

Fission yields measurements in inverse kinematics at relativitic energies

SOFIA : Studies On Fission with GLAD

PhyNuBE 3 – Fission and Astrophysics Workshop

October 2024 – CNRS center of Oleron

A. Chatillon (CEA, DAM, DIF) for the R3B/SOFIA collaboration

1/ Fission yields: influence of the nuclear structure in the yields
2/ Inverse kinematics at relativistic energy
3/ The SOFIA experiment

4/ Selection of results with SOFIA

Fission yields

Basic definition

Nuclear structure effects in fission yields

Introduction to fission modes

Fission yields

Fission yields

Some signatures of the underlying nuclear structure effects in the fission yields

- Fission is asymmetric: one of the first observation of shell effects of shell effects
- Heavy fission fragments mean mass stable for different actinides

Fission yields

Some signatures of the underlying nuclear structure effects in the fission yields

- Fission is asymmetric: one of the first observation while studying the heavy actinides
- Heavy fission fragments mean mass stable for different actinides
- Proton even-odd staggering in even-Z fissioning system due to pairing

Proton Evolution of the fission yields with the excitation energy 233 U(n_{th},f) -18 16 235_T HEAVY GROUN \sim 14 236 GROU 972) 138 12 238₁ 136 10 LIGHT GROUP 10

Fission modes around the U actinides

3 fission modes: 2 asymmetric modes and 1 symmetric mode U. Brosa *et al.*, PRC 38 (1988) 1944

- One path on PES per mode
 - Valley from different underlying shell effects
 - Path reach the scission line at different (Q₂₀,Q₃₀)
 - Each mode has different configuration at scission

STANDARD 1 (ST1)

almost spherical FF_H ¹³²Sn spherical shells compact configuration

high TKE, low $\boldsymbol{\nu}$

STANDARD 2 (ST2) main

deformed FF octupole shells Z=52, Z=56 G. Scamps et al., Nature 564 (2018) 382

SUPER-LONG (SL) with E*

highly deformed FF shell effects washed-out deformed configuration

low TKE, high $\boldsymbol{\nu}$

Importance of correlated data: yields, TKE, prompt neutrons, excitation energy, ...

Fission studies in inverse kinematics at relativistic energies

Why?

How to induce low energy fission at relativistic energies ? Experimental method at GSI: double - $\Delta E / B_{\rho} / ToF$

Limitation of the direct kinematics

- A neutron-, proton- or light charged particle beam impinges on an actinide target
- Production of an excited compound nucleus which may de-excite by fission
- Fission fragments are emited with low energy in the lab frame

- Nuclear charge measurement limited to $Z \le 40$ due to ionic charge states
- Targets limited to long-lived actinides
- \blacksquare Very low efficiency due to 4π emission

Inverse kinematics at **relativistic** energies (I)

GSI/FRS facility to produce radioactive relativistic beam

- @GSI: ²³⁸U beam at 1 A.GeV
- @FRS: Fragmentation of 238U on a Be target and production of cocktail beams with a selection in ($B\rho$, ΔE) around (A/Z, Z) and sent to cave at ~750 A.MeV

Inverse kinematics at **relativistic** energies (II)

How to induce low energy fission at relativistic energies ?

Fission is induced by coulomb excitation

Inverse kinematics at **relativistic** energies (II)

How to induce low energy fission at relativistic energies ?

Electromagnetic induced fission = surrogate reaction for 8 MeV neutron induced fission

$$^{236}\text{U}_{750\text{A.MeV}}(\gamma, f) \leftrightarrow ^{235}\text{U}(n_{8\text{MeV}}, f)$$

Inverse kinematics at *relativistic* energies (III)

Advantages compare to direct kinematics

- ✓ Large cross section
 - Example for ²³⁶U(γ ,f) σ = 2 barns !!!!!
 - Accurate and large scale measurements
- ✓ Relativistic ions are fully stripped: Q=Z
 - Q measurement from energy loss: $\varDelta E \propto Q^2$
 - More accurate measurement of Z
 - SOFIA resolution in charge :

 $\Delta Z = 0.31$ to 0.34 charge unit FWHM

✓ Study of fission nuclei which can not be produced in direct kinematics

Pioneer experiment at GSI / FRS in inverse kinematics

K.-H. Schmidt et al., Nucl. Phys. A 665 (2000) 221: measurement of the charge only

• Y(Z) measured for Rn to U fissioning isotopes

■ Experimental setup: ⊿E and ToF

NCN

The SOFIA experiment

A dedicated spectrometer for fission studies @ GSI

Experimental program

SOFIA: (Z,A) identification

- $\Delta E B\rho$ ToF method after prompt emission and before any β -decay
 - Nuclear charge Z
 - Energy loss (ΔE) ~ Q² = Z²
 - Z is « easy » to obtain

Mass A

- Time-of-flight measurement (ToF) combined with flight path reconstruction: $\beta\gamma$
- Tracking of the ions in a magnetic field $(B\rho)$
- A/Q ~ Bρ / βγ
- Total prompt-neutron multiplicity v_{tot}
 - Method at FRS for (Z,A) identification of beam
- Method at cave C for (Z,A) identification of both fission fragments in coincidence Fission in inverse kinematics at relativistic energies

SOFIA spectrometer

3 types of detectors : MUSIC

MWPC scin

scintillators

Identification of the fission fragments in $^{236}U(\gamma,f)$

Fission in inverse kinematics at relativistic energies

SOFIA experiments

3 Results

Accurate measurement: Isotopic yields and isobaric yields

TKE and v_{tot} : a probe of scission configuration

Signatures of energy sorting: v(A) and even-odd staggering

Large scale measurement: investigating new fission modes

Isotopic yields along the uranium chain

Fission in inverse kinematics at relativistic energies

Analysis by L. Grente, J.-F. Martin, E. Pellereau (CEA, DAM, DIF)

Cumulative yields: ${}^{236}U(\gamma,f)$ vs ${}^{235}U(n,f)$ cumulative yields

Analysis by L. Grente (CEA, DAM, DIF)

$\langle \mathsf{TKE} \rangle \text{ vs } \langle \mathcal{V}_{tot} \rangle$: ²³⁵U(γ ,f)

- Both observables probe the scission configuration
- ${\scriptstyle \bullet}$ Large deformation: high ${\it V}_{\rm tot},$ but low TKE
- Highly deformed symmetric mode compared to compact asymetric mode

Cez

Y(Z) vs V_{tot} : ^{222,226,230}Th(γ ,f) and ²³⁶U(γ ,f)

For neutron-deficient thorium isotopes

- Symmetric fission becomes the main fission mode
- Even-odd staggering remains , but V_{tot} drops around 2.7 MeV (effect of 19 MeV)
- New symmetric fission mode observed with a compact configuration at scission

Cez

²³⁶U(γ ,f): Prompt neutron multiplicity per fission fragment

From the correlated mass yield Y(A1,A2) to $\langle V \rangle$ (M)

Analysis by L. Grente (CEA, DAM, DIF)

- hyp 1: $P^{M_i}(\nu_i)$ gaussian \Rightarrow 3 sets of independant parameters $\langle \nu \rangle(M), \sigma(M), X(M_i)$
- hyp 2: $\langle \nu \rangle$ (M), σ (M) Fourier series \Rightarrow cut in the high frequency domain
- χ^2 minimization using MIGRAD \Rightarrow from the CERN library MINUIT

Fission in inverse kinematics at relativistic energies

$$Y(A_1, A_2) = \sum_{\nu_1=0}^{A_B - A_1 - A_2} P^{M_1}(\nu_1) P^{M_2}(\nu_2) X(M_1)$$

- A_i : mass of the fragment after neutron emission
- $X(M_i)$: mass yields before neutron emission
- $Y(A_i)$: mass yields after neutron emission

 $\mathsf{P}^{M_i}(\nu_i)$: probability for a primary fragment of mass M, to emit ν neutrons

Study of the new island of asymmetry

Fission study of more than 100 nuclei in 4 days of beam time

Inverse kinematics at relativistic energy for accurate fission yields and Vtot Fission study of exotic nuclei with the underlying microscopic effect Few limitation: no E* measurement

 \rightarrow (p,2p) reaction to get E* instead of Coulex but with lower statistics

Fission induced by quasi-free nucleon-knockout collisions

²³⁸U(p,2p)²³⁷Pa in inverse kinematics used to induce fission and measure E*

Analysis by G. Garcia and A. Grana (Univ. Santiago de Compostella) supervised by J. L. Rodríguez-Sánchez (Univ. Coruña)

Inverse kinematics at relativistic energy for accurate fission yields and Vtot Fission study of exotic nuclei with the underlying microscopic effect Few limitation: no E* measurement, $A_{CN} \le 238$ \rightarrow (p,2p) reaction to get E* instead of Coulex but with lower statistics \rightarrow complementary to measurement at GANIL/VAMOS (see Diego's talk)

More info

Set-up

Analysis: nuclear component subtraction Fission modes

SOFIA spectrometer

3 types of detectors : MUSIC, MWPC, scintillators

Cez

Specificities of the detection of beam vs fission fragment

Beam with ionic charge states, even at 750 A.MeV: Triple-MUSIC

Analysis: Nuclear reaction subtraction

Standard 1 and standard 2 asymmetric modes in Pu (sf)

Asymmetric to symmetric fission in Fm isotopes

