

Anaëlle Chalumeau^{*}, Ulysse Virginet^{**}

T2K group

From Tokai to Kamioka: the T2K experiment

- T2K: long baseline neutrino oscillation experiment located in Japan
- ν_{μ} or $\bar{\nu}_{\mu}$ beam produced at J-PARC accelerator
- Near detector ND280: characterizes (anti) neutrino flux and cross-section before neutrino oscillations
- Far detector Super-Kamiokande (SK): detects ν_{μ} ($\bar{\nu}_{\mu}$) and ν_{e} ($\bar{\nu}_{e}$) charged current interactions through Cherenkov effect
- Off-axis techniques: ND280 and SK at 2.5° from beam for a narrower band beam peaked at 0.6 GeV

The contributions of the LPNHE group

- Design, production and tests of ND280 Upgrade HA-TPC front end electronics, see Fig.1
- The HA-TPC data acquisition system based on MIDAS

LPNHE

- The HA-TPC simulation and reconstruction (track fitting) software: the use of new resistive MicroMegas technology requires adapting the full software chain
- Analysis of HA-TPC prototypes: test-beam data at CERN in 2018 [1] and at DESY in 2019 [2] and 2021 [4]
- Track reconstruction new methods in the HA-TPCs (log Q method, machine learning)

CNrS

Figure 1. HA-TPC field cage equipped with 8 ERAMs (left), each readout by 2 Front-End Cards (FEC) and 1 Front-End Mezzanine (FEM) (right)

The upgrade of the Near Detector ND280

Reasons for the upgrade:

The upgraded detector:

- Increase angular acceptance (limited phase-space coverage of the current ND280)
 Peduce cystematic
- Reduce systematic uncertainties via better measurements of neutrino interactions
 [3]

The High-Angle TPC Reconstruction Software

Figure 5. Spatial resolution as a function of drift distance

	[_							
2		_							
5		_ :						_	
i n '	0.16		 	 	 				
, 0.		_						•	
								Ī	
	ſ	_						T T	
i	4 4	-					т	•	
: 0.	14		 	 	 	· · · · · · · · · · · · · · · · · · ·	1		

Figure 6. dE/dx resolution as a function of momentum

 At LPNHE we have developed the full HA-TPC reconstruction chain and tested on both cosmics data and MC. The two

- I Fine Grained Detector (SuperFGD) placed between
- 2 High-Angle Time Projection Chambers (HA-TPC) instrumented with resistive MicroMegas

The Encapsulated Resistive Anode Micromegas (ERAM) technology

Figure 2. Previous bulk micromegas (left) and new encapsulated resistive anode micromegas technology (right)

Charge deposited spread on adjacent pads with Gaussian behavior:

- \rightarrow Larger e^- avalanche + time information
- $\rightarrow\,$ Improved spatial resolution: 200 μm for horizontal tracks [4] (vs 600 μm with bulk MicroMegas)

Figure 7. Momentum resolution as a function of the true momentum (vertical μ^-)

- are in good agreement with:
- Spatial resolution of $\approx 500 \ \mu m$
- dE/dx resolution better than 10%
- Such performances ensure a resolution on the reconstructed momentum better than 10% for tracks with momenta smaller than 1.2 GeV/c.

Neural networks for HA-TPC track reconstruction

Figure 8. Standard architecture using convolution operation widely used for image recognition, fed with HA-TPC images of deposited charge (MC simu)

HA-TPC installation and first tracks

Cop

Figure 3. Neutrino interaction in the upgraded* ND280 with 2 stopping protons in the SFGD (December 2023)

*Top HA-TPC and 2/6 TOF panels were not installed yet

Figure 4. HA-TPCs and SFGD inside ND280 (May 2024)

Figure 9. Reconstructed **momentum resolution** vs p_{true} using CNN or classical algorithm

Figure 10. **PID** with CNN: efficiency vs purity for e^+ selection

References

- [1] D. Attié et al. Performances of a resistive Micromegas module for the Time Projection Chambers of the T2K Near Detector upgrade. *Nucl. Instrum. Meth. A*, 957:163286, 2020.
- [2] D. Attié et al. Characterization of resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers. *Nucl. Instrum. Meth. A*, 1025:166109, 2022.
- [3] S. Dolan et al. Sensitivity of the upgraded T2K Near Detector to constrain neutrino and antineutrino interactions with no mesons in the final state by exploiting nucleon-lepton correlations. *Phys. Rev. D*, 105(3):032010, 2022.
- [4] U. Yevarouskaya et al. Analysis of test beam data taken with a prototype of tpc with resistive micromegas for the t2k near detector upgrade. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1052:168248, 2023.

* anaelle.chalumeau@lpnhe.in2p3.fr, ** ulysse.virginet@lpnhe.in2p3.fr

Biennale du LPNHE, May 2024