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The stochastic gravitational wave background

The SGWB should be constrained in all frequency spectrum.

Astrometry

LiteBIRD = T—

A. Romero, S. Kuroyanagi, arXiv:2407.00205


https://arxiv.org/abs/2407.00205

The stochastic gravitational wave background

Astrometry can constrain between PTAs and CMB!

R? inflation

A. Romero, S. Kuroyanagi, arXiv:2407.00205


https://arxiv.org/abs/2407.00205

Astrometry

e Astrometry: precise measurements of the positions and movements of stars
and other celestial bodies.

e For us — dataset of bodies with their measured positions and proper motions
over a time period T.

e How much bodies in a given position have moved over the period T.
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Gravitational waves from astrometry

e Studied in the 1980s and 90s (E. V. Linder 1986, Braginsky et al. 1990, Pyne et al.
1995, Gwinn et al. 1996, etc.).

e New wave of publications after L. Book and E. E. Flanagan review, arXiv:1009.4192.
and the launch of the Gaia mission.

i q‘,.a: 2 L : “ s %\)‘wr*k
o Formalism-focused: F. Migné‘fd and'S: Klioner arXiv:1207.0025.

o Theoretical/mock data: C. J. Moore et al. arXiv:1707.06239, D. Mihaylov et al.
arXiv:1804.00660, D. Mihaylov et al. arXiv:1911.10356.

o Forecasts for future missions: J. Garcia-Bellido et al. arXiv:2104.04778.

o Data analysis works: J. Darling et al. arXiv:1804.06986, S. Aoyama et al.
arXiv:2105.04039 (!), S. Jaraba et al. arXiv:2304.06350.
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Gravitational waves from astrometry

e \We observe light from distant stars.

e The passage of a GW can alter the observed position and proper motion.




Angular deflection from a gravitational wave

|ldea of formalism: first, effect of generic GW in perturbed Minkowski background

ds?® = Judzhdz" = —dt® + (0;5 + h,‘j)(l.l."i(l.'l.’j.

e Observer at origin, star at direction n.

e Consider trajectory of light ray. Unperturbed: FANOIEERA RPN YN ANINING)

e W, unperturbed frequency, t, time of photon observation at origin.

e Unperturbed photon momentum:

e Both source and observer are stationary:
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Angular deflection from a gravitational wave

e Perturbed trajectory and momentum: zN\) = 28 (N) + 2N Il EC(N) = kF () + k(N

e Apply geodesic equations:
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Angular deflection from a gravitational wave

e Determination of integration constants |, Joj , K,y and LOj with boundary conditions:
o  Photon path mgst. pass through detection event: z*(0) = z8(0) + z*(0) = (0,0, 0, 0)
o Photon geodesic is null.
o Photon must be emitted with frequency w,,.
o Perturbed photon path must start at the source:

e More steps:
o Compute perturbed observed frequency:

o Compute changes in local reference frame of observer due to the GW.

e Final result:
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Angular deflection from a gravitational wave

e For plane wave propagating in direction p, [IFTCN IS CIEs 2 Rt el kY
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e Distant source limit: distance to the source w |A | much larger than GW wavelength c/Q.

e Same expression for FLRW spacetime. Some extra steps needed.
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Angular deflection spectrum from a SGWB

ﬁ‘rlf X — l
e First, we decompose the GW: hij(x,t) = Z / df/([() hap(f (Px=0 AP | ¢

e Our deflection is then expressed as

(5n (n,t) Z / df /(1 Qs ha ‘p 2mi -y 1 R (0 p ‘ (ni + pi) N i

A=+,x l1+p'n

e (Gaussian random process assumption:
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e Taking the spectrum and applying Q,, definition,
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Angular deflection spectrum from a SGWB

e For the particular case n = n’, after heavy simplification,

e Differentiating,

(n(n,t)?) = / d1n f HS Qv (f)
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Angular deflection spectrum from a SGWB

e Spectrum of averaged proper motions over a time period T — constrained quantity is

ffST_l dln ngW(f)

e Above T, the proper motions average out to around zero — T 5

e Distant source limit — fmin = ¢/D, D distance to the nearest source.
e Inourcase (Gaia DR3, T=2.84 years), 4 x 1078 Hz <f<1 x 1078 Hz.

e Assuming a dominant Q,, (f) over an order of magnitude,

Qaw (f) ~ (u(f)?)/Hg
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Multipole decomposition

e A vector field needs two basis: spheroidal/electric and toroidal/magnetic.

e We run MCMC:s to fit proper motion data to a generic vector field up to | = 2.

o
Re pRe Im pIm
E E 710R10 + 2 E , ( llenz - ImR[m)

r==g.4" m=
R=S.T

e Power per multipole and mode Z [im|? = o + 2 Z (ol

m=—I1

e When dominated by noise, only the quadrupole is relevant to set constraints.
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Overview of Gaia mission

e Launched by ESA in December 2013, expected to operate until 2025.
e Data Release 3 (June 2022): 1.81 billion objects, 34 months of operation.
e Low intrinsic proper motions needed — focus on Quasi Stellar Objects (QSO).

e No “official” Gaia QSO catalog, but “QS‘%“C&andidate” list provided.

QSO candidates

e By cleaning this sample, we can get purer datasets.
e Dataset: list of objects with positions and proper motions.

e No time series: single, averaged value for each source.

|
0 Proper motion module (mas/yr) 2
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QSO candidates

0 Proper motion module (mas/yr)

askin

2

Filteri ng by Pqso

0 Proper motion module (mas/yr) 2

Maskin+|tering
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Maskin+fltering

A

0 Proper motion module (masfyr) 2
Astrometric

0 Proper motion module (mas/yr) 2

[

0  Proper motion module (mas/yr) 2
Pure and astrometric intersection

0 Proper motion module (mas/yr) 2
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Maskin+filtering

3rd cleanest

0  Proper motion module (mas/yr)
Astrometric

0 Proper motion module (mas/yr)

2

2

|
0  Proper motion module (mas/yr) 2
Pure and astrometric intersection

Cleanest!

- 773.471)
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Previous work (Darling, Truebenbach, Paine, arXiv:1804.06986)

Darling et al. followed a very similar procedure to ours to get Q. < 0.0064.
Two datasets: quasars from VLBA, combination of VLBA + Gaia DRA1.
Only 711 and 508 sources (1000 times less than our datasets).

However, much better resolution! Afactg&’,}O-4O better than ours.
o The combination of both makes the expected results comparable.

Main differences with our analysis:
o They fit the dipole and quadrupole separately — less conservative result.
o Their code underestimates the errors in a factor ~2.

We thus decided to reanalyse their work for a better comparison.
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https://arxiv.org/abs/1804.06986

Results

e No evidence for detection — we provide 95% upper bound Q< 0.087.

e Control datasets behave as expected.
o The astrometric is similar but slightly more contaminated.
o The masked behaves a bit worse, but still within 30%.
o The pure one does much worse due to contamination. Still, within the order of magnitude.

e For VLBA and VLBA+Gaia datasets,:more conservative results than Darling et al.

e VLBA more constraining
than Gaia DR3 for now.

e Expected due to much
better resolution caused
by larger obs. period
(22.2 years vs 2.84).

W Qe (95%)

Masked 12.51(1.81) 0.069(0.021
Pure 23.15(2.01) | 0.235(0.040

(
Astrometric 10.13(1.73) | 0.045(0.017
Intersection 9.53(1.73) | 0.040(0.017

VLBA 2.73(1.23) [0.0033(0.0056) O 024
VLBA+Gaia DR1 5.30(1.36) [0.0123(0.0077) 0.034
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Conclusions and future prospects

Gaia DR3 (2.84 yr) — Q< 0.087 for 4 x 1018 Haic fc g x 1078 Ha.
VLBA update — Q, < 0.024 for 6 x 0P8 Hz < f <1 x40 Ho.

Gaia improves proper motion resolution like T%2: 2.7x and 6.6x improvement factors for DR4
(9.5 yr) and DRS (10 yr) — 7.2x and 44x improvement for Q...

Extrapolating our constraints, Q,, <0.012 (DR4, “not before mid 2026”) and Q,, < 0.0020

(DRS5, “not before the end of 2030%).
o Conservative prediction: number of sources will likely increase.

o For DRS5, we will also have the full time series, which will help further cleaning the data.

Proposed mission Theia with 60x better angular resolution & 100x more sources — O(10719)!

More modest constraints than usual methods, but different constrained frequencies.
o  Supermassive black hole binaries, cosmic strings, better characterize signal from PTAs, etc.

AS)
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Backup: angular deflection spectrum from a SGWB

e Assuming pure Gaussian fluctuations and equal distribution of sources in the skyj, it is
usually assumed we can get root mean square proper motions of order

A0/(TVN)

so we could set constraints

o A8 angular resolution, T observing period, N number of sources.

e These estimations tend to be optimistic. However, good to have them in mind.

e Q. scales like N, while the resolution enters squared.
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