The astrophysical gravitational-wave background as a cosmological probe

Gravitational-Wave Orchestra in the Alps Annecy, 17-19 September 2024

Giulia Capurri University of Pisa

UNIVERSITÀ DI PISA

In collaboration with: Andrea Lapi Mario Spera Carlo Baccigalupi

- Introduction about the astrophysical SGWB from stellar CBCs
- The SGWB as an observable to constrain both astrophysical and cosmological parameters
- Case study for BNSs
- Future applications for ET
- Based on <u>Capurri et al., Phys. Rev. D 109 (2024)</u>

Outline

SGWB from compact binary coalescences

Astrophysical horizon of current and proposed future detectors for compact binary systems From cosmic explorer.org

Giulia Capurri - University of Pisa

Superposition of the unresolved GW signals produced by coalescing stellar compact-object binaries

Why is it worth studying?

- **Dominant contribution** in the 10 Hz-1 kHz band
- 2) **Population studies**: generated by merging binaries since the beginning of stellar activity
- 3) Astrophysical probe: many processes involved, at different time and spatial scales
- Cosmological probe: sensitive to cosmological parameters, tracer of the large-scale structure

A tracer of the large-scale structure

Giulia Capurri - University of Pisa

The anisotropies of the SGWB reflect those of the underlying dark matter distribution!

The typical SGWB spectrum

Giulia Capurri - University of Pisa

LIGO Scientific Collaboration and Virgo Collaboration, arXiv:1602.03837

The isotropic component

Merger rates

Boco+20, arXiv:2012.02800 Santoliquido+22, arXiv:2205.05099

Phinney, 2001, arXiv:astro-ph/010 Regimbau 2011, arXiv:1101.2762 LVK Collab., 2021, arXiv:2101.12130 Bavera+21, arXiv:2109.05 *Périgois+22, arXiv:2112.0119*

Astrophysical parameters $\theta = \{\mathscr{M}_c, q, \chi, \dots\}$

Giulia Capurri - University of Pisa

Removing (or not) resolved events **Total vs residual SGWB**

Recipe: From the Kitchen of:	
1) Population properties	
- Merger rates	
- Mass distribution	0
2) GW waveforms	
3) Detectors	
WHAT'S COKIN'?	

Giulia Capurri - University of Pisa

Theoretical predictions for the SGWB

Giulia Capurri - University of Pisa

Can we reverse-engineer the recipe?

Ground-based interferometers

SGWB measurements (isotropic component)

GWO - Annecy, 18/09/2024

The SGWB peak as an observable to constrain astrophysical and cosmological parameters

- 1. Focus on the **peak** of the energy density
- 2. Identify a proper set of astrophysical and cosmological parameters
- 3. Simulate signal with different input parameters
- 4. MCMC to reconstruct the injected parameters
- 5. We work with the SGWB from **BNSs**

Astrophysical and cosmological parameters

$$\Omega_{gw}(f) = \frac{8\pi Gf}{3H_0^3 c^2} \int dz \int d\theta_a \, p(\theta_a) \frac{\mathcal{R}(z \mid \theta_a)}{(1+z) h(z \mid \theta_c)} \frac{dE_{gw}}{df} (f, z \mid \theta_a)$$

Astrophysical parameters θ_{a}

Giulia Capurri - University of Pisa

Cosmological parameters θ_a

Hubble parameter H_0 Distance Ladder (Cepheids) ♦ ACDM Hubble Tension: Mpc Planck Collaboration 2020, arXiv:1807.06209; Ľ H_{0} *Riess+22, arXiv:2112.04510* **WMAP1** 65 2005 2010 2015 2000 Year

Matter density parameter Ω_M

3) Dark energy effective EoS w

Effect of varying parameters

Cosmological parameters $\theta_c = \{H_0, \Omega_M, w\}$

Giulia Capurri - University of Pisa

GWO - Annecy, 18/09/2024

Mock data points construction

	-		
Parameter	Fiducial value(s)	Prior interval	Units
\mathcal{M}_{c}	1.25	[1, 1.5]	M_{\odot}
lpha	3.8	$[1,\!5]$	/
H_0	$\begin{array}{c} 67.4 \\ 73 \end{array}$	[50, 90]	${\rm km~s^{-1}Mpc^{-1}}$
Ω_M	0.315	[0.04,0.5]	/
w	-1.5	[-2,0]	/

• Chose fiducial input parameters

• Generate mock data points with errors

• Gaussian likelihood

Bayesian inference on $\{\mathcal{M}_{c}, \alpha, H_{0}\}$

Input: $H_0 = 73 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Bayesian inference on $\{\mathcal{M}_{c}, \alpha, H_{0}\}$

We find the required kHz sensitivity to distinguish the two HO values measured by Planck and Cepheid-SNe

Inference on $\{\mathcal{M}_{c}, \alpha, H_{0}, \Omega_{M}, w\}$ and summary

Giulia Capurri - University of Pisa

Summary:

- Science case: SGWB by BNSs as an observational tool in the kHz frequency range
- Its peak contains a significant amount of physical information
- Constraints on astrophysical and cosmological processes involved in the production of the SGWB

Future prospects: different NS equations of state

Future prospects for ET: SGWB from BBHs

1) SGWB peak within ET sensitivity band.

2) Many astrophysical parameters:

- Strong dependence on metallicity
- Various formation channels
- Complicated mass distribution

3) Careful subtraction/separation from resolved events

4) Issue of correlated noise (for ET triangular configuration)

Giulia Capurri - University of Pisa

Stochastic searches with ET (sensitivity of different designs)

Future prospects for ET: SGWB from BBHs

 $\Omega_{gw}(f)$

1) SGWB peak within ET sensitivity band.

2) Many astrophysical parameters:

- Strong dependence on metallicity
- Various formation channels
- Complicated mass distribution

3) Careful subtraction/separation from resolved events

4) Issue of correlated noise (for ET triangular configuration)

Giulia Capurri - University of Pisa

Thank you so much for your attention!

Get in touch: giulia.capurri@df.unipi.it

