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Motivation

Multiplicity distributions of charged particles produced in e+ + e− and proton-proton
collisions exhibit, after closer inspection, peculiarly enhanced void probability and
oscillatory behavior of the modified combinants.

The set of combinants, C j provides a similar measure of fluctuations as the set of
cumulant factorial moments, Kq, which are very sensitive to the details of the
multiplicity distribution and were frequently used in phenomenological analyses of
data.

While cumulants are best suited to the study of the densely populated region of
phase space, combinants are better suited for the study of sparsely populated
regions because calculation of C j requires only a finite number of probabilities
P
(
N < j

)
.
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V. Z. Reyna Ortiz, M. Rybczyński, Z. Włodarczyk, Phys. Rev. D 108 074009

2 / 20



Combinants, modified combinants, and correlation functions

The dynamics of multiparticle production process is hidden in the way in which the
consecutive measured multiplicities N are connected.

In the simplest case one assumes that the multiplicity N is directly influenced only by its
neighboring multiplicities (N± 1) in the way dictated by the simple recurrence relation:

(N + 1) P (N + 1) = g (N) P (N) , g (N) = α + βN, (1)

where β > 0 for negative binomial distribution (NBD), β < 0 for binomial distribution (BD)
and β = 0 for Poisson distribution (PD).
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Combinants, modified combinants, and correlation functions

We propose a more general form of the recurrence relation, used in counting
statistics when dealing with multiplication effects in point processes.

Contrary to Eq. (1), it now connects all multiplicities by means of some coefficients C j,
which define the corresponding P(N) in the following way:

(N + 1) P (N + 1) = ⟨N⟩
N∑

j=0

C jP
(
N − j

)
. (2)

The coefficients C j contain the memory of particle N + 1 about all the N − j previously
produced particles. They can be directly calculated from the experimentally
measured P(N) by reversing Eq. (2) and putting it in the form of the following
recurrence formula for C j:

⟨N⟩C j =
(
j + 1

) [P
(
j + 1

)
P (0)

]
− ⟨N⟩

j−1∑
i=0

Ci

[
P
(
j − i

)
P (0)

]
. (3)
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Combinants, modified combinants, and correlation functions
The modified combinants C j defined by the recurrence relation (3) are closely related to
the combinants C⋆j introduced long a time ago by means of the generating function,

G(z) =
∑
∞

N=0 P(N)zN, as

C⋆j =
1
j!

d j ln G(z)
dz j

∣∣∣∣∣
z=0

(4)

or

ln G(z) = ln P(0) +
∞∑
j=1

C⋆j z j. (5)

Namely,

C j =
j + 1
⟨N⟩

C⋆j+1. (6)

Note that, although the combinants, C∗j were already known for a long time, and their
possible oscillatory behavior was also known, they have so far scarcely been used and
were not directly extracted from the experimental data.

S.K. Kauffmann and M. Gyulassy, Phys. Rev. Lett. 40 298
S.K. Kauffmann and M. Gyulassy, J. Phys. A 11 1715
J. Bartke, Phys. Scrip. 27 226
A.B. Balantekin and J.E. Seger, Phys. Lett. B 266 231
Ding-wei Huang, J. Phys. G 23 895
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Combinants, modified combinants, and correlation functions
The set of modified combinants, C j, provides a similar measure of fluctuations as the set of
cumulant factorial moments, Kq, which are very sensitive to the details of the multiplicity
distribution and were frequently used in phenomenological analyses of data,

Kq = Fq −

q−1∑
i=1

(
q − 1
i − 1

)
Kq−iFi, (7)

where

Fq =

∞∑
N=q

N (N − 1) (N − 2) . . .
(
N − q + 1

)
P (N) (8)

are the factorial moments. The Kq can be expressed as an infinite series of the C j,

Kq =

∞∑
j=q

(
j − 1

)
!(

j − q
)
!
⟨N⟩C j−1, (9)

and, conversely, the C j can be expressed in terms of the Kq,

C j =
1
⟨N⟩

1
( j − 1)!

∞∑
p=0

(−1)p

p!
Kp+ j. (10)
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Combinants, modified combinants, and correlation functions

The modified combinants C j defined by the recurrence relation (2) can be expressed by
the generating function of multiplicity distribution, G (z) =

∑
∞

N=0 P (N) zN as:

⟨N⟩C j =
1
j!

d j+1 ln G (z)
dz j+1

∣∣∣∣∣∣
z=0

. (11)

The generating function can be shown to be a sum over the ’averaged’ connected
correlation function of all orders (ξ(N)):

ln G (z) =
∞∑

N=1

(z − 1)N

N!
⟨N⟩Nξ̄(N), (12)

where the correlation function

ξ̄(N) =
1

VN

∫
· · ·

∫
ξ(N)

(
ri j

)
dV1 · · · dVN . (13)
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Combinants, modified combinants, and correlation functions

Glauber predicted that the maximal value of the N-body correlation function for thermal
light is related to the order of the function by relationship N!. This N! dependence is a
consequence of Wick’s theorem. Recently its validity is confirmed for massive particles.
ξ̄(N) can be expressed in terms of C j as:

ξ̄(N) =
1

⟨N⟩N−1

∞∑
j=N

(
j − 1

)
!(

j −N
)
!
C j−1. (14)

For NBD:
ξ̄(N) = (N − 1)!/kN−1,
C j =

k
⟨N⟩ p

j+1.

For BD:
ξ̄(N) = (−1)N+1 (N − 1)!/KN−1,

C j = (−1) j K
⟨N⟩

( p
1−p

) j+1
.

For PD:
ξ̄(1) = 1 and ξ̄(N>1) = 0,
C0 =

1
⟨N⟩ and C j>0 = 0.

S.D.M. White, MNRAS 186 145
R.G. Dall et al., Nature Physics 9 341
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Compound distributions

Because a single distribution of the NBD or BD type cannot describe data we shall
check the idea of compound distributions (CD). They are applicable when the
production process consists of a number M of some objects (clusters/fireballs/etc.)
produced according to some distribution f (M) (defined by a generating function
F(z)), which subsequently decay independently into a number of secondaries,
ni=1,...,M, following some other (always the same for all M) distribution, g(n) (defined by
a generating function G(z)).

The resultant multiplicity distribution,

h

N =
M∑

i=0

ni

 = f (M) ⊗ g(n), (15)

is a compound distribution of f and g with generating function

H(z) = F[G(z)]. (16)
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Compound distributions

The immediate consequence of Eq. (16) is that in the case where f (M) is a Poisson
distribution, PPD, with generating function

F(z) = exp[λ(z − 1)], (17)

then, for any other distribution g(n) with generating function G(z), the combinants
obtained from the compound distribution h(N) = PPD ⊗ g(n) and calculated using Eq. (11),
do not oscillate and are equal to

C j =
λ( j + 1)
⟨N⟩

g( j + 1). (18)
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Compound distributions

The modified combinants C j for the BD with generating function

F(z) = (pz + 1 − p)K (19)

oscillate with a period of 2, whereas the amplitudes of these oscillations depend on
the probability emission p. To control the period of the oscillations one has to
compound this BD with some other distribution.

We show an example of using for this purpose a Poisson distribution with a generating
function given by Eq. (17) (for which C0 = 2 and C j>0 = 0). The generating function of
the resulting Compound Binomial Distribution (CBD) is

H(z) =
{
p exp[λ(z − 1)] + 1 − p

}K . (20)
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Compound distributions
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(a) C j for a single BD for different probabilities of particle emission.

(b) The same BD compounded with a Poison distribution with λ = 10.
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Results
P
(N

)

N

e+ + e−,
√
s = 91 GeV

ALEPH, |y| < 2

〈N
〉·

C
j
/
( 6.

85
j
)

j

e+ + e−,
√
s = 91 GeV

ALEPH, |y| < 2

Left panel: data on charged particles multiplicity distribution P (N) measured in e+ + e−
collisions by the ALEPH experiment at

√
s = 91 GeV.

Right panel: the modified combinants C j derived from these data (note the
significant dependence of the amplitude on rank j).
The oscillation amplitude of the plot has been scaled accordingly making it possible
to plot the results. Otherwise the amplitudes would grow in a power-law fashion.

Data from:
ALEPH Coll., Z. Phys. C 69 15
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Results
P
(N

)

N

p+p,
√
s = 7 TeV

ALICE, |η| < 3

〈N
〉·
C

j

j

p+p,
√
s = 7 TeV

ALICE, |η| < 3

Left panel: Charged particle multiplicity distribution P (N) measured in proton-proton
collisions by ALICE at

√
s = 7 TeV.

Right panel: The corresponding modified combinants C j emerging from it fitted using
a two-compound distribution.

Data from:
ALICE Coll., Eur. Phys. J. C 77 852
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Comparison with models

The aim of this section is to show that the observed oscillations have a physical origin
and are not the result of experimental procedures. We focus on the analysis of the
Monte Carlo simulated events and comparison with existing experimental data.

In this study we have used PYTHIA 8.308 [Bierlich et al., SciPost Phys.Codeb. 2022 8],
EPOS LHC [Pierog et al., Phys. Rev. C 92 034906] and UrQMD 3.4 set to LHC mode [Bass
et al. Prog. Part. Nucl. Phys. 41 255] to generate proton-proton interactions at
√

s = 7 TeV in accordance to data on charged particles multiplicity distributions
obtained by the ALICE experiment at CERN LHC [ALICE Coll., Eur. Phys. J. C 77 852].
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Comparison with models

In PYTHIA simulation we have implemented the inelastic component of the total
cross-section for soft-QCD processes with the parameter SoftQCD:inelastic=on. The
remaining set of PYTHIA parameters we left with its default values. In the case of EPOS
LHC and UrQMD we used default values of the parameters.

To match with the experimental conditions, charged particle multiplicities have been
chosen in the trigger conditions and acceptance of the ALICE detector, defined in
[ALICE Coll., Eur. Phys. J. C 77 852]. Namely, the generated events of collisions (EOCs)
were divided into two classes: inelastic (INEL) class and non-single diffractive (NSD)
class.

The generated EOC belongs to INEL class if there is at least one charged particle in
either the −3.7 < η < −1.7, |η| < 1.98, or 2.8 < η < 5.1 pseudorapidity interval
corresponding to the acceptances of the V0-C, SPD, and V0-A ALICE sub-detectors,
respectively.

The NSD class requires charged particles to the detected in both −3.7 < η < −1.7 and
2.8 < η < 5.1 pseudorapidity intervals [ALICE Coll., Eur. Phys. J. C 77 852].
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Comparison with models

10
-5

10
-4

10
-3

10
-2

10
-1

1

0 50 100 150 200 250

-4

-2

0

2

4

0 10 20 30 40 50 60 70 80 90 100

P
(N

)

N

PYTHIA
EPOS LHC
UrQMD

pp, INEL,
√
s = 7 TeV, |η| < 3.0

〈N
〉·
C

j
/a

j

j/u

PYTHIA, a = 1.042, u = 1.0
EPOS LHC, a = 0.985, u = 1.1
UrQMD, a = 1.185, u = 0.25

(upper panel) Multiplicity distributions
P (N) of charged particles generated in
proton-proton interactions at

√
s = 7 TeV.

(lower panel) The corresponding
modified combinants C j emerging from
them. PYTHIA 8 with SoftQCD:inelastic
processes (solid lines), EPOS LHC (dotted
lines) and UrQMD 3.4 set to LHC mode
(dashed lines).

For all models the applied kinematic
cuts as described in the ALICE paper
(INEL class).
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Comparison with models
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Same as on previous plot, but for NSD
class.
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Comparison with models
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(upper panel) Multiplicity distribution
P (N) of charged particles produced in
proton-proton non-single diffractive
interactions at

√
s = 7 TeV as measured

by ALICE experiment [ALICE Coll., Eur.
Phys. J. C 77 852] (NSD class).

(lower panel) The corresponding
modified combinants C j emerging from
them. PYTHIA 8 (dotted lines) with
SoftQCD:inelastic processes and all
kinematic cuts as described in the ALICE
paper.
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Conclusions

Modified combinants, C j, deduced from the measured multiplicity distributions of
charged particles, P (N), together with the already measured void probabilities,
could provide additional information on the dynamics of the particle production.

A detailed analysis of the modified combinants derived from the experimental P (N)’s
reveals differences between the various processes.

In e+ + e− annihilation, the C j’s oscillate with a period of 2 with amplitudes increasing as a
power-law.
On the other hand, proton-proton collisions produce C j’s oscillating with approximately 10
times the period of their e+ + e− counterparts, with decaying amplitudes.

Modified combinants evaluated from models exhibit oscillatory behavior, though the
oscillation period differs from experimental data.

20 / 20



Additional slides
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Results
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√
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〈Nproj
p 〉 = 30

Fig. 3. Charged particle multiplicity distribution P (N) measured in semi-peripheral Pb+Pb
collisions by NA49 experiment at

√
sNN = 17.3 GeV.

Data from:
NA49 Coll., Phys. Rev. C 75 064904
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Results
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Fig. 4. Left panel: the modified combinants C j derived from the NA49 data. Right panel:
the modified combinants C j derived from the NBD fit to the NA49 data.

Data from:
NA49 Coll., Phys. Rev. C 75 064904
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Combinants, modified combinants, and correlation functions
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