3rd rencontre PhyNuBE

Structure and angular momentum at scission from microscopic models

Guillaume SCAMPS

Hartree-Fock

$$\hat{h}_{MF}(\rho) |\varphi_i\rangle = \epsilon_i |\varphi_i\rangle$$

with $\hat{h}_{MF}(\rho)$ the self-consistent mean-field Hamiltonian

Hartree-Fock

$$\hat{h}_{MF}(\rho) |\varphi_i\rangle = \epsilon_i |\varphi_i\rangle$$

with $\hat{h}_{MF}(\rho)$ the self-consistent mean-field Hamiltonian

Time-Dependent Hartree-Fock

$$i\hbar \frac{d}{dt} |\varphi_i\rangle = (\hat{h}_{MF}(\rho) - \epsilon_i) |\varphi_i\rangle$$

Hartree-Fock

$$\hat{h}_{MF}(\rho) \ket{\varphi_i} = \epsilon_i \ket{\varphi_i}$$

with $\hat{h}_{MF}(\rho)$ the self-consistent mean-field Hamiltonian

Time-Dependent Hartree-Fock

$$i\hbar \frac{d}{dt} |\varphi_i\rangle = (\hat{h}_{MF}(\rho) - \epsilon_i) |\varphi_i\rangle$$

Application of mean-field dynamics

Reactions

Fission

Fission

Application of mean-field dynamics

Fission

Uncertainty principle

$$\Delta X_{c.m.} \Delta P_{c.m.} \geq \hbar/2$$

Uncertainty principle

$$\Delta X_{c.m.} \Delta P_{c.m.} \geq \hbar/2$$

TDHF evolution

Exact evolution

Uncertainty principle

$$\Delta X_{c.m.} \Delta P_{c.m.} \geq \hbar/2$$

Limitation of the TDHF evolution

Classical description of the collective variable

Uncertainty principle

$$\Delta X_{c.m.} \Delta P_{c.m.} \geq \hbar/2$$

Limitation of the TDHF evolution

Classical description of the collective variable

Limitation

- no tunneling
- no fluctuation of the collective observable

Uncertainty principle

$$\Delta X_{c.m.} \Delta P_{c.m.} \geq \hbar/2$$

Limitation of the TDHF evolution

Classical description of the collective variable

Limitation

- no tunneling
- no fluctuation of the collective observable

Important

The same is true with pairing (TDHF+BCS, TDHFB)

Time-dependent density functional theory - TDDFT

TDHF

- Independent particle
- Initialisation : $\hat{h}_{MF} |\phi_i\rangle = \epsilon_i |\phi_i\rangle$
- Evolution : $i\hbar \frac{d\rho}{dt} = [h_{MF}, \rho]$

TDHFB - TDSLDA

- Pairing correlation
- Quasi-particles : $|\omega_{\alpha}\rangle = \begin{pmatrix} U_{\alpha} \\ V_{\alpha} \end{pmatrix}$
- One-body ρ and simplified two body density κ

• Evolution :
$$i\hbar \frac{d|\omega_{\alpha}\rangle}{dt} = \begin{pmatrix} h & \Delta \\ -\Delta^* & -h^* \end{pmatrix} |\omega_{\alpha}\rangle$$

Self consistent theory - Effective Skyrme functional

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

TDHF

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

G. Scamps, C. Simenel, D. Lacroix, PRC 92, 011602(R) (2015).

Impact of pairing

Pairing is a lubricant for fission

J. Phys. G: Nucl. Part. Phys. 47 (2020) 113002

Empirical behaviour of actinide nuclei

J.P. Unik, J.E. Gindler, J.E. Glendenin et al. : Proc. Phys. and Chem. of Fission IAEA Vienna, Vol II, 20 (1974)

Empirical behavior of actinide nuclei

Motivation

How can we understand this behaviour? Interplay between structure and reactions?

Second : TDHF+BCS

Second : TDHF+BCS

Second : TDHF+BCS

Comparison with experimental data

Conclusion :

The TDHF+BCS calculation reproduces well the Z=54 behavior. But why?

²⁴⁰Pu

²⁴⁰Pu

Similar effect on fusion reaction :

C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013).

Similar effect on fusion reaction :

C. Simenel, M. Dasgupta, D. J. Hinde, and E. Williams, Phys. Rev. C 88, 064604 (2013).

S. Ebata, and T. Nakatsukasa, Phys. Scr. 92 (2017)

Results from systematic calculation

In both calculations, the region Z \simeq 56, N \simeq 88 is favorable for octupole deformation.

Experimental results

¹⁴⁴Ba is found to be octupole in its ground state. Burcher et al. PRL 116 (2016).

S. Ebata, and T. Nakatsukasa, Phys. Scr. 92 (2017)

Results from systematic calculation

In both calculations, the region Z \simeq 56, N \simeq 88 is favorable for octupole deformation.

Experimental results

¹⁴⁴Ba is found to be octupole in its ground state. Burcher et al. PRL 116 (2016).

Single particle energy

Single particle energies

Experimental results

Conclusion

Mechanism

- The Nucleus-Nucleus interaction at the scission configuration favors the octupole shapes
- $\bullet\,$ Shell structure favors octupole shape in the region Z \simeq 52-56, N \simeq 84-88
- $\bullet\,$ Actinide fission fragments are driven in the region Z \simeq 54, N $\simeq 86$

G. Scamps, C. Simenel, Nature 564, 382 (2018).

G. Scamps C. Simenel, PRC 100, 041602(R) (2019)

Schmidt, PLB 825, 136859 (2022)

Scission point model

Spin of the Fragments

J. N. Wilson, Nature, 590, 566 (2021)

- The average spin follows a sawtooth shape
- No correlations between the spins of the fragments

Spins are mostly perpendicular to the fission axis

FIG. 9. The points are the calculated populations of the various *m* substates of the 2¹ level in ¹⁴ Hig. These values were determined using the fitted experimental angular distribution of the 2ⁿ -0° γ ray. The solid line represents the predicted population of the m states as calculated from the statistical-model analysis of the deexcitation process using Eqs. (4) and (5) with an assumed value of B = 6 [Eq. (3)] for the initial angular momentum distribution.

J. B. Wilhelmy, E. Cheifetz, R. C. Jared, S. G. Thompson, H. R. Bowman, and J. O. Rasmussen Phys. Rev. C 5, 2041 (1972)

- Thermal excitations
- Quantum fluctuations
- Coulomb force
- Breaking of the neck

Tilting Mode

Illustration from B. John, J. Phys., 85, 2, (2015).

- Thermal excitations
- Quantum fluctuations
- Coulomb force
- Breaking of the neck

Tilting Mode

Illustration from B. John, J. Phys., 85, 2, (2015).

- Thermal excitations
- Quantum fluctuations
- Coulomb force
- Breaking of the neck

Twisting Mode

Illustration from B. John, J. Phys., 85, 2, (2015).

- Thermal excitations
- Quantum fluctuations
- Coulomb force
- Breaking of the neck

Wriggling Mode

Illustration from B. John, J. Phys., 85, 2, (2015).

- Thermal excitations
- Quantum fluctuations
- Coulomb force
- Breaking of the neck

Bending Mode

Illustration from B. John, J. Phys., 85, 2, (2015).

S. Franke-Arnold, et al. New Journal of Physics 6, 103 (2004)

Projection method

$$\begin{aligned} |a_{J}^{F}|^{2} = & \frac{2J+1}{2} \int_{0}^{2\pi} \sin(\beta) \\ P_{J}(\cos(\beta)) \langle \Psi | e^{\frac{-iJ_{x}^{F}\beta}{\hbar}} | \Psi \rangle \end{aligned}$$

 $\beta_{2}^{f} = 0.1$

 $\beta_{1}^{\xi} = 0.5$

G. F. Bertsch, T. Kawano, and L. M. Robledo, PRC 99, 034603 (2019)

Problem of interpretation

- The spin cut-off distribution is already present in the ground state of even-even deformed nuclei if symmetry are not restored
- \hat{J}^2 and $\hat{P}(J)$ are 2 and N-body operators
- Fragments do not rotate in dynamical approaches

A. Bulgac, et al. PRL 116, 122504 (2016)

Problem of interpretation

- The spin cut-off distribution is already present in the ground state of even-even deformed nuclei if symmetry are not restored
- *J*² and *P*(*J*) are 2 and N-body operators
- Fragments do not rotate in dynamical approaches

Potential as a function of the light fragment angle

The azimuthal angle doesn't have an important role.

Method

- One body-evolution One body-observable
- Breaking of the axial symmetry at scission

Results

- Agreement between the dynamic and the FHF potential
- Repulsive Coulomb torque; attractive NN torque
- Small effect of the azimuthal angle

Limitation

- Classical evolution
- No prescription for the initial angle
- Frozen Hartree-Fock approximation for the initial pre-fragment

Frozen Hartree-Fock potential

Two torques :

- attractive nucleus-nucleus torque
- repulsive Coulomb torque

Hamiltonian

$$\hat{H}(D) = \frac{\hbar^2}{2I_H}\hat{L}_H^2 + \frac{\hbar^2}{2I_L}\hat{L}_L^2 + \frac{\hbar^2}{2I_{\Lambda}(D)}\hat{\Lambda}^2 + \hat{V}(\hat{\Theta}_H, \hat{\Theta}_L, \hat{\varphi}, D)$$

Solved in basis $|L_H, m, L_L, -m\rangle$

G. Scamps, G. Bertsch, Phys. Rev. C 108, 034616(2023).

Similar to the orientation pumping mechanism model Mikhailov, I. N., and Quentin, P. (1999). On the spin of fission fragments, an orientation pumping mechanism. Physics Letters B, 462(1-2), 7-13.

Effect of quadrupole deformation >> effect of Z_1Z_2

TABLE II. Average spin $(L^2)^{\frac{1}{2}}$ in unit of \hbar for the three fission fragments at scission (D = 21 fm) and at large distances. The last two columns show the same quantity with an MOI divided by 2.

Nucleus	Scission	Final	Scission $(I_{\frac{1}{2}})$	Final $(I_{\frac{1}{2}})$
¹⁰⁸ Ru	9.28	12.31	7.24	10.38
¹⁴⁴ Ba	10.04	10.95	7.70	8.66
⁹⁶ Sr	7.74	9.30	6.03	7.62

also J. Randrup, PRC 108, 064606 (2023) : increase of 1 to 3 \hbar due to the Coulomb torque.

- ¹³²Sn is found in ground-state
- The collective Hamiltonian model with $\beta_2=0.42$ reproduces the experimental γ -spectrum

A. Francheteau, L. Gaudefroy, G. Scamps, O. Roig, V. Méot, A. Ebran, and G. Bélier, PRL 132, 142501 (2024).

Correlation between the angular momentum

¹⁴⁴Ba+⁹⁶Sr

- No or small correlation observed in the magnitude of the angular momentum.
- More angular momentum for the heavy fragment

Discussion

- Pear-shaped deformation plays an important role at scission. G. Scamps C. Simenel, Nature 564, pages 382–385 (2018)
- Octupole deformation makes the angular potential stiffer which increase the zero-point motion → more angular momentum

G. Scamps, G. Bertsch, Phys. Rev. C 108, 034616 (2023).

TDDFT (in 2022) vs Freya

A. Bulgac, I. Abdurrahman, K. Godbey, and I. Stetcu, Phys. Rev. Lett. 128, 022501(2022).

G. Scamps, G. Bertsch, Phys. Rev. C 108, 034616 (2023).

Geometry

- Small azimuthal correlation
- Spin are perpendicular to the fission axis
- Complex pattern in the opening angle, different from previous model
- Slightly more wriggling mode than bending because wriggling potential is more rigid

Method

- $\bullet~$ Quantal collective model \rightarrow beyond one-body
- Time-dependent evolution of a wave-packet
- Microscopic potential with FHF

Results

- No strong correlation of the magnitude and direction of the spins
- Both spins are oriented in the plane perpendicular to the fission axis.
- $\bullet\,$ The Coulomb interaction induces an increase of the angular momentum by 1 to 3 $\hbar\,$
- The octupole deformation increases the angular momentum generated at scission

Limitation

- Frozen approximation
- Initial conditions

G. Scamps, G. Bertsch, Phys. Rev. C 108, 034616 (2023).

Projection method

Projection on the spin and K number (Projection of the spin on the fission axis)

$$\begin{split} \hat{P}_{MK}^{S} &= \frac{(2S+1)}{16\pi^2} \int \! d\Omega \mathcal{D}_{MK}^{S*}(\Omega) \, e^{i\alpha \hat{S}_z} e^{i\beta \hat{S}_y} e^{i\gamma \hat{S}_z}, \\ P(S_F, K_F) &= \langle \Psi | \hat{P}_{K_F K_F}^{S_F} | \Psi \rangle, \end{split}$$

Calculation of the overlap : G. F. Bertsch and L. M. Robledo, PRL 108, 042505 (2012)

$$\langle \Psi | \hat{R} | \Psi \rangle = \frac{(-1)^n}{\prod_{\alpha}^n v_{\alpha}^2} \mathrm{pf} \begin{bmatrix} V^T U & V^T R^T V^* \\ -V^{\dagger} R V & U^{\dagger} V^* \end{bmatrix}$$

Optimized Pfaffian calculation : M. Wimmer, ACM Trans. Math Softw. 38, 30 (2012).

G.scamps, I. Abdurrahman, M. Kafker, A. Bulgac, and I. Stetcu, PRC 108 (6), L061602

G.scamps, I. Abdurrahman, M. Kafker, A. Bulgac, and I. Stetcu, PRC 108 (6), L061602.

$$arphi_{HL} = \arccos\left(rac{\Lambda(\Lambda+1) - S_H(S_H+1) - S_L(S_L+1)}{2\sqrt{S_H(S_H+1)S_L(S_L+1)}}
ight)$$

$$P(\Lambda, S_H, S_L) = \sum_{k_H k_L} \langle \Psi | \hat{P}_{0,0}^{\Lambda} \hat{P}_{\kappa_H \kappa_H}^{S_H} \hat{P}_{\kappa_L \kappa_L}^{S_L} | \Psi \rangle.$$

$$P(\Lambda, S_H, S_L) = \sum_{K_H K_L K'_H K'_L} (-1)^{K'_H - K_H + K'_L - K_L}$$

$$C^{\Lambda,0}_{S_{H},-\kappa_{H},S_{L},-\kappa_{L}}C^{\Lambda,0}_{S_{H},-\kappa_{H}',S_{L},-\kappa_{L}'}\langle\Psi|\hat{P}^{S_{H}}_{\kappa_{H}\kappa_{H}'}\hat{P}^{S_{L}}_{\kappa_{L}\kappa_{L}'}|\Psi\rangle$$

G.scamps, I. Abdurrahman, M. Kafker, A. Bulgac, and I. Stetcu, PRC 108 (6), L061602.

Method

- TDHFB TDSLDA
- Full projection beyond one-angle approximation

Results

- Distribution of K
- Small fluctuations around the 90 degrees angle
- Almost flat distribution of opening angle

Limitation

- No collective wave function
- G. Scamps, G. Bertsch, Phys. Rev. C 108, 034616 (2023).

Question

- How the quantal effects change this picture?
- How the geometry change the opening angle distribution assuming no correlation?

Non alignement of the spins

To get a 5 degrees angle between two spins require spins of 262 \hbar and 6565 \hbar for 1 degree

$$|\Psi\rangle = \sum_{S_H, \kappa_H, S_L, \kappa_L} c_{S_H, \kappa_H, S_L, \kappa_L} |S_H, \kappa_H, S_L, \kappa_L\rangle,$$

$$\begin{aligned} |c_{S_{H},\kappa_{H},S_{L},\kappa_{L}}|^{2} \propto & \delta_{\kappa_{H},0} \delta_{\kappa_{L},0} (2S_{H}+1) e^{\frac{-S_{H}(S_{H}+1)}{2\sigma_{H}^{2}}} \\ & \times (2S_{L}+1) e^{\frac{-S_{L}(S_{L}+1)}{2\sigma_{L}^{2}}}. \end{aligned}$$

G. Scamps, PRC 109, L011602 (2024).

Opening angle distribution - 3D uniform case

G. Scamps, PRC 109, L011602 (2024).

Opening angle distribution - 3D from TDDFT

 $\theta_{\rm F}$ [deg]

Main points

- Orientation-pumping (uncertainty principle) mechanism at scission
- Additional effect of the Coulomb torque
- Internal excitation (breaking of pairs)
- Spins are mainly perpendicular to the fission axis
- Uncorrelated magnitude and orientation of the spins
- Dependence of the mechanism with the deformation (quadrupole and octupole)

Outlook : Case where total spin is not zero

 $^{208}Pb + ^{208}Pb$

⁵⁰Ca+¹⁷⁶Yb

G. Scamps, Microscopic Study of Spin Transfer in Near-Barrier Nuclear Reactions, arXiv :2409.15018 (2024).

$^{208}Pb + ^{208}Pb$

⁵⁰Ca+¹⁷⁶Yb

G. Scamps, Microscopic Study of Spin Transfer in Near-Barrier Nuclear Reactions, arXiv :2409.15018 (2024).

Outlook : Case where total spin is not zero

 $^{208}Pb + ^{208}Pb$

⁵⁰Ca+¹⁷⁶Yb

G. Scamps, Microscopic Study of Spin Transfer in Near-Barrier Nuclear Reactions, arXiv :2409.15018 (2024).

Thank you

Overdamped motion from saddle point to scission

TDHF

TDHF+BCS

TDHFB

Mainly two regimes before and after scission :

1) Overdamped motion, trajectory minimizing the energy

2) Fast separation, the asymmetry of the fission is frozen

Important

The fission properties are decided at scission

