

Faculty of Physics Warsaw University of Technology

Towards more precise correlation studies with machine learning-based particle identification with missing data

Łukasz Graczykowski *in collaboration with* M. Janik, M. Karwowska, S. Monira, K. Deja, M. Kasak, M. Jakubowska, M. Mytkowski, M. Olędzki

Toulouse, France 8 November 2024

Based on: EPJ C 84 (2024) 7, 691 JINST 19 (2024) 07, C07013

Goals

- Use ALICE and its data as a unique environment for Machine Learning (ML) research
- Identify areas where both ALICE (or HEP in general) and ML communities can mutually **benefit** from each other
- Our solutions should be **easily applicable to other experiments** with similar PID capabilities
- Disclaimer:
 - I'm a physicist without a big ML expertise just started my (human) learning of machine learning :)
 - My task is to guide and coordinate the work of WUT ML computer scientists within ALICE
 - The solution may be **complicated** (*shooting a sparrow with a cannon*), but the balance is to keep the project interesting for ML itself and be useful for us at the same time!

Particle identification (PID)

Aim: provide high purity samples of particles of a given type

- an essential step for many physics analyses, especially correlations of identified particles
- we use ALICE as our R&D environment
- **a distinguishing feature** of ALICE among the LHC experiments:
 - identification of particles of momenta in a **very** wide momentum range
 - practically **all known techniques** employed: dE/dx energy loss, time-of-flight, Cherenkov radiation for hadrons and transition radiation for electrons

Present state-of-art

1. Traditional method:

- hand-crafted selections of selected quantities, e.g., <u>nσ</u>
- problems:
 - overlapping signals
 - high purity at the cost of low efficiency
 - time-consuming optimization
- 2. Bayesian method (ALICE, EPJ Plus 131 (2016) 168):
 - updating probability of an hypothesis with each new evidence
 - priors = best guess of true particle yields per events
 - posteriors ~ purity
 - increased purity, results consistent with the traditional method

Both methods available in O² – ALICE Run 3 software

not covered in this talk

Can we do any better?

Yes! With ML :)

ML for PID

Advantages of the ML approach to PID:

- classification a ''standard'' ML problem
- can use more track parameters as input
- can learn more complex relationships
- many software libraries available

Note also the limitations:

- depends on quality of the training data (MC)
- hard to obtain systematic uncertainties
- hard to follow classifier's ''reasoning'' (**black box**)

Our **first works** show ML can **greatly improve** purity and efficiency:

- <u>Random Forest</u>: T. Trzciński, Ł. Graczykowski, M. Glinka, ALICE Collaboration. Using Random Forest classifier for particle identification in the ALICE experiment. Conference on Information Technology, Systems Research and Computational Physics, pp. 3-17. 2018
- <u>Domain Adaptation</u>: M. Kabus, M. Jakubowska, Ł. Graczykowski, K. Deja, ALICE Collaboration. Using machine learning for particle identification in ALICE. JINST, v. 17, p. C07016. 2022 6/19

Proof-of-concept: Random Forest

Ważność

T. Trzciński, Ł. Graczykowski, M. Glinka, Conference on Information Technology, Systems Research and Computational Physics, 3-17. 2018

Preliminary work with ALICE Run 2 data

2018

- First solution Random Forest
- Model works on high-level track parameters
- Depends on the **quality of Monte Carlo sample** and **post-processed information** (i.e. no calculation)
- Can be used only for analysis-specific use-case (concrete dataset and specific particle selection)
 model has to be trained by the specific end user

Current solution - our model

- Solution **general enough** to be used for variety of analyses
- At present our input data has 19 features: i.e. momentum components, charge sign, DCA_{XY}, DCA₇, detector signals (TPC dE/dx, TOF time, TRD signal), etc.
- Data might be missing from one or more detectors due to, e.g., too small p_{T}
- In "standard" ML approaches dealing with such cases, people use data imputation or case deletion - however artificially altered data may <u>bias the physics results</u>!
 - **Challenge:** classify particles <u>without making any assumptions</u> about the missing values
- The proposed model is much more advanced than the proof-of-concept solution and has
 4 steps (see next slides)
- For details, see our two papers:
 - <u>EPJ C 84 (2024) 7, 691</u>
 - JINST 19 (2024) 07, C07013

Current solution - our model

- 1. Feature Set Embedding to encode the inputs
- 2. Transformer Encoder to detect patterns in the input
- **3.** Additional **self-attention** network to pool the encoder output set into a single vector
- 4. Classifier a simple neural network to classify a given particle type

M. Kasak, K. Deja. M. Karwowska, M. Jakubowska, ŁG M. Janik, EPJ C 84 (2024) 7, 691 M. Karwowska, ŁG, K. Deja, M. Kasak, M. Jaik, JINST 19 (2024) 07, C07013

Inspired by <u>AMI-Net</u> proposed for medical diagnosis from incomplete data (medical records)

Attention-based Multi-instance Neural Network for Medical Diagnosis from Incomplete and Low Quality Data

Zeyuan Wang^{1,3}, Josiah Poon¹, Shiding Sun², Simon Poon^{1*} ¹School of Computer Science, The University of Sydney, Syndey, Australia ²School of Mathematics, Renmin University of China, Beijing, China ³Beijing Medicinovo Technology Co.,Ltd., Beijing, China ^{1,3}zwan7221(2uni.sydeny.edu.au, ¹fjosiah.poon, simon.poon)@sydney.edu.au, ²sunshiding@ruc.edu.cn

2019 International Joint Conference on Neural Networks (IJCNN)

details on slide 15

Step 1: Embedding

• Embedding is a technique to handle complex data

- It works by **converting high-dimensional data** (i.e. sequences of words, documents, images, etc.), **into lower-dimensional** and **abstract vector representation (embedding space)**
- It allows for capturing meaningful relationships between data entities (words, etc.)

Step 1: Feature Set Embedding

Missing data challenge: classify without making any assumptions about the missing values

Feature Set Embedding (NIPS 2010 article):

- instead of vectors, use (feature, value) pairs; no value \rightarrow no pair
 - no need to model missing data (i.e. imputation)
- pairs in embedding space: <u>similar features are close to each</u> <u>other</u>
- pairs are then combined (by NN) into vectors (<u>embeddings</u>)

Step 2: Transformer Encoder

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Google Brain Google Brain G avaswani@google.com noam@google.com nil

Niki Parmar* Jakob Uszkoreit* Google Research nikip@google.com usz@google.com

12/19

Llion Jones* Google Research llion@google.com
 Aidan N. Gomez*
 Łukasz Kaiser*

 University of Toronto
 Google Brain

 aidan@cs.toronto.edu
 lukaszkaiser@google.com

Illia Polosukhin^{* ‡} illia.polosukhin@gmail.com

- Idea from original **Transformer** architecture proposed by Google (<u>NIPS 2017 article</u>)
- Developed for transforming input data into a contextualized representation on the output
- Transformer currently serves as basis for the Natural
 Language Processing tools (such as ChatGPT)
- In our case, vectors from Embedding are processed by the Encoder only
 - we do not need Decoder in our use-case

Steps 2 and 3: self-attention

- Attention and self-attention are mechanisms used to help model focus on relevant parts of the input data
 - self-attention focuses on relationships within the same input sequence
- **Example:** "The cat sat on the mat"
 - when processing the word "cat," it considers other words (i.e. "the" or "mat") to understand their contribution to the meaning of "cat" (in the <u>context of the entire sentence</u>)
- Usage of **self-attention in Transformer architecture:**
 - o in single-head attention, a single set of attention scores is used to focus on a particular part of the input sequence → limited ability to capture different relationships
 - multi-headed attention uses multiple attention heads, where each head focuses on different parts of the input <u>simultaneously</u>

We use self-attention twice:

- in Transformer Encoder
- before Classifier

Step 4: classification

Input set

- Single output vector from the Self-attention network is propagated to the Classifier
- Classifier is represented by one simple neural network (one hidden layer) per particle (one vs all approach)
 the same architecture is used separately for pions, kaons, protons
- Classifier score: logistic function f(x) = 1/(1+e^{-x}) in range (0, 1) represents
 "certainty" that a given particle belongs to the given particle type
 users can still balance the efficiency and purity by setting their own threshold on the "certainty" value

- **dropout** value 0.1 at the output of embedding and each Transformer Encoder layer (to limit overfitting)
- **softmax function** is applied to obtain weights to create a single output (weighted average) vector
- activation function (between neural network layers): *ReLU* (*Rectified Linear Unit*)
- loss function that is minimized is *binary cross entropy* (for *one vs all* approach)
 to minimize differences between *predicted* and *true* values (labels from MC truth data)

Test setup

M. Kasak, K. Deja. M. Karwowska, M. Jakubowska, ŁG M. Janik, EPJ C 84 (2024) 7, 691 M. Karwowska, ŁG, K. Deja, M. Kasak, M. Jaik, JINST 19 (2024) 07, C07013

- **Dataset:** Run 2 general-purpose MC (Pythia 8) pp at $\sqrt{s} = 13$ TeV with full detector simulation with Geant 4 (both MC truth and reconstructed data are used)
- Standard nσ method:

 $|n_{_{\sigma, TPC}}| < 3 \text{ for } p_{_{T}} < 0.5 \text{ GeV/}c, \ \sqrt{(n_{_{\sigma, TPC}}^2 + n_{_{\sigma, TOF}}^2)} < 3 \text{ for } p_{_{T}} \ge 0.5 \text{ GeV/}c$

- Dataset details:
 - no. tracks: ~2.7 million
 - 30% test dataset
 - from the 70% of the rest:
 - 70% training
 - 30% validation

Missing data distribution

Results – pions, kaons, protons

F₁ = (purity x efficiency) / (purity + efficiency)

FSE + attention with very good scores of F₁, purity (precision) and efficiency (recall)

Proposed model (FSE+Attention) compared to other approaches:

 imputation: artificial bias in data
 mean

regression

• **NN ensemble** (4 networks): potentially large complexity

• **standard:** no method $|n_{\sigma, TPC}| < 3 \text{ for } p_T < 0.5 \text{ GeV/c}$ $\sqrt{(n_{\sigma, TPC}^2 + n_{\sigma, TOF}^2)} < 3 \text{ for } p_T \ge 0.5 \text{ GeV/c}$

kaon selection

M. Kasak, K. Deja. M. Karwowska,

M. Janik, EPJ C 84 (2024) 7, 691 M. Karwowska, ŁG, K. Deja, M. Kasak, M. Jaik, JINST 19 (2024) 07, C07013

M. Jakubowska, ŁG

Conclusions

R&D phase of the ML PID (almost) finished!

FSE+Attention model works well for the three basic identified hadron species (pions, kaons, protons)

Lots of work done, but still more ahead!

Plans for future:

- tests with Run 3 data with new O² analysis framework (*ongoing*)
- automation of model training and regular training of models for new Run 3 datasets (*implementation*)
- extending the model with domain adaptation (*still to do*)
- advertise PID ML among ALICE analyzers (to do when fully implemented)

The work has been carried out by an interdisciplinary team from 4 faculties of WUT:

- Physics: Ł. Graczykowski (general idea, coordination, evaluation), M. Janik (evaluation), M. Karwowska (implementation), S. Monira (tests of implemented model)
- Electronics and Information Technology: Kamil Deja, Miłosz Kasak (ML R&D)
- Electrical Engineering: Monika Jakubowska (coordination, evaluation)
- Mathematics and Computer Science: Marek Mytkowski, Mateusz Olędzki (implementation)

Run 2 results

Traditional PID:

rPC signal (a.u

200

150

100

1.2

Results

F₁ = 2 x (purity x efficiency) / (purity + efficiency) **best model**, **2nd best model**

ML outperforms the standard way

FSE + attention with very good scores of F₁

No flaws of other methods:

- imputation: artificial bias in data
- case deletion: no ability to analyze samples with missing detector signals
- NN ensemble: potentially large complexity

	π	p	K	π	p	ĸ
standard	87.87 ± 0.87	74.61 ± 1.88	73.17 ± 1.57	87.66 ± 0.87	69.12 ± 1.93	69.44 ± 1.60
NN ensemble	98.45 ± 0.04	95.42 ± 0.12	86.74 ± 0.16	98.27 ± 0.42	94.60 ± 0.10	84.91 ± 0.48
mean	98.40 ± 0.01	95.54 ± 0.06	86.36 ± 0.34	98.34 ± 0.01	94.75 ± 0.20	84.67 ± 0.38
attention + FSE	98.50 ± 0.02	95.79 ± 0.07	87.44 ± 0.14	98.44 ± 0.02	94.89 ± 0.14	86.00 ± 0.13
regression	98.40 ± 0.04	95.49 ± 0.15	86.22 ± 0.46	98.36 ± 0.03	94.57 ± 0.13	85.01 ± 0.13

	π ,	p,	K,	$\overline{\pi},$	p ,	<i>K</i> ,
	complete data	complete data	complete data	complete data	complete data	complete data
case deletion	99.37 ± 0.01	99.43 ± 0.16	96.95 ± 0.06	99.37 ± 0.01	99.13 ± 0.26	96.33 ± 0.11
NN ensemble	99.38 ± 0.01	99.46 ± 0.13	97.23 ± 0.10	99.34 ± 0.18	99.33 ± 0.10	96.87 ± 0.09
mean	99.27 ± 0.04	99.47 ± 0.08	96.08 ± 0.36	99.27 ± 0.04	99.20 ± 0.27	95.45 ± 0.33
attention + FSE	99.36 ± 0.01	99.48 ± 0.02	97.04 ± 0.17	99.37 ± 0.03	99.44 ± 0.08	96.91 ± 0.11
regression	99.25 ± 0.07	99.37 ± 0.07	95.62 ± 0.39	99.28 ± 0.02	99.10 ± 0.13	95.11 ± 0.58

Example: FSE with one-hot encoding

M. Kasak, K. Deja. M. Karwowska, M. Jakubowska, Ł. Graczykowski M. Janik, EPJ C 84 (2024) 7, 691 M. Karwowska, Ł. Graczykowski, K. Deja, M. Kasak, JINST 19 (2024) 07, C07013

Table 1: Preprocessing of data samples into feature set values – example.

(a) 3 data samples with 5 attributes with different amount of missing values.

id	momentum	TOF	TPC	TRD	ITS
1	0.1		3		5
2	7	70	24	13	88
3		78			

(b) First particle

(c) Second particle.

		value			
1	0	0	0	0	0.1
0	0	1	0	0	3
0	0	0	0	1	5
		() 			

		value			
1	0	0	0	0	7
0	1	0	0	0	70
0	0	1	0	0	24
0	0	0	1	0	13
0	0	0	0	1	88

(d) Third particle.

		value			
0	1	0	0	0	78
	2 0				
	9 0				

22/19

The attention continued

2. <u>Transformer Encoder</u>

modified diagram from the article

- adjusted original Transformer Encoder
- attention without convolutions and recurrence
- finding self-correlations in an instance set of vectors
- example: a specific detector signal could be used if and only if the momentum is in a specific range

Attention
$$(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Pooling and classification

Classifier: a simple neural network expects a single vector as an input

Solution: self-attention to pool the variable-size vector set from Transformer Encoder

Embedding

Transformer

Encoder

Attention

$$\{v_1, v_2, ..., v_n\}, v_i \in \mathbf{R}^{d_{model}}$$

$$e_i = NN(v_i) \quad \forall i \in [1, n] \quad \text{self-attention values}$$

$$\alpha'_j = softmax(e'_j) \quad \forall j \in [1, d_{model}] \quad \text{self-attention weights}$$

$$o_j = \sum_{k=1}^n \alpha_{kj} v_{kj} \quad \forall j \in [1, d_{model}] \quad \text{pooled output vector}$$

Classifier score: logistic function $f(x) = \frac{1}{1+e^{-x}}$, range (0, 1) "certainty" that a given particle belongs to the given type

Softmax

Classifier

Prediction score

Architecture of tested neural networks

Attention + FSE

- embedding layers: 19 128 32 neurons
- Transformer Encoder:
 - Multi-Head Attention: dimension 32, 2 heads
 - neural network layers: 32 128 32 neurons
 - 2 layers of Multi-Head Attention + neural network
- Self-Attention layers: 32 64 32 neurons
- classifier layers: 32 64 1 neurons
- dropout 0.1 at the output of embedding and each Transformer Encoder layer
- ReLU activation between neural network layers
- classifier loss function: binary cross entropy

Imputations, case deletion, and NN ensemble

- 3 hidden layers of sizes 64, 32, 16 with Leaky ReLU activation
- dropout 0.1 after each activation layer
- input size:
 - imputations and case deletion: 19 as all missing features are imputed
 - ensemble: 4 networks with input sizes 19, 17, 17, 15

Simple network implementation

- linear layers with ReLU, sigmoid at the end
- simple: dropout after each linear layer

Parameters:

- optimizer: Adam
- output layer: 1 node (yes / no for a given particle)
- loss function: binary cross entropy
- scheduler: exponential with rate 0.98
- learning rate: 0.0005
- batch size: 64
- epochs: 30

Sample ROC curves

FSE+attention achieves best results.

Little variation between particle species.

More to go: domain adaptation

- Monte Carlo never ideally matches the experimental data (both physics and detector response simulation)
- **Problem:** transferring the knowledge from a **labeled source domain (MC data)** to **unlabeled target domain (experimental data)**, when both domains have different distributions of attributes
- How can we transfer the knowledge from training to inference?

Standard PID example: "tune on data"

- get parametrization from data \rightarrow real data
- generate a random detector signal \rightarrow MC data
- equivalent distributions of real and MC samples
 the differences are statistical fluctuations
- does not include correlations between attributes

Machine learning:

- actually learn the difference between data domains ...
- translate both data to a single common hyperspace

M. Kabus, M. Jakubowska, Ł. Graczykowski, K. Deja JINST 17, C07016. 2022

More to go: domain adaptation

(a) MNIST

(b) SVHN

More to go: domain adaptation

Feature mapping: input \rightarrow domain invariant features

Particle classifier: recognize particles based on domain invariant latent space

Domain classifier: recognize MC vs real samples

Training more complicated:

- 1. Train the domain classifier independently.
- 2. Freeze the domain classifier.
- 3. Train jointly particle classifier and feature mapper **adversarially** to the domain classifier.
- 4. Weights of the feature mapper: gradient from particle classifier
 + reversed gradient from domain classifier

Application time similar to a standard classifier

Our current solution still misses this step

M. Kabus, M. Jakubowska, Ł. Graczykowski, K. Deja JINST 17, C07016. 2022

Integration with O²: user interface

- 1 instance = 1 model = 1 particle species recognized (yes / no)
- **convenient interface** clearly separated from the rest of analysis
- using all capabilities of **Python ML libraries** for training
- ONNX file format and **ONNXRuntime** software used for inference in O² C++ environment

PidOnnxInterface

- **automatically select most suitable model** for user needs or manual mode
- as **little additional knowledge** from the analyser as possible (*"change 1 line in the code"*)

https://onnx.ai/

ONNX