LISA and the future of gravitational wave science

Sylvain Marsat (L2IT, Toulouse)

Séminaire — LPC Clermont-Ferrand

Sylvain Marsat

2024-03-22

1

- Introduction: gravitational wave astronomy
- Status of LIGO/Virgo
- Future ground-based detectors
- The LISA mission
- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

Introduction: gravitational wave astronomy

- Status of LIGO/Virgo
- Future ground-based detectors
- The LISA mission
- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

GWI509I4: first direct detection of gravitational waves

B. C. Barish, K S. Thorne

NR simulation for a BHNS system

GW Signals: polarizations and strain

$$h = F_+h_+ + F_\times h_\times$$

Compact Binary Coalescences - Lexikon

BBH: binary black hole BNS: binary neutron star

- $f = 2f_{\text{orb}}$ • Dominant frequency:
- Merger/Ringdown
 - $\mathcal{M}_c = \frac{m_1^{3/5} m_2^{3/5}}{(m_1 + m_2)^{1/5}}$ • Chirp mass:
 - Inspiral frequency: $\omega_{\rm orb}(t) = \left(\frac{G\mathcal{M}_c}{c^3}\right)^{-5/8} \left(\frac{5}{256}\frac{1}{t_c - t}\right)^{3/8}$
 - BBH scale invariance: G = c = 1
 - End of inspiral: $r_{\rm ISCO} = 6M$

$$t \to t/M \qquad f \to M$$
$$h \to rh/M$$

$$f_{\rm ISCO} = 1/6^{3/2}/(\pi M)$$

• Effect of cosmology:

 $M \to (1+z)M$

$$1/r \rightarrow 1/d_L$$

Waveform modelling

Mass ratio m_2/m_1

Analytic approaches (PN/PM)

- analytic perturbative results for the inspiral phase
- recent progress on post-Minkowskian side, hyperbolic orbits

Self-force, small mass ratios (SF)

- analytic/numerical results for the extreme mass ratio limit
- recent progress on 2nd order SF, and comparable-mass limit

Numerical relativity (NR)

- costly full-GR 4D simulations, limited to merger and few orbits
- only reference for merger-ringdown signals
- recent progress on high mass ratio and modified gravity

Combination of analytical/ numerical approaches

Crucial and active field of study

Noise and signal

Noise autocorrelation in the stationary case:

$$C(t, t') = \langle n(t)n(t') \rangle$$

$$C(t, t') = C(0, t' - t) \equiv C(t' - t)$$

Noise PSD as the FT of the autocorrelation:

$$\frac{1}{2}S_n(f) = \int d\tau \, C(\tau) e^{-2i\pi f\tau}$$

Introduce a noise-weighted inner product:

$$(a|b) \equiv 4 \operatorname{Re} \int_{0}^{+\infty} \frac{df}{S_n(f)} \tilde{a}(f) \tilde{b}^*(f)$$

Optimal Signal-to-Noise ratio:

Matched filter SNR comparing template to data:

$$\mathrm{SNR}^2 = (h|h)$$

$$\rho^2 = (h|d)$$

Example of real instrumental PSDs (instr. lines, ...)

Bayes theorem and posterior distribution

Bayes theorem

Posterior distribution

- target of the analysis
- multidim. distribution, discrete samples
 - inferred params (17 for GW source) θ
 - data (observed data in detector) d
- model (context, assumptions) M

Idealized data likelihood (Whittle)

For a stationary Gaussian process: independence FD, diagonal covariance

$$\ln \mathcal{L}(\theta) = -\frac{1}{2}(h(\theta) - d|h(\theta) - d)$$

(Noise-weighted) norm of residuals between template and data

$p(d|\theta, M) = \mathcal{L}(d|\theta, M)$ Likelihood

Prior distribution

• a priori knowledge of parameters

Evidence

$$p(d|M) = \int d\theta \, p(d|\theta, M) p(\theta|M)$$

- normalization of the posterior
- important for model comparison

Hierarchical inference

Infer hyperparameters affecting the whole population (population model, cosmology, modified gravity)

$$p(\Lambda|\{d\}) \propto p(\Lambda) \prod_{i=1}^{N_{\rm GW}} \frac{1}{\xi(\Lambda)} \int d\theta \,\mathcal{L}(d_i|\theta,\Lambda) p(\theta|\Lambda)$$

Selection effect: Malmquist bias, louder end, ed $\xi(\Lambda) = \int d\theta p_{det}(\theta, \Lambda)$ $p_{det}(\theta, \Lambda) = \int_{x>thres.} dx \mathcal{L}(x|\theta, \Lambda)$ events more likely to be detected

Matched filtering example

$$[h|s)|$$

FFT $(\tilde{h}\tilde{s}^*/S_n)$

In reality, detector noise has strong outliers (glitches):

- use custom detection statistics penalizing outliers
- use carefully constructed template banks covering the parameter space
- exploit coincidence between independent detectors for detection confidence
- use real detector data in time slides to assess significance of coincidence
- triggers are assessed by their False-Alarm Rate (FAR)

Matched filtering and coincidence state-of-the-art for LVK

GW Parameter Estimation example

11

Examples of LVK results

Introduction: gravitational wave astronomy

• Status of LIGO/Virgo

- Future ground-based detectors
- The LISA mission
- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

The gravitational wave spectrum

Detection horizons in Mpc for BNS

Gravitational wave science: from discovery science to a new astronomy

CBC detections

GRAVITATIONAL WAVE \square DETECTIONS – SINCE 2015 – -----OzGrav-

ARC Centre of Excellence for Gravitational Wave Discovery

Population inference

Hierarchical population inference:

- BBH mass spectrum
- BBH spin distribution
- Rate evolution with z

Mass gap between NS/BH

Gravitational wave cosmology

Measurement of redshifted masses M_z $M \to (1+z)M$ $1/r \rightarrow 1/d_L$ Measurement of luminosity distance d_L How to get redshift information:

- spectrum of EM counterpart (standard siren, GW170817)
- correlate with catalogs of galaxies (dark sirens)
- source-frame mass feature (spectral sirens), e.g. mass gap
- non-gravitational physics: in BNS

- Introduction: gravitational wave astronomy
- Status of LIGO/Virgo
- Future ground-based detectors
- The LISA mission
- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

3G detectors - 2030-2040

Einstein Telescope:

- 10km armlengths
- triangle design
- underground setting
- cryogeny

Cosmic Explorer:

- 40km armlengths
- L-shape design
- 2 detectors proposed

3G detectors

Events/yr (lowmedian-high):

Detections (2 CE+1ET):

- BBH: 60k-90k-150k
- BNS: 300k-1000k-3000k
- BBH: 93%
- BNS: 35%
- GW astronomy on a massive scale !

[Cosmic Explorer]

[Samajdar&al 2021]

21

3G detectors

- Popcorn nature of combined signals
- Superposition problem

- Introduction: gravitational wave astronomy
- Status of LIGO/Virgo
- Future ground-based detectors

The LISA mission

- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

The gravitational wave spectrum

LISA instrument concept

An extremely ambitious mission:

- 2.5 million km armlength
- 6 laser links
- test masses shielded from the environment
- success of technological demonstrators: LISA pathfinder, Grace Follow-on
- provisional launch 2035

Mission adoption by ESA 2024-01

LISA measurement principle

Analogous to 2 LIGO in motion at low frequencies only

From spacecraft s to spacecraft r through $y = \Delta \nu / \nu$ link l: $y_{slr} = \frac{1}{2} \frac{1}{1 - \hat{k} \cdot n_l} n_l \cdot (h(t_s) - h(t_r)) \cdot n_l$

Response time and frequency-dependent:

$$\frac{\pi f L}{2} \operatorname{sinc} \left[\pi f L \left(1 - k \cdot n_l \right) \right] \exp \left[i \pi f \left(L + k \cdot \left(p_r + p_s \right) \right) \right] n_l \cdot P \cdot n$$

Doppler delay from orbit, change in orientation

Cancelling laser noises in post-processing, from phasemeter measurements

+ refinements for unequal arms, moving constellation

$$X_{1}^{\text{GW}} = \underbrace{\left[(y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}}) + (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}})_{,22} - (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}}) - (y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}})_{,33} \right]_{X^{\text{GW}}(t)} - \underbrace{\left[(y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}}) + (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}})_{,22} - (y_{21}^{\text{GW}} + y_{12,3}^{\text{GW}}) - (y_{31}^{\text{GW}} + y_{13,2}^{\text{GW}})_{,33} \right]_{,2}}_{X^{\text{GW}}(t-2L_{2}-2L_{3}) \simeq X^{\text{GW}}(t-4L)}$$

Panorama of LISA sources

- Galactic binaires (WD/WD), quasi monochromatic, form foreground
- Massive Black Hole Binaries (MBHBs) loud merger-dominated signals
- Extreme Mass Ratio Inspirals (EMRIs) small compact object falling in a MBH
- Stellar-mass Black Hole Binaries (SBHBs)
- + GW stochastic backgrounds (astrophysical, cosmological)
- + cosmic strings, unforeseen sources?

- Introduction: gravitational wave astronomy
- Status of LIGO/Virgo
- Future ground-based detectors
- The LISA mission

• Targets of LISA

- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

LISA sources: Galactic Binaries

- Full galaxy: ~20 million systems !
- Mostly WD-WD, some other compact objects
- About ~20000 individually resolvable
- Form a (non-stationary) background
- Verification binaries
 - How do binary stars evolve ?
 - What is the WD/NS/BH merger rate in the Milky Way ?
 - What is the structure of the Milky Way beyond the Galactic Center ?

LISA sources: Galactic Binaries

- Quasi-monochromatic GW emitters
- Modulation by LISA motion (sidebands in Fourier-domain)
- Superposition/confusion of signals in Fourier-domain

- Form a (non-stationary) **foreground** for all other sources
- Verification binaries useful for data analysis

LISA sources: Massive Black Hole Binaries

- MBH grow from seeds (light? massive?) through both mergers and accretion
- MBHBs very loud for LISA, detectable to cosmic dawn
- Rates uncertain, from ~1/yr to ~100/yr

- What are the seeds of Massive Black Holes ?
- What is their population and how do they grow ?
- Identify host galaxies of MBHBs in EM
- Test General Relativity predictions for the signals

- Very loud signals, merger-dominated
- All subdominant details in the waveform matter !
- Higher harmonics (m*orbital frequency) are crucial and break degeneracies
- Precession (misaligned spins) and eccentricity could be important

- Dynamical capture of a compact object by a MBH can form a direct plunge or an EMRI
- EMRIs can be detected to z=1-2
- Rates **very** uncertain, from ~I/yr to ~1000/yr

- What is the population of (individual) Massive Black Holes ?
- How do EMRIs form, in what environment ?
- Test General Relativity predictions for the signals

LISA sources: Extreme Mass Ratio Inspirals

M = 1.00e+06, $\eta = 1e-05$, $e_0 = 0.4$, $p_0 = 10.0$

- Extremely complex signals, modelled in perturbative GR (frontier: 2nd order self-force)
- Long-lived signals, large number of orbits exquisite parameter estimation
- Very rich harmonic structure
- Difficult to detect on its own (cannot use template banks !)
- Strong multimodality in parameter space

LISA sources: Stellar-mass Black Hole Binaries

- What is the formation channel of stellar-mass BHBs ?
- What is their environment ?
- Test General Relativity predictions for the signals

- Same BBH as observed by LIGO/Virgo
- Long-lived signals, large number of orbits, very far from merger
- Difficult to detect on its own (cannot use template banks !)
- Could probe the presence of eccentricity, signature of the formation channel
- Possibility of **multiband detection** with ground instruments
- Rates low, signals barely detectable (but later detection on ground allows an archival search)

		-		-	
	sBHB type	definition	$\langle N \rangle$	90% confidence	no sBHB (%)
SI 4.1	detected	SNR > 8	4.9	0.4 - 9.8	2.2
	archival	$5 < SNR < 8$ & $t_c < 15$ yr	5.6	0.8 - 10.0	1.4
SI 4.3	multiband	SNR > 8 & <i>t_c</i> < 15 yr	1.5	0 – 3.8	26.7
		SNR > 8 & $t_c < 4.5 \text{yr}$	0.4	0 - 1.4	67.7

[LISA Red Book 2024]

- Introduction: gravitational wave astronomy
- Status of LIGO/Virgo
- Future ground-based detectors
- The LISA mission
- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

LISA data in frequency-domain

- background

• **MBHBs**: loud and merger-dominated, localized in time but extended in frequency • **GBs**: continuous signals very local in frequency, both individually resolvable and building up a

LISA data in time-frequency domain

- **MBHBs**: loud and merger-dominated, localized in time but extended in frequency • **GBs**: continuous signals very local in frequency, both individually resolvable and building up a background

LISA data - band-passed, whitened in time domain

Whitened, band-passed data

39

Source superposition: a first approach

- Most classes of sources superpose in time or frequency, but signals should be approximately orthogonal
- Instrument noise level is also unknown a priori
- Problem intractable in full dimensionality...
- **Gibbs sampling** approach: sample/subtract each signal in succession, iterate the loop many times

Where to start the loop ?

- MBHB analysis with full galaxy / GB analysis with full MBHBs are typically biased
- Some form of signal subtraction seems to be required

LISA data analysis will require a **global fit** of all signals This global fit can be modular

41

MBHBs Ist subtraction resid.

LDC Sangria MBHB example

LISA: non-stationarity and gaps

Non-stationarity

- Non-stationarity background from double WD in the galaxy
- Instrumental non-stationarity over long times
- Glitches (as seen in LISA Pathfinder)

High-precision gravitational wave astronomy: waveform systematics ?

MBHB waveform systematics: intrinsic parameters

- Introduction: gravitational wave astronomy
- Status of LIGO/Virgo
- Future ground-based detectors
- The LISA mission
- Targets of LISA
- Challenges for the data analysis of LISA
- Counterparts for MBHBs, GW cosmology and tests of GR in LISA

MBHB sky localization at merger

Pre-merger localization: can we locate the source in advance ?

LISA-EM synergy ?

- 10 sq. deg. : LSST field of view
- 0.4 sq. deg.: Athena Wide Field Imager

Fisher matrix, sky area of main mode of the posterior (+MCMC full PE on a subset)

Only a 'platinum' system (M=1e5, z=0.3) can be localized well in advance of the merger

Advance localization challenging, much better post-merger

Large dispersion in sky area, ~4 orders of magnitude

Gravitational wave cosmology with LISA MBHBs

Black hole Ringdown Spectroscopy with LISA

LISA horizon (SNR=8) of individual QNMs

Ringdown signal: superposition of Qasi-Normal Modes

 $h \sim \sum A_{\ell m n} e^{-t/\tau_{\ell m n}} e^{i\omega_{\ell m n}t}$ ℓ,m,n

The frequencies and damping times are all functions of $~(M_f,\chi_f)$ the mass and spin of the remnant Signature of GR !

> The measurement of more than one QNM allows to test the nature of black holes

• $M_{t,0} = 2 \times 10^7 M_{\odot}, \ \chi_{1,0} = 0.9, \ \chi_{2,0} = 0.9, \ q_0 = 2$ $M_{t,0} = 2 \times 10^7 M_{\odot}, \ \chi_{1,0} = 0.9, \ \chi_{2,0} = 0.9, \ q_0 = 4$ $M_{t,0} = 2 \times 10^7 M_{\odot}, \ \chi_{1,0} = 0.2, \ \chi_{2,0} = 0.1, \ q_0 = 2$ $M_{t,0} = 2 \times 10^7 M_{\odot}, \ \chi_{1,0} = 0.2, \ \chi_{2,0} = 0.1, \ q_0 = 4$ $M_{t,0} = 2 \times 10^8 M_{\odot}, \ \chi_{1,0} = 0.9, \ \chi_{2,0} = 0.9, \ q_0 = 2$ $M_{t,0} = 2 \times 10^8 M_{\odot}, \ \chi_{1,0} = 0.9, \ \chi_{2,0} = 0.9, \ q_0 = 4$ \bigcirc $M_{t,0} = 2 \times 10^8 M_{\odot}, \ \chi_{1,0} = 0.2, \ \chi_{2,0} = 0.1, \ q_0 = 2$ $\square \quad M_{t,0} = 2 \times 10^8 M_{\odot}, \ \chi_{1,0} = 0.2, \ \chi_{2,0} = 0.1, \ q_0 = 4$

<u>-20</u>EMRIs as probes of the BH spacetimes

-20

structure:

quadrupole Q(a)

waveforms so far)

EMRI signals can probe deep into the structure of the Kerr spacetime