

L. Boggia, A. Butter, R.C. Camacho Toro, L. Delagrange, B. Malaescu, L. Panwar, L. Poggioli on behalf of the LPNHE ATLAS Group, 2024

- Goal: study how the strong coupling constant α_s varies with energy using jets and their substructure
- Due to detector effects in jet reconstruction, the implementation of a Jet Energy Scale Calibration procedure is necessary.
- The Lund Jet Plane representation of jet substructure effectively disentangles perturbative and nonperturbative effects within jets. evaluations using different processes

Jet Energy Scale (JES) Calibration at ATLAS

asymmetry ${\cal A}$ of the two jets and its standard deviation $\sigma_{{\cal A}}$

• Implement a ML model combining asymmetry- and truth-based terms: $A_1 = \frac{p_{T_1}^{pred} - p_{T_2}^{reco}}{p_T^{pred}}$, with $p_T^{avg} = \frac{p_{T_1}^{pred} + p_{T_2}^{reco}}{2}$ $loss(\theta) = f_a \cdot (\sigma_{\mathcal{A}_1(\theta)} + \sigma_{\mathcal{A}_2(\theta)}) + f_t \cdot MSE(p_T(\theta), p_T^{true})$, $f_a, f_t \in \mathbb{R}^+$ with $A_2 = \frac{p_{T_1}^{reco} - p_{T_2}^{pred}}{n^{avg}}$, with $p_T^{avg} = \frac{p_{T_1}^{reco} + p_{T_2}^{pred}}{2}$

n-intercalibration

- Using p_{T} balance in *in situ* dijet events to achieve homogeneity of the calibration in η
- Deriving calibration factors in bins of p_{τ} , η :

$$\mathscr{C} = \left[\frac{(p_T^{probe})_{reco}}{ref}\right] / \left[\frac{(p_T^{probe})_{reco}}{ref}\right]$$

long with a global fit at Z-pole

τ decay (N³LO) 🛏

p/pp̄ (jets NLO) ⊢■

HERA jets (NNLO)

W precision fit (N³LO) $\vdash \bullet \dashv$ pp (top, NNLO)

low Q^2 cont. (N³LO)

Heavy Quarkonia (NNLO) 🛏 ets/shapes (NNLO+res)

Q [GeV]

oredicted

Gaussian ($\mu = -0.002$, $\sigma = 0.069$)

Gaussian ($\mu = -0.001$, $\sigma = 0.076$)

²⁵⁰⁰⁰ #emissions

15000

$\int_{data} \left[p_T^{rej} \right]_{MC}$ $p_T^{\prime e_J}$

- Work on making the method more robust and enhancing the statistics by recovering data that was discarded
- Improved treatment of statistical uncertainties

0.02 ¥ 0.95

ATLAS work in progress

R=0.4,¹EM+JES

JES calibration based on E/p single particle measurements

- Input: calorimeter response corrections for single particles from isolated track P and calorimeter energy deposition E
- Aim: Derive JES using jet constituents level information

Jet substructure representation using Lund Jet Plane (LJP)

