

The measurement and analysis of neutron-neutron correlation function in heavy ion experiment

Speaker :Dawei Si (司大伟)

Tsinghua Univeristy

17th Workshop on Particle Correlations and Femtoscopy

November 4th-8th, 2024, Toulouse, France

outline

Research Background

CSHINE detector system

Result

- 1. TOF and neutron energy spectrum
- 2. n-n correlation at 25MeV/u ¹²⁴Sn+124Sn
- 3. Momentum-gated correlation function

Summary

\Box **What** is isospin dynamics?
 identify Heavy Ion Collision

In the process of HIC $(\sim 10^{-21} s)$, protons, neutrons and the fragments with varying N/Z, exhibit different behaviors in production and transport due to $E_{sym}(\rho)$

02/17

The emission timescale of neutrons and protons are important characteristics of $E_{sym}(\rho)$ \longrightarrow τ_p , τ_n Question: How to measure the dynamic
evolution in the ultra-fast process?
The emission timescale of neutrons and
protons are important characteristics of
isospin dynamics.

Correlation function and isospin chronology

Two particle correlation function:

Model	Experiment
$C(k^*) = \int S(\vec{r}, t) \Psi(\vec{k}^*, \vec{r}) d^3 \vec{r} = \frac{N_{same}(k^*)}{N_{mix}(k^*)}$	
$S(\vec{r}, t)$: Source function	
$\Psi(\vec{k}^*, \vec{r})$: two particle wave function	

Effective range expansion for $\Psi(k^*, \vec{r})$ **Smoothness approximation for source function** $S(\vec{r}, t)$

$\frac{1}{2}$ $-\frac{1}{4\tau_0^2}$ Physical quantity: $\overline{4\tau_0^2}$ Physical quantum Ph

1. : Scattering length

03/17

- **2. : Effictive range**
- **3. : Source size**
- **4.** τ_0 : Time scale

Correlation function and isospin chronology

Two particle correlation function:

Model	Experiment
$C(k^*) = \int S(\vec{r}, t) \Psi(\vec{k}^*, \vec{r}) d^3 \vec{r} = \frac{N_{same}(k^*)}{N_{mix}(k^*)}$	
$S(\vec{r}, t)$: Source function	
$\Psi(\vec{k}^*, \vec{r})$: two particle wave function	

03/17

 $N_{same}(k^*)$ $N_{mix}(k^*)$ **Experiment** $\frac{2}{9}$ – $-\frac{1}{4\tau_0^2}$ Physical quantity: **1. : Scattering length 2. : Effictive range 3. : Source size** τ_0 : Time scale $S(r,t) = \frac{exp(-\frac{1}{4r^2} - \frac{1}{4r^2})}{(4\pi)^2 r^3 \pi}$ 1 $\frac{r^2}{r^2}$ $\frac{t^2}{r^2}$ $(4\pi)^2 r_0^3 \tau_0$ $4r_0^2$ $4r_0^2$ $exp(-\frac{1}{4r^2} - \frac{1}{4r^2})$ Physical quantity r^2 t^2 $4r_0^2$ $4r_0^2$ 1 m t^2 $\overline{4\tau_0^2}$ Physical quantum Ph **Effective range** expansion for $\Psi(k^*, \vec{r})$ **Smoothness approximation for source function** $S(\vec{r}, t)$ **space-time information** L-L approach

Charge symetry breaking(CSB) measurement in HIC

Charge symetry breaking(CSB) measurement in HIC

CSHINE detector system

HIRFL: Heavy Ion Research Facility at Lanzhou, China

05/17

CSHINE detector system

CSHENE Compact Spectrometer for Heavy IoN Experiments

\blacksquare Beam time statistics:

- I: $30 \text{ MeV/u}^* \frac{40 \text{Ar} + 197 \text{Au}}{2014}$
- II: 30 MeV/u ⁴⁰Ar+197Au (2018) **+ SSDT**
- III:25 MeV/u ⁸⁶Kr+208Pb (2019)
- **IV:** 25 MeV/u 86 Kr+¹²⁴Sn (2022) + γ **Hodoscope**
- $V: 25 \text{ MeV/u} \frac{124 \text{Sn} + 124 \text{Sn}}{2024} + \text{Neutron Array}$

CSHINE detector system —— Neutron Array

CSHINE2024 Experiment

SSD1~6:25°<θ<65° SSD7,8 : $\theta = 90^{\circ}$, **-70**° **BaF2(T0): ±145°**

Neutron Array: 27°<θ<53°

IENP

~500 Channel

Result——Time Of Flight(TOF) distribution

1. The component of background are converted from TOF to energy spectrum using Monte Carlo

2. Abnormal peaks have little effect on the energy spectrum below 100MeV.

The energy uncertainty of data above 100MeV is already large: 100(10), 200(30), 300(60)MeV for σ_{TOF} = 744ps

Result——Neutron-Neutron Correlation Function

 \sim 20w two neutron events(TOF:12.5 \sim 80ns, E:3 \sim 72MeV)) are used 6 5 \rightarrow 4 \leftarrow $C(k^*) > 1$: $C(k^*)$ \leq \leq \geq n-n attractive nuclear potential \leq $+$ Caused by the phase space cut: $\begin{bmatrix} 2 \end{bmatrix}$ Energy threshold Angular resolution limit $\begin{array}{|c|c|c|}\n\hline\n0 & 10\n\end{array}$ 50 20 30 60 70 80 40 k*(MeV/c)

Result——Neutron-Neutron Correlation Function

 \sim 20w two neutron events(TOF:12.5 \sim 80ns, E:3 \sim 72MeV)) are used 6 5 \rightarrow 4 \leftarrow $C(k^*) > 1$: *C* \leq $\qquad \vdots$ **n**-n attractively n-n attractive nuclear potential Caused by the phase space cut: Energy threshold Angular resolution limit
0 10 70 50 80 20 30 60 40 **The effect of cross talk and uniform** $k^*(MeV/c)$ **background has not been considered!** $\frac{1}{\lambda} \left[\frac{C_{\exp}(Q)}{1 - \lambda_{ct}} - \lambda_{ct} \frac{F_{sam,ct}(Q)}{F_{1}} - \lambda_{bkg} \frac{F_{sam,bd}}{F_{2}} \right]$ $C_{\text{exp}}(Q)$ *F*_{samet} (Q) *F*_{sam} $F_{\text{sam},\text{bkg}}(Q)$, (Q) $F_{\text{sam,nn}}(Q)$ 1 $C_{\text{exp}}(Q)$ $F_{\text{sam,nn}}$ $\mathcal{L}_{\mathcal{L},nn}(Q) = 1 \frac{C_{\exp}(Q)}{1-\epsilon} \sum_{\mathcal{L}} F_{\mathcal{S}am,\mathcal{L}t}(Q) \sum_{\mathcal{L}} F_{\mathcal{S}am,\mathcal{D}k\mathcal{L}}(Q)$ $F_{\text{sam.}ct}(Q)$ *F* $_{\text{sam.}bkg}(Q)$ $\lambda_{nn} = \frac{I_{sam,nn}(\mathcal{Q})}{F_{un}(O)} = \frac{1}{\lambda_{nn}} \left[\frac{C_{exp}(\mathcal{Q})}{A} - \lambda_{ct} \frac{I_{sam,ct}(\mathcal{Q})}{F_{un}(O)} - \lambda_{bkg} \frac{I_{sam,bkg}(\mathcal{Q})}{F_{un}(O)} \right]$ *sam*, $ct \times I$ \rightarrow 1 *sal sam*, bkg (Z) ₁ $C_{nn} = \frac{2 \text{ sam, nn } (2)}{E_{2n} (2)} = \frac{1}{2} [$ \mathbf{J} ct Γ *bkg* Γ (\bigcap) $F_{\textit{mix}}(Q)$ $\lambda_{\textit{nn}}$ A α $F_{\textit{nn}}$ (Q) λ_{nn} *A* $\qquad \qquad$ $F_{mix}(Q)$ $\qquad \qquad$ $F_{\textit{mix}}(Q)$ and F_{\text (Q) $\frac{log}{}$ F_{mi} $F_{\textit{mix}}(Q)$ ⁻¹ (Q) mix *nix n* $mix \times I$ mix (2)

11/17

Cross talk: a single neutron scatters from a unit to another unit or the secondary γ emits to another unit.

ΔT: TOF difference of the two neutron events

As the flight distance increases, the time difference becomes larger

12/17

Result—— Cross talk rejection

The main errors ofdata points come from flight distance uncertainty, statistical error and the threshold uncertainty in simulation.

14/17

We use the LL method to fit n-n correlation function after correction

The f0 and d0 measured by us in heavy ion collision agree with reference value(by scattering experiment)! The single particle emission source size and emission timescale are also obtained here

Result—— Momentum-gated correlation function

Multi-source picture in low energy HIC:

The characteristics of the emission source are inconsistent in different periods.

Pre-equilibrium emission Higher particle momentum

Compound emission Lower particle momentum

enhancement in the correlation function of high momemtum neutron pairs

- We make the neutron array and mounted it on CSHINE, and completed the beam experiment at HIRFL in Lanzhou.
- We calibrated the neutron data and obtained the neutron energy spectrum
- \bullet We obtain the correlation function and modify it, the f0 d0 τ R are preliminarily obtained by L-L method.

OutLook:

The analysis of momentum-gated correlation function and the calibration of SSD Telescope are on the way.

17/17

Thank you to all the members ofthe CSHINE2024 experiment !

IENP

A clear distinction between neutrons and γ

Neutron Unit efficiency Geant4 simulation Neutron cross section packet: G4NDL4.5 Physical list: FTFP_BERT_HP

The statistical emission range($8 \sim 30$ MeV) is fitted exponentially($exp(-E_n/T)$): **/T)**):

The nuclear temperature and statistics decrease with increasing θ_{lab}

The variation of energy spectrum with angle is consistent with the dynamics of HIC

The PID in the CSHINE2019

IENF

The proton-proton correlation function in the CSHINE2018

The line are the calculations ofCrab with different source size and emission timescale

$$
C_{\exp}(Q) = \frac{F_{\text{mix}}(Q_{\text{big}}) N_{\text{sam}}(Q)/N_{\text{sam}}}{F_{\text{sam}}(Q_{\text{big}}) N_{\text{mix}}(Q)/N_{\text{mix}}}
$$
\n
$$
= A\left[\frac{N_{\text{sam},nn}}{N_{\text{sam},nn}} \frac{N_{\text{sam},nn}(Q)}{N_{\text{sam},nn}} + \frac{N_{\text{sam},ct}}{N_{\text{sam}}} \frac{N_{\text{sam},ct}(Q)}{N_{\text{sam},ct}} + \frac{N_{\text{sam},bkg}(Q)}{N_{\text{sam},bkg}} \frac{N_{\text{sam},bkg}(Q)}{N_{\text{sam},bkg}}\right] / (N_{\text{mix}}(Q)/N_{\text{mix}})
$$
\n
$$
= A\left[\lambda_{nn} \frac{F_{\text{sam},nn}(Q)}{F_{\text{mix}}(Q)} + \lambda_{\text{ct}} \frac{F_{\text{sam},ct}(Q)}{F_{\text{mix}}(Q)} + \lambda_{\text{bkg}} \frac{F_{\text{sam},bkg}(Q)}{F_{\text{mix}}(Q)}\right]
$$
\n
$$
= \lambda_{\text{ax}}
$$
\n
$$
F_{\text{mix}}(Q) = F_{\text{mix},nn}(Q)
$$
\n
$$
= \sum_{\text{max}} \frac{F_{\text{sam},nn}(Q)}{F_{\text{mix}}(Q)} + \lambda_{\text{ax}}
$$
\n
$$
= \lambda_{\text{bkg}}
$$
\n
$$
F_{\text{mix}}(Q) = F_{\text{mix},nn}(Q)
$$
\n
$$
= \lambda_{\text{bkg}}
$$
\n
$$
F_{\text{in}}(Q) = F_{\text{mix},nn}(Q)
$$

$$
C_{nn} = \frac{F_{sam,nn}(Q)}{F_{mix}(Q)} = \frac{1}{\lambda_{nn}} \left[\frac{C_{exp}(Q)}{A} - \lambda_{ct} \frac{F_{sam,ct}(Q)}{F_{mix}(Q)} - \lambda_{bkg} \frac{F_{sam,bkg}(Q)}{F_{mix}(Q)} \right]
$$

 $F_{sam,ct}(Q)$ and $F_{sam,bkg}(Q)$ are obtained by MC simulation λ_{bkg} is obtained from fitting of TOF spectrum, λ_{ct} is obtained from ΔT distribution + G4 simulation

