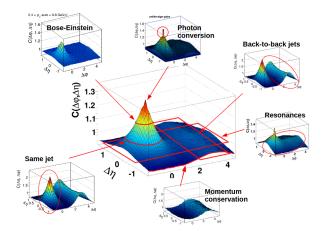
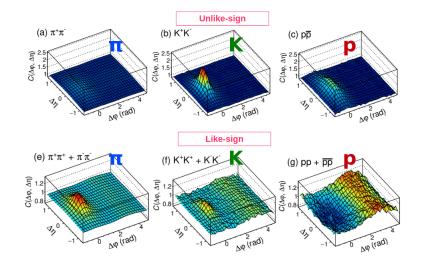
Investigating the influence of the mass on the baryon correlation puzzle using angular correlation functions at LHC energies


> Zuzanna Chochulska (for the ALICE Collaboration) Czech Technical University, Czechia Warsaw University of Technology, Poland

Zuzanna Chochulska (CTU, WUT)

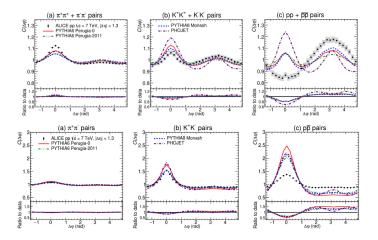
Introduction and general idea



Contributions from various sources to the angular correlation function $C(\Delta \eta, \Delta \varphi)$.

Ł. K. Graczykowski and M. A. Janik, Unfolding the effects of final-state interactions and quantum statistics in two-particle angular correlations, Phys.Rev. C, vol. 104, no. 5, p. 054909, 2021

WPCF 2024	Zuzanna Chochulska (CTU, WUT)	November 7, 2024	2 / 22
-----------	-------------------------------	------------------	--------


Baryon correlation puzzle

Zuzanna Chochulska (CTU, WUT

Baryon correlation puzzle

Comparing to the theoretical models

J. Adam et al., "Insight into particle production mechanisms via angular correlations of identified particles in pp collisions at $\sqrt{s} = 7$ TeV," Eur. Phys. J. C, vol. 77, no. 8, p. 569, 2017 and 201

WPCF 2024

Zuzanna Chochulska (CTU, WUT)

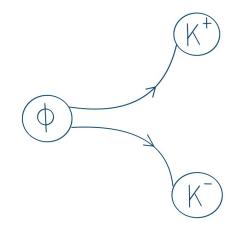
November 7, 2024

4 / 22

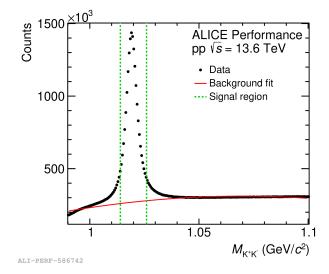
There are many possible explanations:

- \Box too small range of $p_{\rm T}$,
- $\hfill\square$ coulomb repulsion,
- $\hfill\square$ other baryons,
- $\hfill\square$ strong Final-State Interactions,
- $\hfill\square$ Fermi-Dirac Quantum Statistics.

- Tel - 1

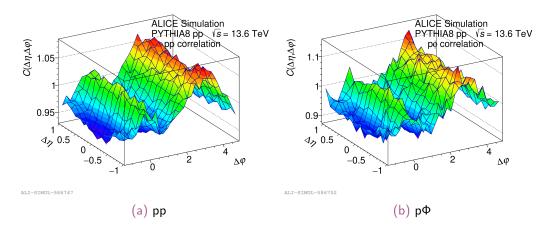

There are many possible explanations:

- \Box too small range of $p_{\rm T}$,
- $\hfill\square$ coulomb repulsion,
- $\hfill\square$ other baryons,
- $\hfill\square$ strong Final-State Interactions,
- $\Box\,$ Fermi-Dirac Quantum Statistics,
- \Box maybe mass plays a significant role?



Why Φ mesons?

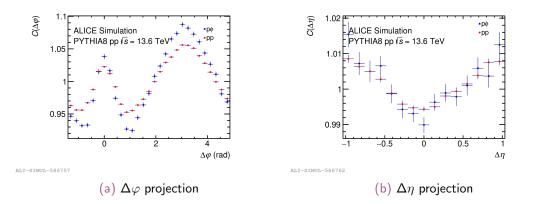
- Φ mesons have <u>similar mass</u> to protons but they are **not** baryons.
- By analysing correlation functions of Φ mesons there is a possibility to check whether this effect is purely baryonic.


Influence of the mass on the baryon correlation puzzle

Invariant mass distribution for Φ meson candidates, ALICE p-p collisions at $\sqrt{s} = 13.6$ TeV.

WPCF 2024 Zuzanna Chochulska (CTU, WUT) November 7, 2024 8/22

Influence of the mass on the baryon correlation puzzle


Angular correlation functions, PYTHIA p-p collisions at $\sqrt{s} = 13.6 \text{ TeV}$.

M	/P	CF	202	24

Zuzanna Chochulska (CTU, WUT)

November 7, 2024

9 / 22

Projections of angular correlation function for p Φ and pp correlations, PYTHIA p–p collisions at $\sqrt{s} = 13.6 \,\mathrm{TeV}$.

Tools that are used for the analysis of angular correlations in the ALICE experiment

The O^2 software

ALICE performs continuous data acquisition. New O^2 software introduces novel data format and processing method. It uses Apache Arrow flat arrays and is written in C++ 17.

The new software is more complex than the one used before and is still undergoing dynamic development. At the same time, the changes are so great that the existing analysis needs to be re-written.

P. Buncic, M. Krzewicki, and P. Vande Vyvre, "Technical Design Report for the Upgrade of the Online-Offline Computing System," tech. rep., 2015.

WPCF 2024

Zuzanna Chochulska (CTU, WU⁻

November 7, 2024

New ALICE ${\cal O}^2$ software:

- is based on the arrow tables https://arrow.apache.org/ (tables are split but linked),
- uses declarative programming.

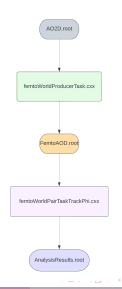
Track table	Collision index	рΤ	ф	η
Row I	I.	1.75	0.02	-0.5
Row 2	I.	0.38	1.32	0.32
Row 3	2	0.92	-0.75	0.44
Row 4	2	2.63	0.66	-0.01
Row 5	2	1.65	-0.23	-0.14
Row 6	2	1.32	0.62	0.09
Row 7	3	0.21	1.43	0.30

November 7, 2024

Femtoscopic and/or angular correlations of

- \Box hadron Φ ,
- $\square p \overline{p},$
- $\Box \pi \pi$,
- \square hadron V0,
- \square and hadron D0.

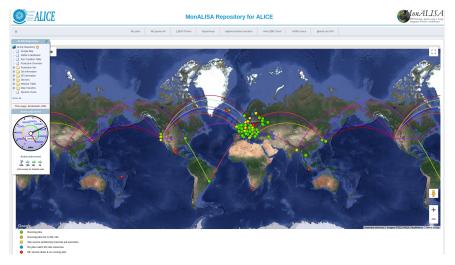
Modular producer is used to select particles of interest to be saved/reconstructed.


-

FemtoUniverse

Steps required

Required steps for this analysis:


- reconstruct Φ meson candidates from $K^+K^$ pairs,
- correlate given Φ mesons candidates with identified hadrons.



< 3 >

3

Each green dot indicate the site that is running jobs.

November 7, 2024

<□▶ <□▶ < □▶ < □▶ < □▶ = □ の Q ()

The Hyperloop train system is used to submit the analyses of multiple users to the GRID.

K +/- FemtoUniverse MC Truth					1
Analyzers: aplachta, bchytla, lgraczyk, majanik, zchochul 📋			JIRA : PWGCF-236		
Package: O2Physics::daily-20231125-0100-1	or newer tags	Future tag based on pull	request Learn more		
Search wagons by name					Datasets and Settings
Wagon	LHC22h1c1	LHC23d1k	LHC23f4b2	Last run	
FemtoUniverse_MCTruth_kaonkaon	×	×	×	134762	🚾 🧈 🗑
FemtoUniverse_MCTruth_Main_Producer	×	×	×	134418	🐷 🖈 🗑
FemtoUniverse_MCTruth_pionpion	×	×	×	134762	12 🖈 🦉
FemtoUniverse_MCTruth_Producer_pp	×	×	×	134762	12 af 🗑
FemtoUniverse_MCTruth_trackPhi	×	×	×	133510	🐱 🧈 🥛
Temp_FemtoUniverse_MCTruth_Specialized_Producer_PiPi	×	☑ *	2 *	135812	🐱 🧈 🥛
Temp_FemtoUniverse_MCTruth_Task_Track_Track_PiPi	×	2 *	2 *	135812	🐷 🧈 🍯
+ Add new wagon (or clone wagon from other analysis)					

(3)

Image: A mathematical states and a mathem

WPCF 2024

GitHub

To add developed code to the official repository we use GitHub.

All checks have passed 1 skipped and 10 successful checks	Hide	all checks
Skipped O Security approval / Security approval / Clear security message (pull_request_review) Skipped		Details
V O Formatting / PR formatting / clang-format (pull_request_target) Successful in 23s	Required	Details
V O MegaLinter / MegaLinter (pull_request_target) Successful in 2m		Details
V O Pull Request Labeler / labeler (pull_request_target) Successful in 2s		Details
V O Formatting / PR formatting / copyright headers (pull_request_target) Successful in 6s	Required	Details
V O Formatting / PR formatting / line endings (pull_request_target) Successful in 15s	Required	Details
Formatting / PR formatting / whitespace (pull_request_target) Successful in 7s	Required	Details
V O Formatting / PR formatting / pragma-once (pull_request_target) Successful in 5s	Required	Details
√ 🛞 build/02Physics/o2	Required	Details
√ 🛞 build/02Physics/o2/macOS		Details
√ 💽 build/02Physics/o2/macOS-arm	Required	Details

Zuzanna Chochulska (CTU, WUT)

November 7, 2024

イロト イボト イヨト イヨト

3

Summary and outlook

Summary:

- □ Baryon correlation puzzle remains unsolved still, but there are a lot of ongoing analyses trying to explain it.
- $\Box\,$ From what can be seen in PYTHIA pp and p Φ angular correlation functions are quite similar.

I Outlook:

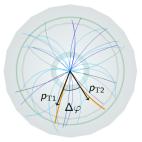
 \Box Future results of pΦ correlations from ALICE p-p collisions at $\sqrt{s} = 13.6$ TeV seam to be quite exciting!

Thank you for your attention!

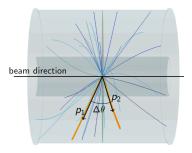
- - E - 5

= nar

19/22


Backup

1


イロト イヨト イヨト イヨト

Introduction and general idea

Observables

- \boldsymbol{p} particle momentum
- θ polar angle
- η pseudorapidity

 $p_{\rm T}$ - transverse momentum φ - azimuthal angle $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$

-

Introduction and general idea

Angular correlations

Signal distribution:

$$S(\Delta\eta,\Deltaarphi)=rac{d^2N^{signal}}{d\Delta\eta\Deltaarphi}$$

$$B(\Delta\eta,\Deltaarphi)=rac{d^2N^{mixed}}{d\Delta\eta\Deltaarphi}$$

Sput Bickgrout Bickg

Correlation function:

$$\mathcal{C}(\Delta\eta,\Deltaarphi) = rac{N^{ ext{mixed pairs}}}{N^{ ext{signal pairs}}}rac{\mathcal{S}(\Delta\eta,\Deltaarphi)}{\mathcal{B}(\Delta\eta,\Deltaarphi)}$$

M. A. Janik, Ph.D. thesis, Warsaw U. of Tech., 2014

WPCF 2024

Zuzanna Chochulska (CTU, WUT

November 7, 2024

- Tel - 1

22 / 22