Track Reconstruction with Graph Neural SMARTHEP
Networks on Heterogeneous Architectures
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LHCb moved the first level trigger from CPU to GPU. This is the
first time in high-energy physics that GPU processors have been
used for a first-level trigger system.

; Compared to the CPU baseline the GPU trigger allowed numerous
additional physics functionality to be implemented: calorimenter
reconstruction, low-momentum tracking, as well as finding tracks
produced outside the LHCb vertex detector.
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Implementing this trigger on 340 GPU processors also resulted in
very substantial cost savings with respect to the CPU baseline
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/ ETX4VELO: Graph Neural Network-Based Pipeline for Track Finding in the Velo at LHCb \

The focus is to evaluate deep-learning algorithms performance for
EFFICIENCY and THROUGHPUT, and estimate how these models scale
up with the increase of data rate.
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For this purpose we developed the ETX4VELO pipeline which focuses
on developing Graph Neural Networks (GNNs) algorithms for track
reconstruction.
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Steps of the pipeline;
e Embedding

e Graph Construction
e GNN
e Triplets (not shown in the diagram) oo — S
e Score cut
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Inference of the ETX4VELO Models on GPUs and FPGAs pyTorch Cd G O
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e Integration inside the LHCDH's first-level GPU trigger (HLT1) g / \
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Pipeline __[step Throughput
| ONNXRuntime (FP32) | TensorRT (FP32) TensorRT (INT8)
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