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(Goals

e Use ALICE and its data as a unique environment for Machine Learning (ML) research

e |[dentify areas where both ALICE (or HEP in general) and ML communities can mutually
benefit from each other

e Our solutions should be easily applicable to other experiments with similar PID
capabilities

e Disclaimer:
o I’'m a physicist without a big ML expertise — just started my (human) learning of

machine learning :)

o My task is to guide and coordinate the work of WUT ML computer scientists within
ALICE

o The solution may be complicated (shooting a sparrow with a cannon), but the balance is
to keep the project interesting for ML itself and be useful for us at the same time! 5/19
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e an essential step for many physics analyses,
especially correlations of identified particles
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e we use ALICE as our R&D environment y
e adistinguishing feature of ALICE among the LHC v
experiments: | W
e identification of particles of momenta in a very
",c.ns- llllllllllllllllllllIllllllllllllIllllllllllllllllllll
wide momentum range )
e practically all known techniques employed: ror —
dE/dx energy loss, time-of-flight, Cherenkov -
radiation for hadrons and transition radiation for PO (RiCH) S
PHOS
" el

https://arxiv.org/abs/1709.00288
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https://arxiv.org/abs/1709.00288

Present state-of-art

1. Traditional method:

hand-crafted selections of selected quantities, e.g., no
* problems:

log, (dE/dx)

K -8% 170
K +8% 170
—e-8% 170
—e+8% 170

__—|—p+8% I70

—p -8% 170

e overlapping signals
e high purity at the cost of low efficiency
time-consuming optimization

2. Bayesian method (ALICE, EPJ Plus 131 (2016) 168): TR e e

—=Z|—n +8% 170

—x -8% 170

e updating probability of an hypothesis with each new evidence

priors = best guess of true particle yields per events " not covered in this talk
e posteriors ~ purity

increased purity, results consistent with the traditional method
J

Both methods available in 02 — ALICE Run 3 software

Can we do any better?

4/19


https://link.springer.com/article/10.1140/epjp/i2016-16168-5

Yes!
With ML )



ML for PID
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Advantages of the ML approach to PID:

e classification — a ''standard'’ ML problem
e can use more track parameters as input
e can learn more complex relationships

e many software libraries available

Note also the limitations:

e depends on quality of the training data (MC)
e hard to obtain systematic uncertainties
e hard to follow classifier's ''reasoning'' (black box)

Our first works show ML can greatly improve purity
and efficiency:

1. Random Forest: T. Trzcinski, . Graczykowski, M. Glinka,
ALICE Collaboration. Using Random Forest classifier for particle
identification in the ALICE experiment. Conference on Information
Technology, Systems Research and Computational Physics, pp.
3-17.2018

2. Domain Adaptation: M. Kabus, M. Jakubowska, k.
Graczykowski, K. Deja, ALICE Collaboration. Using machine learning
for particle identification in ALICE. JINST, v. 17, p. CO7016. 20226/1



https://link.springer.com/chapter/10.1007/978-3-030-18058-4_1
https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07016
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https://en.m.wikipedia.org/wiki/File: Random '?ores A
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First solution - Random Forest
Model works on high-level track parameters

Depends on the quality of Monte Carlo sample and
post-processed information (i.e. no calculation)

Can be used only for analysis-specific use-case
(concrete dataset and specific particle selection)

o model has to be trained by the specific end user
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https://en.m.wikipedia.org/wiki/File:Random_forest_explain.png

Current solution - our model

e Solution general enough to be used for variety of analyses

e At present our input data has 19 features: i.e. momentum components, charge sign, DCA,,
DCA,, detector signals (TPC dE/dx, TOF time, TRD signal), etc.

e Data might be missing from one or more detectors due to, e.g., too small p,

e In “standard” ML approaches dealing with such cases, people use data imputation or case
deletion - however artificially altered data may bias the physics results!
o Challenge: classify particles without making any assumptions about the missing values

e The proposed model is much more advanced than the proof-of-concept solution and has
4 steps (see next slides)

e [or details, see our two papers:
o EPJC 84(2024) 7, 691
o JINST 19 (2024) 07, C0O7013
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https://link.springer.com/article/10.1140/epjc/s10052-024-13047-3
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07013

Current solution - our model

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, +G

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

Inspired by AMI-Net proposed for
medical diagnosis from incomplete
data (medical records)

Attention-based Multi-instance Neural Network for Medical
Diagnosis from Incomplete and Low Quality Data

Zeyuan Wang'?, Josiah Poon', Shiding Sun?, Simon Poon'*
!School of Computer Science, The University of Sydney, Syndey, Australia
2School of Mathematics, Renmin University of China, Beijing, China
3Beijing Medicinovo Technology Co.,Ltd., Beijing, China
13zwan722 1@uni.sydeny.edu.au, ! {josiah.poon, simon.poon}@sydney.edu.au, *sunshidi ~edu.cn

2019 International Joint Conference on Neural Networks (IJCNN)

——— o M o e SRR
1. Feature Set Embedding to encode the inputs
2. Transformer Encoder to detect patterns in the input
3. Additional self-attention network to pool the encoder
output set into a single vector
4. Classifier a simple neural network to classify a given

particle type

details on slide 15 9/19


https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1904.04460
https://ieeexplore.ieee.org/xpl/conhome/8840768/proceeding
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Step 1: Embedding %(%ﬁgjﬁ%

Embedding is a technique to handle complex data

e |t works by converting high-dimensional data (i.e. sequences of words, documents, images,
etc.), into lower-dimensional and abstract vector representation (embedding space)

e |t allows for capturing meaningful relationships between data entities (words, etc.)

< JEAS ) = ( ) | S Ul

{ INPUT EMBEDDING }

https://www.datacam com/tutorlal/how transformers -work
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https://www.datacamp.com/tutorial/how-transformers-work
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Step 1: Feature Set Embedding - %ﬂ(

Feature Set Embedding (NIPS 2010 article):

Missing data challenge: e instead of vectors, use (feature,value) pairs; no value — no pair
classify without making any o no need to model missing data (i.e. imputation)
assumptions about the :l/l\ e pairs in embedding space: similar features are close to each

missing values other

e pairs are then combined (by NN) into vectors (embeddings)

Input [ Set Embedding \ Output
K

[ Feature A: 0.15 ]

1

I

I

I
. P SRS A W ———— ¥
Feature B missing hd i

p(F,0.77) ®
0.

Feature C missin,
track g o(E,

19 features < Feature D missing :
in our case ( Feature E: 0.28 )
( Feature F: 0.77 ) i

\_ Feature G missing V(A’ 0.15) j

Image source: NIPS 2010 article 11/19

)| embeddings
» 32 vectors
in our case



https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf

Step 2: Transformer Encoder
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https://www.datacamp.com/tutorial/how-transformers-work
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Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Rescarch Google Rescarch
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Aidan N. Gomez*
University of Toronto
aidan@cs.toronto.edu

Llion Jones*
Google Research
1lion@google.com

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* ¢
illia.polosukhin®gmail.com

|dea from original Transformer architecture proposed
by Google (NIPS 2017 article)

Developed for transforming input data into a
contextualized representation on the output

Transformer currently serves as basis for the Natural
Language Processing tools (such as ChatGPT)

In our case, vectors from Embedding are
processed by the Encoder only

o we do not need Decoder in our use-case 12/19


https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.datacamp.com/tutorial/how-transformers-work

Steps 2 and 3: self-attention

Attention and self-attention are mechanisms used to
help model focus on relevant parts of the input data
o self-attention focuses on relationships within
the same input sequence

Example: "The cat sat on the mat"

o when processing the word "cat," it considers
other words (i.e. "the" or "mat") to understand
their contribution to the meaning of "cat" (in the
context of the entire sentence)

is

Usage of self-attention in Transformer architecture:

o in single-head attention, a single set of attention
scores is used to focus on a particular part of the
input sequence — limited ability to capture
different relationships

o multi-headed attention uses multiple attention
heads, where each head focuses on different
parts of the input simultaneously

in

in

this
spirit
that

nnnnnnnnnnnnnnnnnnn

nnnnnnn

We use self-attention twice:
e in Transformer Encoder
e Dbefore Classifier

this

spirit

that
majority
of
American
governments
have
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new

laws
since
2009
making
the
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voting
process
more
difficult
<EOS>
<pad>
<pad>
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<pad>
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colors = attentions from different heads

NIPS 2017 article
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https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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Step 4: classification ﬁ%(% )i 1

TRACK’'S DATA
e Single output vector from the Self-attention network is propagated to :
the Classifier

¥

NEURAL NETWORK TRAINED

e Classifier is represented by one simple neural network (one hidden FOR SINGLE PARTICLE
layer) per particle (one vs all approach) . TYPE
o the same architecture is used separately for pions, kaons, protons ®

e Classifier score: logistic function f(z) = 5 +i_x in range (0, 1) represents

"certainty" that a given particle belongs to the given particle type
o users can still balance the efficiency and purity by setting their
own threshold on the “certainty” value

l

CERTAINTY VALUE
(SINGLE FLOAT)




Detalls of the architecture

Embedding

Self-
Attention

Input Set

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, +G

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

Classifier

This model is applied

Prediction

_ Transformer |, —>{ softmax ¢ separately for pions,
kaons, protons
/ T \ “certainty”
heads N
Embedding /| Transformer encoder ~ in each head Self-attention Classifier
_l,Encoder layer 2 layers (att.+NN) S S
Multi-head attention Neural network
Input Hidden Output| Dimension Heads Input Hidden Output | Input Hidden Output| Input Hidden Output
19 128 32 32 2 32 128 32 32 64 32 32 64 1

o to minimize differences between predicted and true values (labels from MC truth data)

dropout value 0.1 at the output of embedding and each Transformer Encoder layer (to limit overfitting)
softmax function is applied to obtain weights to create a single output (weighted average) vector
activation function (between neural network layers): RelLU (Rectified Linear Unit)

loss function that is minimized is binary cross entropy (for one vs all approach)
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M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, +G

TeSt Set u p M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

e Dataset: Run 2 general-purpose MC (Pythia 8) pp at /s = 13 TeV with full detector simulation
with Geant 4 (both MC truth and reconstructed data are used)
e Standard no method:
N, 1ecl < 3 for p; < 0.5 GeV/e, |(n, o+ Ny or) <3forp. = 0.5 GeV/c
e Dataset details:
o no. tracks: ~2.7 million
o  30% - test dataset
o from the 70% of the rest:
m /0% training
m 30% validation

Missing data distribution

HEEl No missing values: 37.14%
Hl TRD, TOF Signals missing: 36.70%
I TOF Signal missing: 24.78%

TRD Signal missing: 1.38%

16/19



M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, G

Results — pions, kaons, protons ¥ &t Easte .

M. Karwowska, £G, K. Deja, M. Kasak,
M. Jaik, JINST 19 (2024) 07, C07013

F, = (purity x efficiency) / (purity + efficiency)

FSE + attention with very good scores of F., purity (precision) and efficiency (recall)

Proposed model (FSE+Attention) kaon selection
compared to other approaches: Maan e Ensemble  -—— Standard

e imputation:

-~~~ Regression —— Proposed

artificial bias in data
O mean
O regression

e NN ensemble (4 networks):
potentially large complexity

e standard: 1.0
no method o
A, 2< 3 for ,oT2< 0.5 GeV/c *0.51
\/(no, o NG 1o ) <3 forp,=0.5 GeV/e - 3 : "

pr [GeV/c]



Conclusions
R&D phase of the ML PID (almost) finished!

FSE+Attention model works well for the three basic identified hadron species (pions, kaons,
protons)

Lots of work done, but still more ahead!
Plans for future:

e tests with Run 3 data with new O? analysis framework (ongoing)

e automation of model training and regular training of models for new Run 3 datasets
(implementation)

e extending the model with domain adaptation (still to do)

e advertise PID ML among ALICE analyzers (to do when fully implemented)

The work has been carried out by an interdisciplinary team from 4 faculties of WUT:

e Physics: . Graczykowski (general idea, coordination, evaluation), M. Janik (evaluation), M.
Karwowska (implementation), S. Monira (tests of implemented model)

e Flectronics and Information Technology: Kamil Deja, Mitosz Kasak (ML R&D)

e Flectrical Engineering: Monika Jakubowska (coordination, evaluation) 18/19

e Mathematics and Computer Science: Marek Mytkowski, Mateusz Oledzki (implementation)
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TPC signal (a.u.)

Run 2 results

e ppat7 TeV, Pythia 6 Perugia-0

e kaons vs other particles

Traditional PID:

2
Ng TPC

2 2
\/no,TPC + N5 ToF

pr < 0.5GeV/c
pr > 0.5GeV /c

much higher /
efficiency and purity
with Random Forest

N
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| ALICE Simulation

pp\5=7TeV
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| Kaon selection

1 —— Traditional PID, Total 0.80

—— Random Forest, Total 0.97
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| Kaon selection

1 —— Traditional PID, Total 0.88

—— Random Forest, Total 0.97
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Results

F, =2 x (purity x efficiency) / (purity + efficiency)

ML outperforms the standard way

FSE + attention with very good
scores Of F,

No flaws of other methods:

e imputation:
artificial bias in data
e case deletion:
no ability to analyze samples
with missing detector signals
e NN ensemble:
potentially large complexity

m p K m o K
standard 87.87 £0.87(74.61 £1.88(73.17 £+ 1.57|87.66 + 0.8769.12 + 1.93(69.44 + 1.60
NN ensemble |98.45 + 0.04|95.42 + 0.12 (86.74 + 0.16 [ 98.27 + 0.42|94.60 + 0.10(84.91 + 0.48
mean 98.40 + 0.01[95.54 + 0.06 | 86.36 + 0.34 |98.34 + 0.01[94.75 + 0.20 | 84.67 + 0.38
attention + FSE [98.50 + 0.02 (95.79 + 0.07 [ 87.44 + 0.14 |98.44 + 0.02(94.89 + 0.14 [ 86.00 + 0.13
regression 98.40 + 0.04(95.49 + 0.15(86.22 + 0.46 |98.36 + 0.03 | 94.57 + 0.13[85.01 + 0.13
m, P, K, m, P K,
only only only only only only
complete complete complete complete complete complete
data data data data data data
case deletion  [99.37 + 0.01(99.43 + 0.1696.95 + 0.06 |99.37 + 0.01]99.13 + 0.2696.33 + 0.11
NN ensemble [99.38 + 0.01[99.46 + 0.13(97.23 + 0.10(99.34 + 0.18|99.33 + 0.10[96.87 + 0.09
mean 99.27 + 0.04[99.47 + 0.08 | 96.08 + 0.36 |99.27 + 0.04 [99.20 + 0.27(95.45 + 0.33
attention + FSE | 99.36 + 0.01[99.48 + 0.02 |97.04 + 0.17 |99.37 + 0.03|99.44 + 0.0896.91 + 0.11
regression 99.25 + 0.07(99.37 + 0.0795.62 + 0.39]99.28 + 0.02(99.10 £ 0.13[95.11 + 0.58
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Example: FSE with one-hot
encoding

M. Kasak, K. Deja. M. Karwowska,

M. Jakubowska, £. Graczykowski

M. Janik, EPJ C 84 (2024) 7, 691

M. Karwowska, k. Graczykowski, K. Deja,
M. Kasak, JINST 19 (2024) 07, C07013

Table 1: Preprocessing of data samples into feature set values — example.

(a) 3 data samples with 5 attributes with different amount of missing values.

id | momentum | TOF | TPC | TRD | ITS
1 k1 3 5)
2 7 70 24 13| 88
3 78
(b) First particle (c) Second particle. (d) Third particle.
key value key value key value
1/0(010]0 0.1 1{0(010]0 ] 0/1]0 78
0/0]1]01]0 3 011]0(01]0 70
001001 5) 0/0|1]01]0 24
01010110 13
010|001 88
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Embedding Classifier

The attention continued .. %

2. Transformer Encoder

rrrrrrrrrrrrr

nnnnn

Output
4 Linear . .
e w ° gdjusted original Transformer
Feed ncoder
s . e attention without convolutions and
N=2 N R ScaledAtE)gr:;izlr’]oduot .J&h recurrence
—— / T 1 I e finding self-correlations in an
&nﬁi) [rLinear]J[Ir_inear]_][T_inear]J |nStanC9 Set Of VQF)’[OI’S .
1 ¥ 7 ¥ e example: a specific detector signal
g could be used if and only if the
Emb‘}ddi”g v K Q momentum is in a specific range
Inputs Q) K, V e ]:'_{nxdl.c
modified diqgram Q KT
from the article Attention(Q, K, V) = softmax ( > 1%
Vdy
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https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Self-
Attention

Pooli d classification _.
ooling and classification %% [%ﬂ%%_,

Classifier: a simple neural network
expects a single vector as an input

Solution: self-attention to pool the variable-size vector set from Transformer Encoder

{U17U27'“7U1’L}7 () S RdmOdel

e; = NN (Uz) Vi € [1, n] self-attention values
/ / :
o = softmax (6j) Vj € |1, dmodel] self-attention weights
n
0j = Z Ok Uk Vi € (1, dnodel] pooled output vector
k=1

Classifier score: logistic function f (z) = H% range (O, 1)

"certainty" that a given particle belongs to the given type
24/19



Architecture of tested neural networks

Attention + FSE

e embedding layers: 19 — 128 — 32 neurons
e Transformer Encoder:
e Multi-Head Attention: dimension 32, 2 heads
e neural network layers: 32 — 128 — 32 neurons
e 2 layers of Multi-Head Attention + neural network
Self-Attention layers: 32 — 64 — 32 neurons
classifier layers: 32 — 64 — 1 neurons
dropout 0.1 at the output of embedding and each Transformer Encoder layer
RelU activation between neural network layers
classifier loss function: binary cross entropy

Imputations, case deletion, and NN ensemble

e 3 hidden layers of sizes 64, 32, 16 with Leaky Rel.U activation

e dropout 0.1 after each activation layer

* input size:
e imputations and case deletion: 19 as all missing features are imputed
e ensemble: 4 networks with input sizes 19, 17, 17, 15

25/19



Simple network implementation O PyTorch

e linear layers with RelLU, sigmoid at the end
e simple: dropout after each linear layer

Parameters:

e optimizer: Adam

e output layer: 1 node (yes / no for a given particle)
e |oss function: binary cross entropy

e scheduler: exponential with rate 0.98

® |earning rate: 0.0005

e Dpatch size: 64

e epochs: 30

26/19



Precision

Sample ROC curves

FSE+attention achieves best resulits.

Little variation between particle species.
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M. Kabus, M. Jakubowska,
t. Graczykowski, K. Deja

MOre to go domaln adaptat|on JINST 17, C07016. 2022

e Monte Carlo never ideally matches the experimental data (both
physics and detector response simulation)

¢ Problem: transferring the knowledge from a labeled source domain
(MC data) to unlabeled target domain (experimental data), when
both domains have different distributions of attributes

e How can we transfer the knowledge from training to inference?

Standard PID example: '"tune on data"

e et parametrization from data — real data

e generate a random detector signal — MC data

e cquivalent distributions of real and MC samples
— the differences are statistical fluctuations

e does not include correlations between attributes

Machine learning:

e actually learn the difference between data domains =
e translate both data to a single common hyperspace == nms il e




More to go: domain adaptatlon
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More to go: domain adaptation

Feature mapping: input — domain invariant features

Particle classifier: recognize particles based on domain invariant latent space

Domain classifier: recognize MC vs real samples
Training more complicated:

1. Train the domain classifier independently.
2. Freeze the domain classifier.

3. Train jointly particle classifier and feature mapper -

adversarially to the domain classifier.

4.  Weights of the feature mapper:
gradient from particle classifier Input .
+ reversed gradient from domain classifier

Application time similar to a standard classifier

Our current solution still misses this step
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Integration with O%: user interface &) ONNX

O2Physics

Your main O2 analysis task

O2Physics Python PidOnnxModel class

Model loaded via ONNXRuntime

PID ML producer task PID ML Python software
Convert tracks m—eep 12N Neural network on comparable MC input data . »  Analyze input collisions and tracks
to PID ML input Store trained models on GRID using track PID from the PID ML task
. PidOnnxModel
. PidOnnxinterface class
PidOnnxModel PidOnnxModel Select model to load
PidOnnxModel

e 1instance = 1 model = 1 particle species recognized (yes / no)
e convenient interface clearly separated from the rest of analysis

e using all capabilities of Python ML libraries for training
e  ONNKX file format and ONNXRuntime software used for inference in O? C++ environment

PidOnnxInterface

e automatically select most suitable model for user needs or manual mode
e gs little additional knowledge from the analyser as possible (‘change 1 line in the code”)

https://onnx.ai/ 31/19
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