
Faculty of Physics
Warsaw University of Technology

Towards more precise correlation 
studies with machine learning-based 
particle identification with missing 
data

Łukasz Graczykowski
in collaboration with
M. Janik, M. Karwowska, S. Monira, K. Deja, M. Kasak, 
M. Jakubowska, M. Mytkowski, M. Olędzki

Toulouse, France
8 November 2024

Based on:
EPJ C 84 (2024) 7, 691
JINST 19 (2024) 07, C07013



2/19

Goals
● Use ALICE and its data as a unique environment for Machine Learning (ML) research

● Identify areas where both ALICE (or HEP in general) and ML communities can mutually 
benefit from each other

● Our solutions should be easily applicable to other experiments with similar PID 
capabilities

● Disclaimer:
○ I’m a physicist without a big ML expertise – just started my (human) learning of 

machine learning :)
○ My task is to guide and coordinate the work of WUT ML computer scientists within 

ALICE
○ The solution may be complicated (shooting a sparrow with a cannon), but the balance is 

to keep the project interesting for ML itself and be useful for us at the same time!



3/19

Particle identification (PID)
Aim: provide high purity samples of particles of a 
given type

• an essential step for many physics analyses, 
especially correlations of identified particles

• we use ALICE as our R&D environment 
• a distinguishing feature of ALICE among the LHC 

experiments:
• identification of particles of momenta in a very 

wide momentum range
• practically all known techniques employed: 

dE/dx energy loss, time-of-flight, Cherenkov 
radiation for hadrons and transition radiation for 
electrons

https://arxiv.org/abs/1709.00288 

https://arxiv.org/abs/1709.00288


4/19

Present state-of-art
1. Traditional method:

• hand-crafted selections of selected quantities, e.g., nσ
• problems:

• overlapping signals
• high purity at the cost of low efficiency
• time-consuming optimization

2. Bayesian method (ALICE, EPJ Plus 131 (2016) 168):
• updating probability of an hypothesis with each new evidence
• priors = best guess of true particle yields per events
• posteriors ~ purity
• increased purity, results consistent with the traditional method

Both methods available in O2 – ALICE Run 3 software 

Can we do any better?

not covered in this talk

https://link.springer.com/article/10.1140/epjp/i2016-16168-5


Yes!
With ML :)



6/19

ML for PID Advantages of the ML approach to PID:

• classification – a ''standard'' ML problem
• can use more track parameters as input
• can learn more complex relationships 
• many software libraries available

Note also the limitations:

• depends on quality of the training data (MC)
• hard to obtain systematic uncertainties
• hard to follow classifier's ''reasoning'' (black box)

Our first works show ML can greatly improve purity 
and efficiency:
1. Random Forest: T. Trzciński, Ł. Graczykowski, M. Glinka, 

ALICE Collaboration. Using Random Forest classifier for particle 
identification in the ALICE experiment. Conference on Information 
Technology, Systems Research and Computational Physics, pp. 
3-17. 2018

2. Domain Adaptation: M. Kabus, M. Jakubowska, Ł. 
Graczykowski, K. Deja, ALICE Collaboration. Using machine learning 
for particle identification in ALICE. JINST, v. 17, p. C07016. 2022

from [1]

from [1]

https://link.springer.com/chapter/10.1007/978-3-030-18058-4_1
https://iopscience.iop.org/article/10.1088/1748-0221/17/07/C07016


7/19

Proof-of-concept: Random Forest
● Preliminary work with ALICE Run 2 data

● First solution - Random Forest

● Model works on high-level track parameters

● Depends on the quality of Monte Carlo sample and 
post-processed information (i.e. nσ calculation)

● Can be used only for analysis-specific use-case 
(concrete dataset and specific particle selection)

○ model has to be trained by the specific end user

T. Trzciński, Ł. Graczykowski, M. Glinka, 
Conference on Information Technology, 
Systems Research and Computational 
Physics, 3-17. 2018

https://en.m.wikipedia.org/wiki/File:Random_forest_explain.png 

2018

https://en.m.wikipedia.org/wiki/File:Random_forest_explain.png


8/19

Current solution - our model
● Solution general enough to be used for variety of analyses

● At present our input data has 19 features: i.e. momentum components, charge sign, DCAXY, 
DCAZ, detector signals (TPC dE/dx, TOF time, TRD signal), etc.

● Data might be missing from one or more detectors due to, e.g., too small pT

● In “standard” ML approaches dealing with such cases, people use data imputation or case 
deletion - however artificially altered data may bias the physics results!

○ Challenge: classify particles without making any assumptions about the missing values

● The proposed model is much more advanced than the proof-of-concept solution and has 
4 steps (see next slides)

● For details, see our two papers:

○ EPJ C 84 (2024) 7, 691

○ JINST 19 (2024) 07, C07013

https://link.springer.com/article/10.1140/epjc/s10052-024-13047-3
https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07013


9/19details on slide 15

1. Feature Set Embedding to encode the inputs

2. Transformer Encoder to detect patterns in the input

3. Additional self-attention network to pool the encoder 
output set into a single vector

4. Classifier a simple neural network to classify a given 
particle type

Current solution - our model
M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 

Inspired by AMI-Net proposed for 
medical diagnosis from incomplete 
data (medical records)

2019 International Joint Conference on Neural Networks (IJCNN)

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/1904.04460
https://ieeexplore.ieee.org/xpl/conhome/8840768/proceeding


10/19

Step 1: Embedding
● Embedding is a technique to handle complex data

● It works by converting high-dimensional data (i.e. sequences of words, documents, images, 
etc.), into lower-dimensional and abstract vector representation (embedding space)

● It allows for capturing meaningful relationships between data entities (words, etc.)

https://www.datacamp.com/tutorial/how-transformers-work 

https://www.datacamp.com/tutorial/how-transformers-work


11/19

Step 1: Feature Set Embedding

Image source: NIPS 2010 article

Feature Set Embedding (NIPS 2010 article):
● instead of vectors, use (feature,value) pairs; no value → no pair

○ no need to model missing data (i.e. imputation) 
● pairs in embedding space: similar features are close to each 

other
● pairs are then combined (by NN) into vectors (embeddings)

Missing data challenge: 
classify without making any 
assumptions about the 
missing values

embeddings
32 vectors
in our case

track
19 features
in our case

Output

https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/5f0f5e5f33945135b874349cfbed4fb9-Paper.pdf


12/19

Step 2: Transformer Encoder

● Idea from original Transformer architecture proposed 
by Google (NIPS 2017 article)

● Developed for transforming input data into a 
contextualized representation on the output

● Transformer currently serves as basis for the Natural 
Language Processing tools (such as ChatGPT)

● In our case, vectors from Embedding are 
processed by the Encoder only

○ we do not need Decoder in our use-case

https://www.datacamp.com/tutorial/how-transformers-work 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.datacamp.com/tutorial/how-transformers-work


13/19

Steps 2 and 3: self-attention
● Attention and self-attention are mechanisms used to 

help model focus on relevant parts of the input data 
○ self-attention focuses on relationships within 

the same input sequence

● Example: "The cat sat on the mat" 
○ when processing the word "cat," it considers 

other words (i.e. "the" or "mat") to understand 
their contribution to the meaning of "cat" (in the 
context of the entire sentence)

● Usage of self-attention in Transformer architecture:
○ in single-head attention, a single set of attention 

scores is used to focus on a particular part of the 
input sequence → limited ability to capture 
different relationships 

○ multi-headed attention uses multiple attention 
heads, where each head focuses on different 
parts of the input simultaneously

NIPS 2017 article

We use self-attention twice:
● in Transformer Encoder
● before Classifier 

attentions

colors = attentions from different heads 

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


14/19

Step 4: classification

● Single output vector from the Self-attention network is propagated to 
the Classifier

● Classifier is represented by one simple neural network (one hidden 
layer) per particle (one vs all approach)

○ the same architecture is used separately for pions, kaons, protons

● Classifier score: logistic function                       in range (0, 1) represents 
"certainty" that a given particle belongs to the given particle type

○ users can still balance the efficiency and purity by setting their 
own threshold on the “certainty” value  



15/19

Details of the architecture

● embedding layers: 20 – 128 – 32 neurons
● Transformer Encoder:

○ Multi-Head Attention: dimension 32, 2 heads
○ neural network layers: 32 – 128 – 32 neurons
○ 2 layers of Multi-Head Attention + neural network

● Self-Attention layers: 32 – 64 – 32 neurons
● classifier layers: 32 – 64 – 1 neurons
● dropout value 0.1 at the output of embedding and each Transformer Encoder layer (to limit overfitting)
● softmax function is applied to obtain weights to create a single output (weighted average) vector
● activation function (between neural network layers): ReLU  (Rectified Linear Unit)
● loss function that is minimized is binary cross entropy (for one vs all approach)

○ to minimize differences between predicted and true values (labels from MC truth data)

2 heads
in each head
2 layers (att.+NN)

“certainty”

19

This model is applied 
separately for pions, 
kaons, protons

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 



16/19

Test setup
● Dataset: Run 2 general-purpose MC (Pythia 8) pp at √s = 13 TeV with full detector simulation 

with Geant 4 (both MC truth and reconstructed data are used)
● Standard nσ method: 

|nσ, TPC| < 3 for pT < 0.5 GeV/c,  √(nσ, TPC
2 + nσ, TOF

2) < 3 for pT ≥ 0.5 GeV/c
● Dataset details:

○ no. tracks: ~2.7 million
○  30% - test dataset
○ from the 70% of the rest:

■ 70% training
■ 30% validation

Missing data distribution

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 



17/19

Results – pions, kaons, protons
F1 = (purity x efficiency) / (purity + efficiency)                                   

FSE + attention with very good scores of F1, purity (precision) and efficiency (recall)

Proposed model (FSE+Attention)
compared to other approaches:

● imputation:
artificial bias in data

○ mean
○ regression

● NN ensemble (4 networks):
potentially large complexity 

● standard:
nσ method
|nσ, TPC| < 3 for pT < 0.5 GeV/c
√(nσ, TPC

2 + nσ, TOF
2) < 3 for pT ≥ 0.5 GeV/c

kaon selection

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, ŁG
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, ŁG, K. Deja, M. Kasak, 
M. Jaik, JINST 19 (2024) 07, C07013 



18/19

Conclusions
R&D phase of the ML PID (almost) finished!

FSE+Attention model works well for the three basic identified hadron species (pions, kaons, 
protons)

Lots of work done, but still more ahead!

Plans for future:

• tests with Run 3 data with new O2 analysis framework (ongoing)
• automation of model training and regular training of models for new Run 3 datasets 

(implementation)
• extending the model with domain adaptation (still to do)
• advertise PID ML among ALICE analyzers (to do when fully implemented)

The work has been carried out by an interdisciplinary team from 4 faculties of WUT:

• Physics: Ł. Graczykowski (general idea, coordination, evaluation), M. Janik (evaluation), M. 
Karwowska (implementation), S. Monira (tests of implemented model)

• Electronics and Information Technology: Kamil Deja, Miłosz Kasak (ML R&D)
• Electrical Engineering: Monika Jakubowska (coordination, evaluation)
• Mathematics and Computer Science: Marek Mytkowski, Mateusz Olędzki (implementation)



Thank you!



20/19

Run 2 results
• pp at 7 TeV, Pythia 6 Perugia-0
• kaons vs other particles

Traditional PID:

MC traditional MC RF

Contamination of kaon samples

much higher 
efficiency and purity 
with Random Forest



21/19

F1 = 2 x (purity x efficiency) / (purity + efficiency)
best model, 2nd best model                                   

ML outperforms the standard way

FSE + attention with very good
scores of F1

No flaws of other methods:

• imputation:
artificial bias in data

• case deletion:
no ability to analyze samples
with missing detector signals

• NN ensemble:
potentially large complexity

Results

π p K π̅ p̅ K̅

standard 87.87 ± 0.87 74.61 ± 1.88 73.17 ± 1.57 87.66 ± 0.87 69.12 ± 1.93 69.44 ± 1.60

NN ensemble 98.45 ± 0.04 95.42 ± 0.12 86.74 ± 0.16 98.27 ± 0.42 94.60 ± 0.10 84.91 ± 0.48

mean 98.40 ± 0.01 95.54 ± 0.06 86.36 ± 0.34 98.34 ± 0.01 94.75 ± 0.20 84.67 ± 0.38

attention + FSE 98.50 ± 0.02 95.79 ± 0.07 87.44 ± 0.14 98.44 ± 0.02 94.89 ± 0.14 86.00 ± 0.13
regression 98.40 ± 0.04 95.49 ± 0.15 86.22 ± 0.46 98.36 ± 0.03 94.57 ± 0.13 85.01 ± 0.13

π,
only 

complete 
data

p,
only 

complete 
data

K,
only 

complete 
data

π̅,
only 

complete 
data

p̅,
only 

complete 
data

K̅,
only 

complete 
data

case deletion 99.37 ± 0.01 99.43 ± 0.16 96.95 ± 0.06 99.37 ± 0.01 99.13 ± 0.26 96.33 ± 0.11

NN ensemble 99.38 ± 0.01 99.46 ± 0.13 97.23 ± 0.10 99.34 ± 0.18 99.33 ± 0.10 96.87 ± 0.09

mean 99.27 ± 0.04 99.47 ± 0.08 96.08 ± 0.36 99.27 ± 0.04 99.20 ± 0.27 95.45 ± 0.33
attention + FSE 99.36 ± 0.01 99.48 ± 0.02 97.04 ± 0.17 99.37 ± 0.03 99.44 ± 0.08 96.91 ± 0.11
regression 99.25 ± 0.07 99.37 ± 0.07 95.62 ± 0.39 99.28 ± 0.02 99.10 ± 0.13 95.11 ± 0.58



22/19

Example: FSE with one-hot
encoding

M. Kasak, K. Deja. M. Karwowska,
M. Jakubowska, Ł. Graczykowski
M. Janik, EPJ C 84 (2024) 7, 691
M. Karwowska, Ł. Graczykowski, K. Deja, 
M. Kasak, JINST 19 (2024) 07, C07013 



23/19

The attention continued
2. Transformer Encoder

N=2

● adjusted original Transformer 
Encoder

● attention without convolutions and 
recurrence

● finding self-correlations in an 
instance set of vectors

● example: a specific detector signal 
could be used if and only if the 
momentum is in a specific range

modified diagram 
from the article

https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


24/19

Pooling and classification
Classifier: a simple neural network
                  expects a single vector as an input

Solution: self-attention to pool the variable-size vector set from Transformer Encoder

Classifier score: logistic function                      ,  range (0, 1)
                             "certainty" that a given particle belongs to the given type

self-attention values

self-attention weights

pooled output vector



25/19

Architecture of tested neural networks
Attention + FSE

• embedding layers: 19 – 128 – 32 neurons
• Transformer Encoder:

• Multi-Head Attention: dimension 32, 2 heads
• neural network layers: 32 – 128 – 32 neurons
• 2 layers of Multi-Head Attention + neural network

• Self-Attention layers: 32 – 64 – 32 neurons
• classifier layers: 32 – 64 – 1 neurons
• dropout 0.1 at the output of embedding and each Transformer Encoder layer
• ReLU activation between neural network layers
• classifier loss function: binary cross entropy

Imputations, case deletion, and NN ensemble

• 3 hidden layers of sizes 64, 32, 16 with Leaky ReLU activation
• dropout 0.1 after each activation layer
• input size:

• imputations and case deletion: 19 as all missing features are imputed
• ensemble: 4 networks with input sizes 19, 17, 17, 15



26/19

Simple network implementation
• linear layers with ReLU, sigmoid at the end
• simple: dropout after each linear layer

Parameters:

• optimizer: Adam
• output layer: 1 node (yes / no for a given particle)
• loss function: binary cross entropy
• scheduler: exponential with rate 0.98
• learning rate: 0.0005
• batch size: 64
• epochs: 30



27/19

Sample ROC curves
FSE+attention achieves best results.

Little variation between particle species.



28/19

More to go: domain adaptation
• Monte Carlo never ideally matches the experimental data (both 

physics and detector response simulation)

• Problem: transferring the knowledge from a labeled source domain 
(MC data) to unlabeled target domain (experimental data), when 
both domains have different distributions of attributes

• How can we transfer the knowledge from training to inference?

Standard PID example: ''tune on data''

• get parametrization from data → real data
• generate a random detector signal → MC data
• equivalent distributions of real and MC samples 

– the differences are statistical fluctuations
• does not include correlations between attributes 

Machine learning:

• actually learn the difference between data domains
• translate both data to a single common hyperspace

M. Kabus, M. Jakubowska, 
Ł. Graczykowski, K. Deja
JINST 17, C07016. 2022



29/19

More to go: domain adaptation



30/19

Feature mapping: input → domain invariant features

Particle classifier: recognize particles based on domain invariant latent space

Domain classifier: recognize MC vs real samples

Training more complicated:

1. Train the domain classifier independently.
2. Freeze the domain classifier.
3. Train jointly particle classifier and feature mapper

adversarially to the domain classifier.
4. Weights of the feature mapper:

gradient from particle classifier
+ reversed gradient from domain classifier

Application time similar to a standard classifier

Our current solution still misses this step

More to go: domain adaptation
M. Kabus, M. Jakubowska, 
Ł. Graczykowski, K. Deja
JINST 17, C07016. 2022



31/19

Integration with O2: user interface

PidOnnxModel

• 1 instance = 1 model = 1 particle species recognized (yes / no)
• convenient interface clearly separated from the rest of analysis
• using all capabilities of Python ML libraries for training
• ONNX file format and ONNXRuntime software used for inference in O2 C++ environment

PidOnnxInterface

• automatically select most suitable model for user needs or manual mode
• as little additional knowledge from the analyser as possible (“change 1 line in the code”)

https://onnx.ai/ 

https://onnx.ai/

