

Neutrino group T2K/HK/NA61

Claudio Giganti

Biennale LPNHE - Mai 2024

Group members

- 6 chercheurs: Claudio Giganti, Mathieu Guigue, Marco Martini (IPSA), Boris Popov, Stefano Russo, Marco Zito
- 3 emeriti: Pierre Billoir, Alain Blondel, Jacques Dumarchez
- 2 postdocs : Gonzalo Diaz Lopez (ANR Bertha), William Saenz-Arevalo (ANR Suncore+Bertha)
- 4 Phd Students: Claire Dalmazzone, Ulysse Virginet, Anaelle Chalumeau, Lavinia Russo
 + 2 qui demarreront en 2024

Ingénieurs, techniciens, administrateurs: Jean-Marc Parraud, Eric Pierre, Yann Orain, Julien Coridian, David Martin, Romain Gaior, Vincent Voisin, Diego Terront, Carla Carvalahis

Anciennes membres du groupe:
Postdocs: Sergey Suvorov, Adrien Blanchet,
PhD: Viet Nguyen, Lucile Mellet, Vlada Yevarouskaya
Bernard:-)

Oscillation des neutrinos

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{i\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- 3 angles de mélange, 2 différences de mass → mesurés
- 1 phase de violation de Charge-Parité → pas encore mesuré

Primordial

10,000,000,00

Oscillation des neutrinos

 $e \rightarrow e (\delta m^2, \theta_{12})$

 $e \rightarrow e (\Delta m^2, \theta_{13})$

$e \rightarrow e (\delta m^2, \theta_{12})$

$\mu \rightarrow \mu \left(\Delta m^2, \frac{\theta_{23}}{23} \right)$

 $\mu \rightarrow \tau (\Delta m^2, \theta_{23})$

Expériences des neutrinos sur accelerateurs

- Production de un faisceau de ν_{μ} ou de $\bar{\nu}_{\mu}$
- Detection des neutrinos avant oscillation dans un détecteur proche → réduction des erreurs sur la connaissance du flux et des probabilités d'interactions de neutrinos → de 15% a <5%
- Détection de neutrinos au détecteur lointain ou on observe la disparition des ν_{μ} et apparition des ν_{e}) \rightarrow différences entre l'apparition de ν_{e} et $\bar{\nu}_{e}$ peuvent etre expliqués par une violation de CP

NA61/SHINE @ CERN

- Les faisceau des neutrinos sont produit par les interactions des protons sur une cible → ceci produit des pions qui se désintègrent en neutrinos muoniques
- L'incertitude dominant est du a la méconnaissance sur la production des pions
- NA61/SHINE expérience dédiée au CERN → réduction des incertitudes sur le flux des neutrinos ~5%

Ce qu'on faisait (2010-2022)

Ce qu'on fait aujourd'hui

Ce qu'on fera (2027)

Et puis encore (2030)

Analyse des données dans T2K

Selection des neutrinos au détecteur proche (ND280) → ~1% de $\nu_{\rm e}$, ~99% de $\nu_{\rm \mu}$

Réduction des incertitudes sur flux*x-sec

Spectre de ν_{μ} attendu au détecteur lointain

	Pre-	Post-	
	ND FIT	ND FIT	
Sample	error	error	
FHC $1R\mu$	11.1%	3.0%	
RHC 1R μ	11.3%	4.0%	
FHC 1Re	13.0%	4.7 %	
RHC 1Re	12.1%	5.9%	
FHC 1R <i>e</i> 1d.e.	18.7%	14.3%	

Selection des neutrinos au détecteur lointain (Super-K) ~30% de ν_e → apparition de ν_e

Résultats d'oscillation de T2K

Sample		True δ_{CP} (rad.)				Data
		$-\pi/2$	0	$\pi/2$	π	
$1R\mu$	ν-mode	346.61	345.90	346.57	347.38	318
	$\overline{\nu}$ -mode	135.80	135.45	135.81	136.19	137
1R <i>e</i>	ν-mode	96.55	81.59	66.89	81.85	94
	$\overline{\nu}$ -mode	16.56	18.81	20.75	18.49	16
1Re1de	ν-mode	9.30	8.10	6.59	7.79	14

- Au détecteur lointain on observe l'apparition des neutrinos électroniques et des anti-neutrinos électroniques
- L'apparition de ν_e et plus grand que celui de $\bar{\nu}_e$ → violation de CP ou fluctuation statistiques ?

T2K phase-II

- Nouvelle phase commencé en Decembre 2023
- Mise a niveau de l'accélérateur à J-PARC
 - Puissance de faisceau augmenté de 500 kW a 750 kW → à terme on veut arriver a 1.3 MW en 2027 (début de Hyper-Kamiokande)
 - Plus des statistique pour confirmer/rejeter les indication de violation de CP observé par T2K
- En parallèle → mise a niveau du détecteur proche ND280 pour mieux étudier les interactions de neutrinos et réduire les incertitudes systématiques pour T2K et pour HK
 - Cible très granulaire → Super-FGD (2 millions de cubes de scintillateur plastique)
 - 2 Chambres a projection temporelle a haute angle (HA-TPC)
 - Détecteurs de temps de vol (TOF)

T2K Projected POT (Protons-On-Target)

Production et assemblage du Super-FGD

- 2 millions des cubes de scintillateur plastique isolés optiquement
- 3 fibres dans chaque cube → 3D readout

High-Angle TPCs

- Assemblage et tests des HATPCs au CERN
- Expedition au Japon
- Installation des HA-TPCs en Septembre 2023 et Avril 2024

HA-TPCs au LPNHE

- Au LPNHE on a produit les carte de lecture des HA-TPC → 72 cartes installés
- Responsable du développement de l'acquisition des données (DAQ)
- Développement des algorithmes des reconstruction pendant plusieurs campagnes de test beam au CERN et à DESY

Installation à J-PARC

TOF installation (July 2023)

Bottom TPC installation (September 2023)

Super-FGD installation (October 2023)

Détecteurs installés à ND280

Interactions des neutrinos (Dec 2023)

Performances des HATPCs à J-PARC

- Performances avec les premières données cosmiques prise a J-PARC → bon accord entre données et simulations
- Plus des détails dans les poster de Anaelle, Ulysse et Lavinia

ND280++ pour Hyper-K

Water-Based Liquid Scintillator prototype at ETH Zurich

PRCI avec ETHZ soumis →
Marco "J'ai une salle au sous-sol sans
fenêtres que personne veut utiliser"

- ND280 sera aussi le detecteur proche pour Hyper-Kamiokande
- Grace a son design modulaire et a ce qu'on apprendra avec ND280 on pourra faire d'autres upgrades pour la phase des mesures de haute précision avec Hyper-K → détecteur de ~10 ton avec des nouvelles technologies pour ameliore la sensibilité de Hyper-K
 - Une fois finalisé l'installation de la mise a niveau de ND280 on commence a collaborer avec d'autres groupes européen dans T2K/HK pour un R&D pour ND280++

Hyper-Kamiokande

Super-Kamiokande IV

Run 999999 Dub 0 Event 5
il-11-21:91:91:910
inner: 296 hits, 5464 pe
Outer: 4 hits, 6 pe
Trioper (no?)
D_walif 1266.6 cm
Evisi 622.3 MeV/c

Charge (pe)

- 26.7
- 23.3-26.7
- 10.2-23.9
- 11.3-3-2.0
- 11.3-3-2.0
- 11.3-3-3
- 11.3-3-3
- 1.3-3-3
- 1.3-3-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7-3
- 0.7

- Nouvelle génération de détecteur Cherenkov a eau au Japon
- 8 fois plus grande que Super-Kamiokande
- Expérience plus sensible a la violation de CP dans le secteur leptonique → plus des details dans le poster de Claire
- Construction en cours à Kamioka

Hyper-Kamiokande en un slide

- Observation de la violation CP pour les leptons à 5σ
- Mesure précise de δ_{CP}
- Sensibilité à la hiérarchie de masses

Neutrinos d'accélérateur (J-PARC)

• Tests des GUT par désintégration du proton ou l'oscillation n-n'

- Effet MSW
- Interactions non standards

Neutrinos de supernovae

- SN ν transient: modèle d'explosion des SN
- SN ν reliques: formation des structures des étoiles

Système de synchronisation de temps a HK

- LPNHE responsable pour le systeme de synchronisation de temps entre J-PARC et les 20k
 PMTs de Hyper-Kamiokande
- Production de ~90 cartes pour le system de distribution de temps en 2024

Hyper-K reconstruction

- Particules chargés voyage plus vite que la lumière (dans le milieu!)
- Lumière produite par effet Cherenkov produit un anneau reconstruit par le PMTs sur les parois du détecteur
- Selon la forme de l'anneau on peut distinguer electrons de muons $\rightarrow \nu_{\mu}$ de ν_{e}
- Developpement des nouveaux algorithms de reconstruction pour HK (Gonzalo Diaz Lopez, Lorenzo Restrepo, Mathieu Guigue)

Conclusions

- Groupe jeune et dynamique (Boris said)
- Le groupe neutrinos est impliqué, depuis plusieurs années sur le programme des expériences long-baseline au Japon
- T2K
 - Installation de l'upgrade du détecteur proche en 2023
 - Exploitation des données pour la période 2023-2027
- Hyper-Kamiokande
 - En construction, démarrage prévu en 2027
 - Responsable de système de synchronisation
 - HK sera un observatoire au delà de la physique d'oscillation → astrophysique multi-messenger et synergies avec les autres groupes du labo

Back-up

New detectors

Super-FGD

More details in Viet talk tomorrow

***** Each cube is read by 3 WLS → 3D view

More details in Ulysse talk tomorrow

High-Angle TPCs

New TPCs instrumented with Encapsulated Resistive Anode MicroMegas (ERAM)

TOF

6 TOF planes to reconstruct track direction
Time resolution ~150 ps

ND280 Upgrade improvements

- High-Angle TPCs allow to reconstruct muons at any angle with respect to beam
- Super-FGD allow to fully reconstruct in 3D the tracks issued by ν interactions →lower threshold and excellent resolution to reconstruct protons at any angle
 - Improved PID performances thanks to the high granularity and light yield
- Neutrons will also be reconstructed by using time of flight between vertex of $\bar{\nu}$ interaction and the neutron re-interaction in the detector

Protons → threshold down to 300 MeV/c (>500/c MeV with current ND280)

Expected results

- First physics run with full upgrade installed in June
- Expect to collect 20k νμ
 CC0pi interactions in the sFGD

CC0m Event rates

Expect 85%-90% purity for SFGD samples

FHC only	1 cycle	3+1 cycles
SFGD total	21.8k	90.0k
SFGD w/nucleon	10.6k	43.9k

