Exploration of Nuclear Clustering via Compound Decay Pathways

Bryan Harvey

Texas A&M University Cyclotron Institute

SJY Group

Motivation

- The structure of nuclear matter and the pathways in which nuclei both fuse and decay are parallel discussions.
- An example is ⁴He burning

The forward direction largely benefits from the similarities of the nuclear structure.

$$3\alpha \rightarrow \alpha + {}^{8}\mathrm{Be}_{\mathrm{gs}} \rightarrow {}^{12}\mathrm{C}(0_{2}^{+})$$

The backward direction is the primary way we study the Hoyle state.

$${}^{12}\mathrm{C}(0_2^+) \rightarrow \alpha + {}^{8}\mathrm{Be}_{\mathrm{gs}} \rightarrow 3\alpha$$

• How can we investigate the compound decay pathways of larger nuclei as a probe to relate their structures to understood states?

Experimental Data

System

- ${}^{16}O + {}^{12}C @ 35 MeV/u$
 - Also have ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, and ³⁶Ar as projectiles

Forward Array Using Silicon Technology

- Charged Particle ID
 - $\bullet \ (\Delta E, E) \to (Z, A)$
- Total Kinetic Energy
 - Particles stop in CsI
- Position
 - Silicon is resistive for position sensitivity

$$E_{\rm rel.} = \sum_i \frac{p_{i,\rm cm}^2}{2m_i} ~~ E^* = E_{\rm rel} - Q_{\rm rxn} \label{eq:energy}$$

States of ¹²C with $E_{3\alpha}$

States of ⁸Be with $E_{2\alpha}$

Which ¹²C states feed which ⁸Be states?

3lpha vs 2lpha

 Expect loci where a particular ¹²C^{*} decays through a particular ⁸Be^{*} 3lpha vs 2lpha

• Several contributions to background

 An appropriate background subtraction must be found which accounts for all undesired features

Sources of 3α background

Mixed Events

- 1. Find three events
- 2. From each, pick one α particle
 - 3. Create an artificial event with those α 's

000 4. Analyze as normal

 Only the very broad features of the real data are described

Partially Mixed Events

- 1. Find **two** events
- 2. From one, pick one α particle
- 3. From the other, pick two α particles
- 4. Create an artificial event with those α 's
- 5. Analyze as normal
 - The vertical and diagonal components are described by the 2α correlations

Understanding the correlations

Example Subtraction 1: $^{12}C(3^-) \rightarrow {}^{8}Be(0^+) + \alpha$

Example Subtraction 1: $^{12}C(3^-) \rightarrow {}^{8}Be(0^+) + \alpha$

Example Subtraction 1: $^{12}C(3^-) \rightarrow {}^{8}Be(0^+) + \alpha$

Example Subtraction 1: ${}^{12}C(3^-) \rightarrow {}^{8}Be(0^+) + \alpha$

16 / 22

Example Subtraction 2: $^{12}C(4^+, 1^+) \rightarrow {}^8Be(2^+) + \alpha$

Example Subtraction 2: $^{12}\mathrm{C}(4^+,1^+) \rightarrow {}^{8}\mathrm{Be}(2^+) + \alpha$

Example Subtraction 2: ${}^{12}C(4^+, 1^+) \rightarrow {}^{8}Be(2^+) + \alpha$

Example Subtraction 2: ${}^{12}C(4^+, 1^+) \rightarrow {}^{8}Be(2^+) + \alpha$

Conclusions

- We are able to extract compound decay paths of excited nuclei through other excited nuclei.
 - Inclusion of the semi-correlated background is critical

Future work

- + Solve the remaining background in $2\alpha~E_{\rm rel}$ from the non- $^8\!{\rm Be}$ contribution
- Generalize the process Study other systems
 - ${}^{9}B \rightarrow p\alpha\alpha$ in particular searching for the $\left(\frac{1}{2}\right)^{+}$ state and its decay path
 - ¹⁶O → 4α − The higher dimensionality of the problem complicates the problem, but there are generalizations to the presented process to account for this.
 - And others

Acknowledgements

- Research Group
 - Sherry Yennello
 - Alan McIntosh
 - Kris Hagel
 - Travis Hankins
 - Andy Hannaman
 - ▶ *et al.*

- Funding
 - ► USA DOE #DE-FG02-93ER40773.

Thank You

Backup slides

 $E_{\rm rel}$ definition slide

