CMB observations & the stochastic GW background

Status and perspectives

Simon Biquard (APC, CNRS) PhD with J. Errard & R. Stompor 19 Sep 2024

microwave background polarization structure

Cosmic history

Dark ages

Atoms start feeling

Inflation Accelerated expansion of the Universe

Formation of light and matter **Light and matter** are coupled

Dark matter evolves independently: it starts clumping and forming a web of structures

Light and matter separate

· Protons and electrons the gravity of the cosmic web of dark form atoms matter · Light starts travelling freely: it will become the Cosmic Microwave Background (CMB)

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

temperature drops -> recombination (decoupling of photons) -> CMB is released

CMB physics

- Solar system peculiar motion -> dipole anisotropy
- Inhomogeneities in the plasma -> temperature anisotropies
- Inhomogeneities + Thomson scattering -> polarization anisotropies

Credits: J. Errard

[Planck 2018 results I.](https://arxiv.org/abs/1807.06205)

CMB polarization superimposed on temperature map (both smoothed to 5°). Credits: Planck collaboration.

Cosmic history

Dark ages

matter

Atoms start feeling

cosmic web of dark

the gravity of the

Inflation Accelerated expansion of the Universe

Formation of light and matter

Light and matter are coupled

Dark matter evolves independently: it starts clumping and forming
a web of structures

Light and matter separate

· Protons and electrons form atoms • Light starts travelling
freely: it will become the
Cosmic Microwave

Background (CMB)

First stars

The first stars and galaxies form in the densest knots of the cosmic web

Galaxy evolution

The present Universe

Cosmic inflation

- accelerated expansion of space in the very early universe
- most plausible mechanism for generating 'seeds' of cosmic structure
- observations in agreement with single-field, slow-roll inflation
- also generates primordial GWs
- \bullet tensor-to-scalar ratio $r=A_t/A_s$

$$
\mathcal{P}_{\mathcal{R}}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s - 1}
$$

$$
\mathcal{P}_{\mathcal{T}}(k) = A_t \left(\frac{k}{k_0}\right)^{n_t}
$$

[Planck 2018 results X.](https://arxiv.org/abs/1807.06211)

Cosmic inflation

- Possible GW production if e.g. other fields are present during inflation
- Complementarity between CMB, interferometers, pulsar timing arrays

Figures from [Campeti et al. \(2020\)](https://arxiv.org/abs/2007.04241)

Scientific goals

- Primary anisotropies: early universe
- Secondary anisotropies: late universe (using the CMB as a backlight)

Past and forecasted tensor-to-scalar ratio sensitivities

Observation challenges

Improving the sensitivity

Readout challenges!

Simons Observatory: > dichroic TES sensors > 1000x multiplexing factor

[arXiv:2106.14797](https://arxiv.org/abs/2106.14797)

Observation challenges

Systematics and 1/f mitigation

Polarization modulation unit (PMU) -> commonly a rotating half-waveplate

Telescope observes a polarized source with a rate f_{scan} (depends on scanning strategy).

Data is affected by 1/f noise, especially from the atmosphere, at these frequencies.

Adding a HWP spinning at f_{m} modulates the incident polarization signal to a frequency of 2f_m, detected by bolometers at 4f_m (>> f_{scan}).

A next-gen CMB instrument: the Simons Observatory

Cerro Toco, Chile, 5,200 meters a.s.l ("high and dry")

- > 3 small aperture telescopes (SATs)
- > 1 large aperture telescope (LAT)

60,000 TES detectors

6 frequency bands

SATs looking at large scale polarization

LAT looking at small scale anisotropies over a large sky fraction

Image credits: Nicholas Galitzki

Image credits: Gabriele Coppi, Rolando Dunner, Federico Nati, Matias Rojas

18

Advanced Simons Observatory

Future observatories

Credits: Benjamin Beringue

A typical CMB analysis pipeline (credits: J. Errard)

CMB Moore's law

Moore's law is ending, CMB data growth is not.

Computational needs: data transfer, storage, reduction, distribution.

Use new architectures, develop more efficient algorithms.

²² *Credits: Julian Borrill*

Map-making

map-making = from time-ordered data (TOD) to sky maps at observed frequencies

data reduction step: ~6 orders of magnitude

Simple data model

$$
d\,=\,P\,m\,+\,n
$$

- d = time-ordered data (all detectors concatenated)
- $P =$ pointing matrix (#samples \times #pixels, but sparse)
- $m =$ discretized sky signal (# pixels)
- \bullet $n =$ stochastic contribution (noise)

Classic example without/with ideal HWP (no templates): \vert HWP modulation

$$
\begin{aligned} d_t &= I_{p_t} + \cos{(2\varphi_t)}Q_{p_t} + \sin{(2\varphi_t)}U_{p_t} + \overbrace{n_t} \\ d_t &= I_{p_t} + \cos{(2\varphi_t + 4\phi_t)}Q_{p_t} + \sin{(2\varphi_t + 4\phi_t)}U_{p_t} + n_t \end{aligned}
$$

Simon Biquard, GWO 2024, Annecy, 19 Sep 2024

Different methods for estimating the sky

sky estimate $m = Ld \le 1$ linear operation on the TOD

 Λ =diagonal weights, $C_{_n}$ =noise covariance, F =filtering operator

Generic data model

$$
d=Pm+Tx+n
$$

- \bullet $m =$ sky signal
- \bullet $P =$ pointing matrix
- columns of $T =$ collection of time-domain templates
- $x =$ template amplitudes
- \bullet $n =$ noise (whatever is left)

 \rightarrow scan-synchronous signal (ground pickup), etc.

Unbiased estimators

$$
\hat{m}=\left(P^t F_T P\right)^{-1} P^t F_T d^{-\frac{\text{Poletti et al. (2017)}}{\text{Poletti et al. (2017)}}}
$$
 with
$$
F_T= W^{-1}\Big(I-T\big(T^t W^{-1}T\big)^{-1}T^t W^{-1}\Big)
$$

a filtering and weighting operator which:

- filters out unwanted signals (linear combinations of columns of T)
- weights orthogonal modes by the weight matrix W

Compute \hat{m} with an iterative solver such as a preconditioned conjugate gradient (PCG).

$$
Ax = b \iff x = A^{-1}b
$$

Our implementation: MAPPRAISER

paper: [El Bouhargani et al. \(2022\)](https://arxiv.org/abs/2112.03370v3) GitHub: [B3DCMB/midapack](https://github.com/B3Dcmb/midapack)

2-lvl *a posteriori* preconditioner

$$
M_{2lvl}=M_{BD}(I-AQ)+Q\\Q=Z\big(Z^tAZ\big)^{-1}Z^t
$$

 $Z =$ deflation matrix

> built from eigenvectors of system matrix > useful for pixel-pixel covariance matrix

precomputation time ∞ dim Z > reduction?

> [Puglisi et al. \(2018\)](https://arxiv.org/abs/1801.08937) [Papez et al. \(2020\)](https://www.aanda.org/articles/aa/abs/2020/06/aa37687-20/aa37687-20.html)

A toolbox for the **SciPol** project

> Modularity, extensibility, simplicity $h = pol$ @ rot @ hwp @ sampling solution = $((h.T @ h).I @ h.T)(tod)$

> Non-ideal optical components (@Ema)

> [JAX:](https://jax.readthedocs.io/) Just In Time (JIT) compilation, run the same code anywhere

> 1st steps: "max-L" and "template" map-making (following [MAPPRAISER](http://arxiv.org/abs/2112.03370)'s formalism)

> Multi-GPU parallelization (soon)

> Framework for robust B-mode analysis

Attempt to tackle the problem mixing instrument+foregrounds+cosmology

Credits: Josquin Errard 30

Conclusion

CMB can probe the primordial SGWB at very low frequencies through its imprints on the polarization signal ("B modes").

Many inflation models will be tested in the next 10-15 years, as we push constraints on r to $\leq 10^{\circ}$ -3 (stay tuned for SO results!)

Complementarity between CMB, pulsar timing & interferometry will help us distinguish different models by covering many decades in frequency.

Many observational challenges to analyze the data efficiently and reliably.

With SciPol we hope to build a robust analysis framework, taking into account instrumental and systematic effects.

Backup slides

BICEP + Planck analysis

From Figure 2 of [BKP \(2015\)](https://arxiv.org/abs/1502.00612)

lensed-ΛCDM expectation

BICEP + Planck analysis

FIG. 6. Likelihood results from a basic lensed- Λ CDM+r+dust model, fitting BB auto- and cross-spectra taken between maps at 150 GHz, 217, and 353 GHz. The 217 and 353 GHz maps come from *Planck*. The primary results (heavy black) use the 150 GHz combined maps from BICEP2/Keck. Alternate curves (light blue and red) show how the results vary when the BICEP2 and Keck Array only maps are used. In all cases a Gaussian prior is placed on the dust frequency spectrum parameter $\beta_d = 1.59 \pm 0.11$. In the right panel the two dimensional contours enclose 68% and 95% of the total likelihood.

Where to put a CMB experiment ?

Current and forecasted error bars on BB

Forecasted SAT noise power spectra (BB)

[SO Science Goals and Forecasts](https://arxiv.org/abs/1808.07445)

Astrophysical foregrounds for CMB polarization

SO Surveys

From June, 2020 SO+LSS Zoomference

Simons Observatory Readout and Detectors (1/1)

Readout: SO is developing the microwave SQUID multiplexing (umux) readout with a 1000x multiplexing factor in collaboration with SLAC (warm electronics) and NIST (cold).

uMux readout channels (left) and NIST uMUX chip with 66 channels (right)

Prototype SO cold readout module with 1848 readout channels (left). SMuRF warm electronics with 12,000 tones (right).

Detectors: SO will use dual-polarization, dichroic TES bolometer detectors spanning 27 - 270 GHz. Each mid-frequency (MF) and high-frequency (HF) array contains ~1700 detectors, with >60,000 detectors total.

SO MF detector array (left) and LF array (right)

Horn array (left) and lenslet (right) optical coupling for the MF and UFM detector arrays and LF detector array, respectively.

Focal plane design: the universal focal-plane modules, common to both the SATs and LATR, contain the cold readout, detectors, and optical coupling (MF/UHF: horns, LF: lenslets).

universal focal plane (UFM) module

focal plane module detail showing side of horn array, detector stack, and readout.

4 SAT focal planes

UFM distribution in the four SATs and LATR.