'|x) \tilde{\phi}(x) \mathrm{d}x$$

 $\circ$  where  $\phi(x)$  is approximated with observed data  $\tilde{\phi}(x)$ . Eliminating Q(x'|x) gives

$$\psi_j^{(r+1)} = \psi_j^{(r)} \left[ \sum_i \frac{\tilde{\phi}_i}{\phi_i^{(r)}} \mathcal{P}_{ij} \right]$$

#### backup - convergence

• convergence criteria : 
$$t_j = \frac{|\Delta^H S_j + \Delta^{\mathbb{S}} S_j|}{|\Delta^H S_j| + |\Delta^{\mathbb{S}} S_j|} \le 1e - 3.$$

