

Overview of LISA

Gravitational wave orchestra Annecy, 19-09-2024, Martina Muratore

Talk overview

OLISA mission overview

• Time Delay Interferometry to reduce laser noise

oTDI null channels as instrument noise monitors

$\odot \text{SGWB}$ in the global fit

o LISA mission overview

Mission overview

- \bigcirc 3 drag-free satellites, separated by 2.5 $x10^{6}$ km continuously exchange laser beams
- The constellation forms an *almost* equilateral triangle which trails the Earth by 20° and is tilted by an angle of 60° from the ecliptic plane

LISA constellation

LISA Platform

Separate trajectory for each S/C to final orbit

Sun

Separation of the stack right after launch

Launch in stacked configuration Direct injection into escape trajectory

LISA-CDF-IFP-2017

C LISA was adopted by ESA last January 2024 and the launch is scheduled for 2035
C Each satellite will follow a heliocentric orbit

1 AU (150 million km)

Noise and Time Delay Interferometry

(To my knowledged from 2019....)

- <u>M.Muratore</u>, <u>Phd.</u> Time delay interferometry for LISA science and instrument characterisation,
- <u>Olaf Hartwig</u>: <u>Phd.</u> Instrumental modelling and noise reduction algorithms for the Laser Interferometer Space Antenna.
- Staab, Martin Benedikt: Phd. Time-delay interferometric ranging for LISA: Statistical analysis of bias-free ranging using laser noise minimization.
- Quang Nam Dam , Phd. Simulations and associated data analysis for realistic LISA configuration,
- Jean-Baptiste Bayle. Phd. Simulation and Data Analysis for LISA (Instrumental Modeling, Time-Delay Interferometry, Noise-Reduction Performance Study, and Discrimination of Transient Gravitational Signals)

LISA measurement chain (LO data)

image curtesy of O.Hartwig

 LISA measures the relative proper motion of free-falling test masses (TM) inside spacecraft (SC) and the GW signal is observed as picometer fluctuations in such distance

What does mean LISA noise? (L1 data)

3 fm/s²/Hz^{1/2}

15 pm/Hz^{1/2}

Free-falling test mass

- Actuation noise
- Brownian noise
- Stray Electrostatics Noise
- Magnetic noise
- Radiation pressure Noise
- Temperature Force Noise
- Gravitational Noise
- TM-SC/MOSA coupling Force Noise

Metrology

- Read-out
- Laser noise
- Clock noise
- Spacecraft jitter
- Tilt-to-Length

Acceleration noise

Metrology noise (after noise reduction)

1

The (nightmare of) laser frequency noise

Laser noise cancellation in LVK interferometers equal arm-lengths (stable laser / ideal case)

Laser noise cancellation in LVK interferometers equal arm-lengths (stable laser/ideal case)

Laser noise cancellation in LVK interferometers unequal arm-lengths (stable laser/ideal case)

Laser noise noncancellation in LISA unequal arm-lengths (non-stable laser)

Laser noise cancellation LISA vs. LVK

Michelson 0 gen. interferometer

2

1

Credit: PyTDI [Bayle, Jean-Baptiste, Hartwig, Olaf, & Staab, Martin] and GW response simulations [Bayle, Jean-Baptiste, Baghi, Quentin, Renzini Arianna & Le Jeune, Maude]

Time Delay Interferometry (TDI)

- First proposed in [Tinto et al., 1999]
- Cancel laser noise by constructing an equal arm interferometer in post-processing
- In practice: delays realised by interpolating 4 Hz data [Shaddock et al., 2004]

This is an example of constant arm lengths (1st generation TDI)

Many TDI variables

- o 34 Core combinations, which represent 210 distinct variables
- For a static constellation all TDI variables can be build from 4 generators [Dhurandhar et al., 2002]
- o Simplified case (un-correlated noise) 3 orthogonal channels can be form

Sensitivities of TDI channels to GW

Null channels to estimate instrumental noise

- Ocorrelation with other detectors is not possible for LISA (no independent TDI channels !)
- ODistinguish Stochastic GW background from instrumental noise require a good knowledge of this one
- OThe LISA detector is supposed to be signal dominated (no direct measurement of the noise !)
- O Look for TDI combinations that have *suppressed* sensitivity to GW signals but still carry some information on the instrumental noise

Can we infer the noise from the null channels ?

$$S_X^{noise} \approx 64\tau^4 \omega^4 \left(4 \sum_{ij \in \mathcal{I}_X} S_{g_{ij}}^{disp} + \sum_{ij \in \mathcal{I}_X} S_{oms_{ij}} \right)$$
$$S_{\zeta}^{noise} \approx \tau^2 \omega^2 \left(\tau^2 \omega^2 \sum_{ij \in \mathcal{I}_{\zeta}} S_{g_{ij}}^{disp} + \sum_{ij \in \mathcal{I}_{\zeta}} S_{oms_{ij}} \right)$$

Muratore et al., On the effectiveness of null TDI channels as instrument noise monitors in LISA e-Print: 2207.02138

Raphael Flauger et al JCAP01(2021)059

*Currently assumed noise level for the so-called secondary noises arXiv:2108.01167

Can we rely on noise models for data analysis ?

 Noise example: TM motion in LISA Pathfinder

LISA data analysis pipeline

L0/L0.5 DATA	L0-L1 PIPELINE	L1 DATA	L1-L2 PIPELINE	L2 DATA
Science data Ground tracking Housekeeping data	Laser noise red. Other noise (clock, spacecraft motion, tilt to length, etc.) reduction Reference frame transformation	TDI channels in global ref. frame (XYZ, AET,) Reconstructed orbits in global ref. frame Noise models	Param. estimation	Source parameters

Searching SGWB sources in the LISA data

- Global fit: numerous sources are always present and need to be fitted simultaneously
- A large number of sources and source type
- We do not have a direct measurement of the noise but needs to be inferred from the data
- Non-stationarities, gaps, spectral lines, glitches
- SGWBs -- if not loud -- will be residuals

Katz et al. <u>https://doi.org/10.48550/arXiv.2405.04690</u> Strub et al. <u>https://doi.org/10.1103/PhysRevD.110.024005</u> Tyson B. Littenberg and Neil J. Cornish<u>, Phys. Rev. D **107**, 063004 Deng et al. , Ge-Moo-LISA Global fit</u>

Joining the efforts

- Different methodology to solve the problem
- A unified pipeline for SGWB parameter estimations

Noise-agnostic searches using splines but with signal template

Q. Baghi, N. Karnesis et al. Baghi et al. https://doi.org/10.48550/arXiv.2302.12573

• SGWB template search with a twocomponent spline for the noise model

Impact of noise knowledge uncertainty of SGWB parameter estimation

Martina Muratore et al. Phys. Rev. D 109, 042001

$$h^2 \Omega_{\rm GW}(f) \approx A \left(\frac{f}{f_p}\right)^n$$

A. Santini et al.(noise and signal-agnostic search with spline)

We test our pipeline by analyzing a mock dataset made by a realization of the LISA instrumental noise and an SGWB realization drawn from a power-law energy density, $h^2\Omega(f) = A f^n$. To generate data consistent with a background from **SOBH** binaries, we set $A = 3.4 \times 10^{-13}$, n = 2/3.

Figure 1: Injected and reconstructed PSDs for the two components. Filled contours represent 90% credible intervals.

Figure 2: Posterior on the number of spline knots found by the RJ algorithm for the noise in the A TDI channel and the signal.

Image courtesy of A. Santini

 Signal-agnostic searches using splines but with noise template

Q. N. Dam et al.

- SGWBinner: search SGWB signal for each bin (small equal log-frequency intervals) as a single power law, assuming they are independent for every bin.
- Collection of power-law signals give the overall SGWB

Flauger, R., Karnesis, N., Nardini, G., Pieroni, M., Ricciardone, A., & Torrado, J. (2021). Improved reconstruction of a stochastic gravitational wave background with LISA. Journal of Cosmology and Astroparticle Physics, 2021(01), 059

SGWB data analysis: Result with time-based simulation

• Data combined noises (2 params) and SGWB signal (one possible model) from FOEWPT

Expectation value of Gaussian process for signal and noise PSD modelling Pozzoli, Buscicchio et al (2024)

RESULTS - APPLICATION to COSMO SOURCES

Whittle Likelihood

•

- Gaussian, Isotropic and stationary SGWB
 - Modelling the strain: •Perfect knowledge of transfer function for noise •Perfect knowledge of response function to SGWB

Image courtesy of Pozzoli

Plus much more in the literature

- Recovering a phase transition signal in simulated LISA data with a modulated galactic foreground, Tiina Minkkinen, <u>arXiv:2406.04894</u>
- <u>Alvey</u>, et al. Leveraging Time-Dependent Instrumental Noise for LISA SGWB Analysis, <u>https://doi.org/10.48550/arXiv.2408.00832</u>
- Inchaupse et al. : Observing Kinematic Anisotropies of a SGWB with LISA, <u>http://arxiv.org/abs/2401.14849</u>
- O. Hartwig, Stochastic gravitational wave background reconstruction for a nonequilateral and unequalnoise LISA constellation, <u>Phys. Rev. D 107</u>, 123531
- 2010 Cornish & Adams
- Cornish and Romano SGWB Review
- Bruce Allen, https://doi.org/10.48550/arXiv.gr-qc/9604033

•

Residual laser phase noise in a space-time diagrams for unequal arms-length Michelson (zero level) interferometer

1st generation TDI

 $\eta_{12}\eta_{21}$

 η_{12}

 $D_{121}\eta_1$

Image curtesy of O. Hartwig

$\eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$

 $H_{12}(t)$: Pathlength change from GW

 $D_{1213}\eta_{31}$

 $x_{ii}^{g}(t)$: TM deviation from geodesic motion

 $x_{ii}^{m}(t)$: Noise from optical metrology (e.g., shot noise)

Martina Muratore - GWO Annecy

3

2

1st generation TDI

Image curtesy of O. Hartwig

$X = \eta_{12} + D_{12}\eta_{21} + D_{121}\eta_{13} + D_{1213}\eta_{31}$ $-\eta_{12} - D_{13}\eta_{31} - D_{131}\eta_{13} - D_{1312}\eta_{21}$

41

1st generation TDI

The null-channels

A good proxy: find TDI combinations that have *null* sensitivity to GW when:

- ➢ GW falls normally to the constellation plan
- LISA is a perfect static triangle

Explore the space of all linear combinations of all possible TDI combinations, and identify its null space Use this set of null-channels to measure the acceleration noise

Null channel T: 3-element set of cyclic – permutation - averaged TDI combinations

The null channels in the literature*

$$\mathsf{T} = \frac{X + Y + Z}{3}$$

*Romano, J.D., Cornish, N.J. Detection methods for stochastic gravitational-wave backgrounds *April 2004 <u>Physical Review D</u> 69(8) DOI:<u>10.1103/PhysRevD.69.082001</u>

What's new ?

New set of null TDI combinations \tilde{C}_k^n from the 34 cyclic – permutation - averaged core TDI (slide 15)

Set of generators that looks promising to estimate instrumental noise in addition to the null-channel T

17.09.24

 Martina Muratore - GWO Annecy computations in the upcoming slides... All null-combinations behave like a *Sagnac interferometer* sensitive to the rigid rotation of the constellation

$$g[2,3]$$
 $g[2,3]$ $g[2,3]$

• All null TDI channels are only sensitive to a particular combination of the six TMs:

g[3, 1]

*Time dependence has been omitted for simplicity G = g(1,2) - g(2,1) + g(2,3) - g(3,2) + g(3,1) - g(1,3)

Muratore et al, Time Delay Interferometry combinations as instrument noise monitors for LISA. Phys. Rev. D 105, 023009.

Martina Muratore - GWO Annecy

SGWB upper limit + detection threshold

Impact of noise knowledge uncertainty on SGWB estimation

- 4 SGWB signal models
- Set of 3 (first gen.) TDI channels A,E,
- Splines to model noise knowledge uncertainty
- Fisher parameter space: 117 for the total noise + 1 for GB amplitude + n. param. for the specific GW signal model

Source^{17,09}2⁴ Muratore, J. Gair and L.Speri