

Accessing explosive novae nucleosynthesis in grounded laboratories

C. Fougères¹, et al.

¹CEA DAM DIF, Arpajon (France)

PhyNuBE 3rd meeting 2024 (Oléron, France)

chloe.fougeres@cea.fr

Origin of the elements

Origin of the elements

cea

2 Ν

surface temperature (Kelvin)

Origin of the elements

Binary stellar systems Explosive nucleosynthesis *p*-burning S-CI novæ Hydrostatic stellar burning BBN

PhyNuBE 3rd meeting 2024 (Oléron, France)

cea

2 N

Origin of the elements

2 Ν

PhyNuBE 3rd meeting 2024 (Oléron, France)

2 Ν

Direct probe of nuclear cosmic processes

Direct probe of nuclear cosmic processes

Direct probe of nuclear cosmic processes

Direct probe of nuclear cosmic processes

Long-lived >Myr (²⁶Al, ⁶⁰Fe)

Direct probe of nuclear cosmic processes

Direct probe of nuclear cosmic processes

Short-lived \leq yr (⁷Be, ¹⁸F, ²²Na, ⁴⁴Ti, ⁵⁶Ni)

Direct probe of nuclear cosmic processes UNITEGRAL/ESA

Radioelements for today

Astrophysical landscape Novae and γ–ray emitters

Astrophysical landscape Novae and γ -ray emitters

> Experimental methods Probing *p*-capture resonances

Astrophysical I landscape

Novae and low energy γ -ray astronomy

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

S-CI

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

S-CI

Impact Abundances of nuclei Number of supernovae la

Nova Cygni, Parasce et al. (1992)

©HUBBLE/NASA

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

S-CI

Impact Abundances of nuclei Number of supernovae la

Opened questions

Compact star mass? Accretion? Mixing? Ejected mass?

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

Impact Abundances of nuclei Number of supernovae la

> **Opened questions** Compact star mass? Accretion? Mixing? Ejected mass?

Nuclear observations Isotopic composition of presolar grains Low energy γ -ray astronomy

S-CI

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

©HUBBLE/NASA

Nova Cygni, Parasce et al. (1992)

Impact Abundances of nuclei Number of supernovae la

Nuclear observations Isotopic composition of presolar grains Low energy γ -ray astronomy

S-CI

Explosive H burning (T \leq 0.5 GK) Matter accretion at surface of compact star white dwarf $(p, \gamma/\alpha), \beta^+$ decay

Impact Abundances of nuclei Number of supernovae la

©HUBBLE/NASA

Nova Cygni, Parasce et al. (1992)

Opened questions Compact star mass? Accretion? Mixing? Ejected mass?

Nuclear observations Isotopic composition of presolar grains Low energy γ -ray astronomy

Nucleosynthesis network in novae

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

PhyNuBE 3rd meeting 2024 (Oléron, France)

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

PhyNuBE 3rd meeting 2024 (Oléron, France)

7

(p, _Y)

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

(p, _Y)

(p, α)

Nucleosynthesis network in novae

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

PhyNuBE 3rd meeting 2024 (Oléron, France) ¹⁵O

¹⁸Ne

17**F**

16**()**

<u>د :</u> . .

¹⁹Ne

¹⁸F

17**O**

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

PhyNuBE 3rd meeting 2024 (Oléron, France) (¹⁵O

¹⁸Ne

17**F**

16**()**

د م.: ¹⁹Ne

¹⁸F

17**O**

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

cea

Nuclear ONe seed of white dwarf accreting solar-like matter (H dominant)

cea

Abundance of ²²Na in novae

 (P, α) (P, γ)

Abundance of ²²Na in novae: solver of an 8 ordinary differential equation system

$$\frac{dy_{20}N_e}{dt} = -y_{20}N_e * y_{H} < \sigma v >_{20}N_e(p,\gamma)^{21}N_a + y_{23}N_a * y_{H} < \sigma v >_{23}N_a(p,\alpha)^{20}N_e$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{22}N_a + y_{21}N_a * \frac{\ln(2)}{\tau_{21}N_a}$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{23}N_a + y_{22}N_a * \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{23}N_a + y_{22}N_a * \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_a * (y_{H} < \sigma v >_{21}N_a(p,\gamma)^{22}M_g + \frac{\ln(2)}{\tau_{22}N_a}) + y_{20}N_e * y_{H} < \sigma v >_{20}N_e(p,\gamma)^{21}N_a$$

$$\frac{dy_{22}N_a}{dt} = -y_{22}N_a * (y_{H} < \sigma v >_{21}N_a(p,\gamma)^{23}M_g + \frac{\ln(2)}{\tau_{22}N_a}) + y_{21}N_e * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{22}N_a + y_{22}M_g * \frac{\ln(2)}{\tau_{22}M_g}$$

$$\frac{dy_{23}N_a}{dt} = -y_{23}N_a * y_{H} < \sigma v >_{21}N_a(p,\alpha)^{20}N_e + y_{22}N_e * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{23}N_a + y_{23}M_g * \frac{\ln(2)}{\tau_{23}M_g}$$

$$\frac{dy_{23}M_g}{dt} = -y_{23}M_g * \frac{\ln(2)}{\tau_{22}M_g} + y_{21}N_a * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{23}M_g$$

$$\frac{dy_{23}M_g}{dt} = -y_{23}M_g * \frac{\ln(2)}{\tau_{23}M_g} + y_{22}N_a * y_{H} < \sigma v >_{21}N_e(p,\gamma)^{23}M_g$$

PhyNuBE 3rd meeting 2024 (Oléron, France)

 (p, α) (p, γ)

Abundance of ²²Na in novae: solver of an 8 ordinary differential equation system

$$\frac{dy_{20}N_e}{dt} = -y_{20}N_e * y_H * \langle \sigma v \rangle_{20}N_e(p,\gamma)^{21}N_a + y_{23}N_a * y_H * \langle \sigma v \rangle_{23}N_a(p,\alpha)^{20}N_e$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{22}N_a + y_{21}N_a * \frac{\ln(2)}{\tau_{21}N_a}$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{23}N_a + y_{22}N_a * \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * (y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{23}N_a + y_{22}N_a * \frac{\ln(2)}{\tau_{22}N_a})$$

$$\frac{dy_{22}N_a}{dt} = -y_{22}N_e * (y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{23}M_g + \frac{\ln(2)}{\tau_{22}N_a})$$

$$\frac{dy_{22}N_e}{dt} = -y_{22}N_e * (y_H * \langle \sigma v \rangle_{22}N_e(p,\gamma)^{23}M_g + \frac{\ln(2)}{\tau_{22}N_a})$$

$$\frac{dy_{22}N_e}{dt} = -y_{22}N_e * y_H * \langle \sigma v \rangle_{22}N_e(p,\gamma)^{23}M_g + \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{22}N_e}{dt} = -y_{22}N_e * y_H * \langle \sigma v \rangle_{22}N_e(p,\gamma)^{23}M_g + \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{22}N_e}{dt} = -y_{22}N_e * y_H * \langle \sigma v \rangle_{23}N_a(p,\alpha)^{20}N_e + y_{22}N_e * y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{22}N_a + y_{23}M_g * \frac{\ln(2)}{\tau_{23}M_g}$$

$$\frac{dy_{22}N_g}{dt} = -y_{22}M_g * \frac{\ln(2)}{\tau_{22}M_g} + y_{21}N_a * y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{23}M_g$$

$$\frac{dy_{23}M_g}{dt} = -y_{23}M_g * \frac{\ln(2)}{\tau_{23}M_g} + y_{21}N_a * y_H * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{23}M_g$$

Euler development $dY/dt = f(Y(t)) \rightarrow (1/dt - d/dY)(Y_{n+1} - Y_n) = f(Y_n)$ simple « Ax=B solver »

Abundance of ²²Na in novae: solver of an 8 ordinary differential equation system

$$\frac{dy_{20}_{Ne}}{dt} = -y_{20}_{Ne} * y_{H} * \langle \sigma v \rangle_{20}_{Ne(p,\gamma)^{21}Na} + y_{23}_{Na} * y_{H} * \langle \sigma v \rangle_{23}_{Na(p,\alpha)^{20}Ne} \\
\frac{dy_{20}_{Ne}}{dt} = -y_{21}_{Ne} * y_{H} * \langle \sigma v \rangle_{21}_{Ne(p,\gamma)^{22}Na} + y_{21}_{Na} * \frac{\ln(2)}{\tau_{21}_{Na}} \\
\frac{dy_{21}_{Ne}}{dt} = -y_{21}_{Ne} * y_{H} * \langle \sigma v \rangle_{22}_{Ne(p,\gamma)^{23}Na} + y_{22}_{Na} * \frac{\ln(2)}{\tau_{22}_{Na}} \\
\frac{dy_{21}_{Ne}}{dt} = -y_{21}_{Ne} * (y_{H} * \langle \sigma v \rangle_{21}_{Na(p,\gamma)^{22}Mg} + \frac{\ln(2)}{\tau_{22}_{Na}}) \\
+ y_{20}_{Ne} * y_{H} * \langle \sigma v \rangle_{20}_{Ne(p,\gamma)^{21}Na} \\
\frac{dy_{21}_{Na}}{dt} = -y_{21}_{Na} * (y_{H} * \langle \sigma v \rangle_{21}_{Na(p,\gamma)^{22}Mg} + \frac{\ln(2)}{\tau_{22}_{Na}}) \\
+ y_{20}_{Ne} * y_{H} * \langle \sigma v \rangle_{21}_{Ne(p,\gamma)^{22}Na} + y_{22}_{Ne} * y_{H} * \langle \sigma v \rangle_{21}_{Ne(p,\gamma)^{22}Na} + y_{22}_{Ng} * \frac{\ln(2)}{\tau_{22}_{Ng}} \\
\frac{dy_{22}_{Na}}{dt} = -y_{22}_{Na} * (y_{H} * \langle \sigma v \rangle_{22}_{Na(p,\gamma)^{20}Ng} + \frac{\ln(2)}{\tau_{22}_{Na}}) \\
+ y_{21}_{Ne} * y_{H} * \langle \sigma v \rangle_{21}_{Ne(p,\gamma)^{22}Na} + y_{22}_{Na} * y_{H} * \langle \sigma v \rangle_{21}_{Ne(p,\gamma)^{23}Na} + y_{23}_{Ng} * \frac{\ln(2)}{\tau_{23}_{Ng}} \\
\frac{dy_{22}_{Ng}}{dt} = -y_{23}_{Ng} * \frac{\ln(2)}{\tau_{22}_{Ng}} + y_{21}_{Na} * y_{H} * \langle \sigma v \rangle_{21}_{Na(p,\gamma)^{22}Mg} \\
\frac{dy_{23}_{Ng}}{dt} = -y_{23}_{Mg} * \frac{\ln(2)}{\tau_{23}_{Mg}} + y_{21}_{Na} * y_{H} * \langle \sigma v \rangle_{21}_{Na(p,\gamma)^{23}Mg}$$

Euler development $dY/dt = f(Y(t)) \rightarrow (1/dt - d/dY)(Y_{n+1} - Y_n) = f(Y_n)$ simple « Ax=B solver » Initial conditions ONe white dwarf $\rho = 10^3$ g cm⁻³ with $Y_H^{\text{constant}} = 0.5$ $Y_{160} = 0.25$ $Y_{20Ne} = 0.25$ Temperature profil

Abundance of ²²Na in novae: solver of an 8 ordinary differential equation system

$$\frac{dy_{20}N_e}{dt} = -y_{20}N_e * y_{H} * \langle \sigma v \rangle_{20}N_e(p,\gamma)^{21}N_a + y_{23}N_a * y_{H} * \langle \sigma v \rangle_{23}N_a(p,\alpha)^{20}N_e$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_{H} * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{22}N_a + y_{21}N_a * \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{21}N_e}{dt} = -y_{21}N_e * y_{H} * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{23}N_a + y_{22}N_a * \frac{\ln(2)}{\tau_{22}N_a}$$

$$\frac{dy_{21}N_a}{dt} = -y_{21}N_e * (y_{H} * \langle \sigma v \rangle_{21}N_a(p,\gamma)^{22}M_g + \frac{\ln(2)}{\tau_{22}N_a}}) + y_{20}N_e * y_{H} * \langle \sigma v \rangle_{20}N_e(p,\gamma)^{21}N_a$$

$$\frac{dy_{21}N_a}{dt} = -y_{21}N_a * (y_{H} * \langle \sigma v \rangle_{21}N_a(p,\gamma)^{22}M_g + \frac{\ln(2)}{\tau_{22}N_a}}) + y_{20}N_e * y_{H} * \langle \sigma v \rangle_{20}N_e(p,\gamma)^{21}N_a$$

$$\frac{dy_{22}N_a}{dt} = -y_{22}N_a * (y_{H} * \langle \sigma v \rangle_{22}N_a(p,\gamma)^{23}M_g + \frac{\ln(2)}{\tau_{22}N_a}}) + y_{21}N_e * y_{H} * \langle \sigma v \rangle_{21}N_e(p,\gamma)^{22}N_a + y_{22}M_g * \frac{\ln(2)}{\tau_{23}M_g}}$$

$$\frac{dy_{23}N_a}{dt} = -y_{23}N_a * y_{H} * \langle \sigma v \rangle_{21}N_a(p,\gamma)^{20}N_e + y_{22}N_e * y_{H} * \langle \sigma v \rangle_{22}N_e(p,\gamma)^{23}N_a + y_{23}M_g * \frac{\ln(2)}{\tau_{23}M_g}}$$

$$\frac{dy_{23}N_g}{dt} = -y_{22}M_g * \frac{\ln(2)}{\tau_{22}M_g}} + y_{21}N_a * y_{H} * \langle \sigma v \rangle_{21}N_a(p,\gamma)^{22}M_g$$

$$\frac{dy_{23}N_g}{dt} = -y_{23}M_g * \frac{\ln(2)}{\tau_{23}M_g}} + y_{22}N_a * y_{H} * \langle \sigma v \rangle_{21}N_a(p,\gamma)^{23}M_g$$

Euler development $dY/dt = f(Y(t)) \rightarrow (1/dt - d/dY)(Y_{n+1} - Y_n) = f(Y_n)$ simple « Ax=B solver » Initial conditions ONe white dwarf $\rho = 10^3$ g cm⁻³ with $Y_{H}^{\text{constant}} = 0.5$ $Y_{160} = 0.25$ $Y_{20Ne} = 0.25$ Temperature profil

Abundance of ²²Na in novae: solver of an 8 ordinary differential equation system

$$\frac{dy_{20Ne}}{dt} = -y_{20Ne} * y_{H} * \langle \sigma v \rangle_{20Ne(p,\gamma)^{21}Na} + y_{23Na} * y_{H} * \langle \sigma v \rangle_{23Na(p,\alpha)^{20}Ne} \\
\frac{dy_{21Ne}}{dt} = -y_{21Ne} * y_{H} * \langle \sigma v \rangle_{21Ne(p,\gamma)^{22}Na} + y_{21Na} * \frac{\ln(2)}{\tau_{21Na}} \\
\frac{dy_{21Ne}}{dt} = -y_{22Ne} * y_{H} * \langle \sigma v \rangle_{22Ne(p,\gamma)^{23}Na} + y_{22Na} * \frac{\ln(2)}{\tau_{22Na}} \\
\frac{dy_{21Ne}}{dt} = -y_{21Ne} * (y_{H} * \langle \sigma v \rangle_{21Na(p,\gamma)^{22}Mg} + \frac{\ln(2)}{\tau_{22Na}}) + y_{20Ne} * y_{H} * \langle \sigma v \rangle_{20Ne(p,\gamma)^{21}Na} \\
\frac{dy_{22Na}}{dt} = -y_{22Na} * (y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} + \frac{\ln(2)}{\tau_{22Na}}) + y_{21Ne} * y_{H} * \langle \sigma v \rangle_{21Ne(p,\gamma)^{22}Na} + y_{22Mg} * \frac{\ln(2)}{\tau_{22Mg}} \\
\frac{dy_{23Na}}{dt} = -y_{23Na} * y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} + \frac{\ln(2)}{\tau_{22Na}}) + y_{21Ne} * y_{H} * \langle \sigma v \rangle_{21Ne(p,\gamma)^{22}Na} + y_{22Mg} * \frac{\ln(2)}{\tau_{23Mg}} \\
\frac{dy_{23Na}}{dt} = -y_{23Na} * y_{H} * \langle \sigma v \rangle_{23Na(p,\alpha)^{20}Ne} + y_{22Ne} * y_{H} * \langle \sigma v \rangle_{22Ne(p,\gamma)^{23}Na} + y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} \\
\frac{dy_{23Mg}}{dt} = -y_{22Mg} * \frac{\ln(2)}{\tau_{22Mg}} + y_{21Na} * y_{H} * \langle \sigma v \rangle_{21Na(p,\gamma)^{22}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{22Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{21Na} * y_{H} * \langle \sigma v \rangle_{21Ne(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{21Na} * y_{H} * \langle \sigma v \rangle_{21Ne(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{21Na} * y_{H} * \langle \sigma v \rangle_{21Na(p,\gamma)^{22}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{22Na} * y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{22Na} * y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{22Na} * y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{22Na} * y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{22Na} * y_{H} * \langle \sigma v \rangle_{22Na(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2)}{\tau_{23Mg}} + y_{22Na} * y_{22Na} * y_{22Na(p,\gamma)^{23}Mg} \\
\frac{dy_{23Mg}}{dt} = -y_{23Mg} * \frac{\ln(2$$

Software freely available (WinNet, NuGrid, integrated MESA,...)

https://nugrid.github.io

https://docs.mesastar.org/en/24.08.1

Cez

(p, α)

Nuclear reaction rates

 $\begin{array}{l} \text{Reaction rate} = <\cos \text{ section } \sigma \text{ x particle velocity distribution in plasma } \nu > \\ <\sigma v > = (\frac{8}{\pi \mu_{\text{A},\text{p}}})^{\frac{1}{2}} \times \frac{1}{(\text{k}_{\text{B}}\text{T})^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(\text{E}) \exp(-\frac{\text{E}}{\text{k}_{\text{B}}\text{T}}) \text{EdE} \end{array}$

Nuclear reaction rates

Charged particles

Nuclear reaction rates

Reaction rate = < cross section σ x particle velocity distribution in plasma ν > < σv >= $(\frac{8}{\pi \mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_B T)^{\frac{3}{2}}} \times \int_0^{+\infty} \sigma(E) \exp(-\frac{E}{k_B T}) EdE$

Reaction rate = < cross section
$$\sigma$$
 x particle velocity distribution in plasma ν > < σv >= $(\frac{8}{\pi \mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_{B}T)^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(E) \exp(-\frac{E}{k_{B}T}) EdE$

• In medium-hot stellar environments: $T \leq 1$ GK, $E_{cm} \leq MeV$, $\sigma << 1$ mb

$$\sigma_{\rm BW}(E) = \pi \lambda^2 \omega \frac{\Gamma_a \Gamma_b}{(E - E_R)^2 + (\Gamma/2)^2}$$

Breit-Wigner cross section

Reaction rate = < cross section
$$\sigma$$
 x particle velocity distribution in plasma ν
< $\sigma v \ge (\frac{8}{\pi \mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_{B}T)^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(E) \exp(-\frac{E}{k_{B}T}) EdE$

• In medium-hot stellar environments: $T \leq 1$ GK, $E_{cm} \leq MeV$, $\sigma << 1$ mb

$$\sigma_{\rm BW}(E) = \pi \lambda^2 \omega \frac{\Gamma_a \Gamma_b}{(E - E_R)^2 + (\Gamma/2)^2}$$

Breit-Wigner cross section $\propto \Gamma_a$, Γ_b (partial decay widths)

>

Reaction rate = < cross section
$$\sigma$$
 x particle velocity distribution in plasma ν > < σv >= $(\frac{8}{\pi \mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_{B}T)^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(E) \exp(-\frac{E}{k_{B}T}) EdE$

• In medium-hot stellar environments: $T \leq 1$ GK, $E_{cm} \leq MeV$, $\sigma << 1$ mb

$$<\sigma\nu>_{tot}\propto\sum_{r}\omega\gamma_{r}\exp\left(-\frac{E_{r}}{k_{B}T}
ight)$$

$$\sigma_{\rm BW}(E) = \pi \lambda^2 \omega \frac{\Gamma_a \Gamma_b}{\left(E - E_R\right)^2 + \left(\Gamma/2\right)^2}$$

Breit-Wigner cross section $\propto \Gamma_a$, Γ_b (partial decay widths) $\Gamma_b = CS_b \times \Gamma_{s.p.,b}$

Reaction rate = < cross section
$$\sigma$$
 x particle velocity distribution in plasma ν > < σv >= $(\frac{8}{\pi \mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_{B}T)^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(E) \exp(-\frac{E}{k_{B}T}) EdE$

• In medium-hot stellar environments: $T \leq 1$ GK, $E_{cm} \leq MeV$, $\sigma << 1$ mb

$$<\sigma\nu>_{tot}\propto\sum_{r}\omega\gamma_{r}\exp\left(-\frac{E_{r}}{k_{B}T}
ight)$$

 $E_{r}=E_{x}-Q$ resonance energy

$$\sigma_{\rm BW}(E) = \pi \lambda^2 \omega \frac{\Gamma_a \Gamma_b}{\left(E - E_R\right)^2 + \left(\Gamma/2\right)^2}$$

Breit-Wigner cross section $\propto \Gamma_a$, Γ_b (partial decay widths) $\Gamma_b = CS_b \times \Gamma_{s.p.,b}$

Reaction rate = < cross section
$$\sigma$$
 x particle velocity distribution in plasma ν > < σv >= $(\frac{8}{\pi \mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_{B}T)^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(E) \exp(-\frac{E}{k_{B}T}) EdE$

• In medium-hot stellar environments: $T \leq 1$ GK, $E_{cm} \leq MeV$, $\sigma << 1$ mb

$$<\sigma\nu>_{tot} \propto \sum_{r} \omega\gamma_{r} \exp\left(-\frac{E_{r}}{k_{B}T}\right)$$

$$E_{r} = E_{x} - Q \text{ resonance energy}$$

$$\omega\gamma_{r} \text{ resonance strength}$$

$$\omega \propto 2J_{r} + 1$$

$$\gamma_{r} \propto (\Gamma = \hbar/\tau) \times BR_{b}(1 - BR_{b})$$

$$\sigma_{\rm BW}(E) = \pi \lambda^2 \omega \frac{\Gamma_a \Gamma_b}{(E - E_R)^2 + (\Gamma/2)^2}$$

Breit-Wigner cross section $\propto \Gamma_a$, Γ_b (partial decay widths) $\Gamma_b = CS_b \times \Gamma_{s.p., b}$

Reaction rate = < cross section
$$\sigma$$
 x particle velocity distribution in plasma ν > $<\sigma v > = (\frac{8}{\pi\mu_{A,p}})^{\frac{1}{2}} \times \frac{1}{(k_{B}T)^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(E) \exp(-\frac{E}{k_{B}T}) EdE$

In medium-hot stellar environments:
$$\mathbf{T} \leq \mathbf{1}$$
 GK, $\mathbf{E}_{cm} \leq \mathbf{MeV}, \sigma \ll \mathbf{1}$ **mb**
 $\ll \sigma \nu >_{tot} \propto \sum_{r} \omega \gamma_r \exp\left(-\frac{E_r}{k_B T}\right)$
 $E_r = E_x - Q$ resonance energy
 $\omega \gamma_r$ resonance strength
 $\omega \propto 2J_r + 1$
 $\gamma_r \propto (\Gamma = \hbar/r) \times BR_b(1-BR_b)$
Measurement goals
 E_r
 B_{Rb} or CS_b
 B_{Rb} or CS_b

Reaction rate = < cross section σ x particle velocity distribution in plasma ν >

 $\langle \sigma v \rangle = \left(\frac{8}{\pi\mu_{\mathrm{A},\mathrm{p}}}\right)^{\frac{1}{2}} \times \frac{1}{(\mathbf{k}_{\mathrm{B}}\mathrm{T})^{\frac{3}{2}}} \times \int_{0}^{+\infty} \sigma(\mathrm{E}) \exp\left(-\frac{\mathrm{E}}{\mathbf{k}_{\mathrm{B}}\mathrm{T}}\right) \mathrm{Ed}\mathrm{E}$

• In hot stellar environments: T > 1 GK, $E_{cm} \sim MeV/u$, $\sigma \gtrsim 1$ mb

Cross section measurement

Astrophysical I landscape

Few burning questions

Low energy γ -ray astronomy of novæ

 \mathbf{V}

Low energy γ -ray astronomy of novæ

• Short-lived (~day) $^{18}F \rightarrow$ ejecta stage

• Short-lived (~day) $^{18}F \rightarrow$ ejecta stage

 (P, α) (P, γ)

 Short-lived (~day) ¹⁸F → ejecta stage Uncertainties in ¹⁸F(p,α)¹⁵O

 (P, α) (P, γ)

Spectroscopy of ¹⁹Ne ($E_X > S_p$)

• Short-lived (~day) $^{18}F \rightarrow$ ejecta stage

Uncertainties in ${}^{18}F(p,\alpha){}^{15}O$

• Short-lived (~day) $^{18}F \rightarrow$ ejecta stage

Uncertainties in ¹⁸F(p, α)¹⁵O

• Medium-lived (~year) ²²Na → novae properties

• Short-lived (~day) $^{18}F \rightarrow$ ejecta stage

Uncertainties in ¹⁸F(p, α)¹⁵O

• Medium-lived (~year) ²²Na → novae properties

 (P, α) (P, γ)

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties

Uncertainties in ${}^{18}F(p,\alpha){}^{15}O$

Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties

Uncertainties in ${}^{18}F(p,\alpha){}^{15}O$ Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

(P, a) (P, γ)

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties

Uncertainties in ${}^{18}F(p,\alpha){}^{15}O$ Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

Direct measurements of ωγ Sallaska, Phys. Rev. L 105 (2010)

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties

Uncertainties in ${}^{18}F(p,\alpha){}^{15}O$ Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties

Uncertainties in ${}^{18}F(p,\alpha){}^{15}O$ Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

Ejected ²²Na mass uncertainties **x10**

Resonance strength determination in ²²Na+*p*

 $(E_x = 7.785 \text{ MeV}, E_R = 0.204 \text{ MeV})$

 (p, α)

²²Mg

⁽²¹Na

²⁰Ne

Uncertainties in ¹⁸F(p, α)¹⁵O

Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties
- Long-lived (>Myr) 26 Al \rightarrow ongoing galactic nucleosynthesis and novae contribution

Uncertainties in ¹⁸F(p, α)¹⁵O

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- **Medium-lived** (~year) ²²Na \rightarrow novae properties Uncertainties in ²²Na(p,γ)²³Mg
- Long-lived (>Myr) 26 Al \rightarrow ongoing galactic nucleosynthesis and novae contribution

- **Short-lived** (~day) ${}^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties
 - Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

Uncertainties in ¹⁸F(p, α)¹⁵O

• Long-lived (>Myr) 26 Al \rightarrow ongoing galactic nucleosynthesis and novae contribution

(p, α)

- Short-lived (~day) $^{18}F \rightarrow$ ejecta stage
- Medium-lived (~year) ²²Na → novae properties
- Uncertainties in ${}^{22}Na(p,\gamma){}^{23}Mg$

Uncertainties in ¹⁸F(p, α)¹⁵O

Long-lived (>Myr) ²⁶Al → ongoing galactic nucleosynthesis and novae contribution

(p, α)

Resonance strength measurement in ²⁵Al+p

Experimental methods

p-capture resonances

PhyNuBE 3rd meeting 2024 (Oléron, France)

a)¹⁵O **Identification of resonant states** $< \sigma \nu >_{tot} \propto \sum_{r} \omega \gamma_r \exp\left(-\frac{E_r}{k_BT}\right)$ ¹⁸F(*p*,*a*)¹⁵O

Identification of resonant states $< \sigma \nu >_{tot} \propto \sum_{r} \omega \gamma_r \exp\left(-\frac{1}{2}\right)$ Dienis \Rightarrow see her poster, E863 scheduled 2025

PhD L. Dienis \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

¹⁸F(*p*,*a*)¹⁵O

Identification of resonant states $<\sigma\nu>_{tot}\propto\sum\omega\gamma_r\exp$

PhD L. Dienis \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

¹⁸F(*p*,*a*)¹⁵O

Accessing $(E_p, J, \Gamma_{\alpha})$ via resonant elastic scattering

Identification of resonant states $<\sigma\nu>_{tot}\propto\sum\omega\gamma_r\exp$

PhD *L. Dienis* \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

¹⁸F(*p*,*a*)¹⁵O

Accessing (E_p , J, Γ_{α}) via resonant elastic scattering

Identification of resonant states $< \sigma \nu >_{tot} \propto \sum_{r} \omega \gamma_r \exp\left(-\frac{1}{2}\right)$ Dienis \rightarrow see her poster, E863 scheduled 2025 ¹⁸F(*p*,*a*)¹⁵O

PhD L. Dienis \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Accessing (E_r , J, Γ_{α}) via **resonant elastic scattering** via α (¹⁵O,¹⁵O) α_{0deg} at 2 MeV/u

Identification of resonant states $<\sigma\nu>_{tot}\propto\sum_{r}\omega\gamma_r\exp\left($

PhD L. Dienis \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Accessing (E_r , J, Γ_{α}) via **resonant elastic scattering** via α (¹⁵O,¹⁵O) α_{0deg} at 2 MeV/u

¹⁵O GANIL/SPIRAL1 10⁶ pps, 2 MeV/u (spread 0.1%) 97% purity Stefan (2014)

Identification of resonant states $< \sigma \nu >_{tot} \propto \sum_{r} \omega \gamma_r \exp(\omega r)$

PhD L. Dienis \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Accessing (E_p , J, Γ_{α}) via **resonant elastic scattering** via α (¹⁵O,¹⁵O) α_{0deg} at 2 MeV/u

Gaseous target (α) 10²⁰ at./cm² beam stopped in exit window

¹⁵O GANIL/SPIRAL1 10⁶ pps, 2 MeV/u (spread 0.1%) 97% purity Stefan (2014)

¹⁸F(*p*,*a*)¹⁵O

PhD L. Dienis \rightarrow see her poster, E863 scheduled 2025

Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Identification of resonant states $<\sigma\nu>_{tot}\propto\sum_{r}\omega\gamma_r\exp\left($

¹⁵O GANIL/SPIRAL1 10⁶ pps, 2 MeV/u (spread 0.1%) 97% purity Stefan (2014)

¹⁸F(*p*,*a*)¹⁵O

Accessing (E_p , J, Γ_{α}) via **resonant elastic scattering** via α (¹⁵O,¹⁵O) α_{0deg} at 2 MeV/u

Gaseous target (α) 10²⁰ at./cm² beam stopped in exit window

¹⁸F(p, a)¹⁵O Identification of resonant states

PhD *L. Dienis* \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Accessing (E_r , J, Γ_{α}) via **resonant elastic scattering** via $\alpha(^{15}O, ^{15}O)\alpha_{0deg}$ at 2 MeV/u

¹⁸F(p, a)¹⁵O Identification of resonant states

PhD *L. Dienis* \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Accessing (E_r , J, Γ_{α}) via **resonant elastic scattering** via $\alpha(^{15}O, ^{15}O)\alpha_{0deg}$ at 2 MeV/u

¹⁸F(p, a)¹⁵O Identification of resonant states

PhD *L. Dienis* \rightarrow see her poster, E863 scheduled 2025 Aim high-resolution spectroscopy in ¹⁹Ne at S_p =6.4 MeV

Accessing (E_r , J, Γ_{α}) via **resonant elastic scattering** via α (¹⁵O,¹⁵O) α_{0deg} at 2 MeV/u

²⁵Al(p,γ)²⁶Si **Accessing** $\omega\gamma$ via angle-integrated measurement $<\sigma\nu>_{tot}\propto\sum_{r}\omega\gamma_{r}\exp\left(-\frac{E_{r}}{k_{B}T}\right)$

Accessing $\omega \gamma$ via angle-integrated measurement $\langle \sigma \nu \rangle_{tot} \propto \sum_{r} \omega \gamma_r \exp(\alpha \tau)$

$$\omega\gamma = \frac{(2J+1)}{(2j+1)(2J_{^{25}Al}+1)}\frac{\Gamma_p\Gamma_\gamma}{\Gamma_{tot}}$$

 $\left(\frac{E_r}{k_B T}\right)$

Accessing $\omega \gamma$ via angle-integrated measurement $\langle \sigma \nu \rangle_{tot} \propto \sum_{r} \omega \gamma_r \exp\left(\frac{(2L+1)}{r}\right) = \Gamma \Gamma$

$$\omega\gamma = \frac{(2J+1)}{(2j+1)(2J_{^{25}Al}+1)}\frac{\Gamma_p\Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

 $\left(\frac{E_r}{k_B T}\right)$

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp (2L+1) = \Gamma \Gamma$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions

 $\left(\frac{E_r}{k_B T}\right)$

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum_{i} \omega \gamma_r \exp\left(-\frac{E_r}{k_B T}\right)$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer d(²⁵Al,n₂)²⁶Si

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

 $N_{\gamma} = BR_{\gamma} \times \sigma_{transfer}^{exp} \times \epsilon_{det.}^{tot} N_{target} I_{beam} T_{UT}$

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp (2L+1) = \Gamma \Gamma$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

 $\left(\frac{E_r}{k_BT}\right)$

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp (2L+1) = \Gamma \Gamma$

$$\omega\gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p\Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

$$N_{\gamma} = \boxed{BR_{\gamma}} \times \boxed{\sigma_{\text{transfer}}^{\text{exp}}} \times \epsilon_{\text{det.}}^{\text{tot}} N_{\text{target}} I_{\text{beam}} T_{\text{UT}}$$

$$\frac{\Gamma_{\gamma}}{\Gamma_{\text{tot}}} \qquad C^2 S_p \times \sigma_{\text{transfer}}^{\text{DWBA}}$$

 $\left(\frac{E_r}{k_BT}\right)$
Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp (2L+1) = \Gamma \Gamma$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

$$N_{\gamma} = \boxed{BR_{\gamma}} \times \boxed{\sigma_{\text{transfer}}^{\text{exp}}} \times \epsilon_{\text{det.}}^{\text{tot}} N_{\text{target}} I_{\text{beam}} T_{\text{UT}}$$

$$\xrightarrow{\Gamma_{\gamma}} C^{2}S_{p} \times \boxed{\sigma_{\text{transfer}}^{\text{DWBA}}} \longrightarrow \text{FRESCO code}$$

 $\left(\frac{E_r}{k_BT}\right)$

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp (2L+1) = \Gamma \Gamma$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp (2L+1) = \Gamma \Gamma$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum \omega \gamma_r \exp \left(\frac{(2L+1)}{2} + \frac{1}{2} +$

$$\omega \gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p \Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

Accessing $\omega \gamma$ via angle-integrated measurement $< \sigma \nu >_{tot} \propto \sum (2I \pm 1)$

$$\omega\gamma = \frac{(2J+1)}{(2j+1)(2J_{2^5Al}+1)} \frac{\Gamma_p\Gamma_\gamma}{\Gamma_{tot}}$$

Extension of recent method to measure C^2S_p (NSCL) via $d({}^{26}AI,n\gamma){}^{27}Si$ Kankainen, EPJ 52 (2016)

Direct transfer $d(^{25}AI, n\gamma)^{26}Si$

Tagging of ²⁶Si^{*} on γ -ray transitions \rightarrow angle-integrated measurement of cross-section σ_{transfer}

Uncertainties = systematic \leq 30% (from optical potentials) & statistical (1/ $\sqrt{N_{\gamma}}$)

²⁵Al(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{AI},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{AI},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

$\omega\gamma =$	N_{γ}	$\Gamma_{\rm p}^{\rm s.p.}$	(2J + 1)
	$\overline{N_{target}I_{beam}\epsilon_{det.}^{tot}T_{UT}}$	$\sim \overline{\sigma_{\text{transfer}}^{\text{DWBA}}} \sim$	$(2j+1)(2J_{2^{5}Al}+1)$

²⁵Al(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{Al},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

@FRIB/ARIS Fougères et al (2023)

²⁵Al@24MeV/u

High-power primary beam ²⁸Si@**10kW** Slow radioactive beam produced by fragmentation (thick Be + Al foils) **2x10⁶ pps** >**95% purity**

²⁵AI(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{Al},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

@FRIB/ARIS Fougères et al (2023)

²⁵Al@**24MeV/u** High-power primary beam ²⁸Si@10kW Slow radioactive beam produced by fragmentation (thick Be + Al foils) 2x10⁶ pps >95% purity Fragment beam Analysis Line CD₂ target thick (9.4 mg/cm²) cea PhyNuBE 3rd meeting 2024 (Oléron, France)

²⁵AI(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{Al},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

GRETINA @FRIB/ARIS Fougères et al (2023)

²⁵Al@24MeV/u

High-power primary beam ²⁸Si@**10kW** Slow radioactive beam produced by fragmentation (thick Be + Al foils) 2x10⁶ pps >95% purity Fragment beam Gretina GRETINA@1.8MeV FWHM DC **0.7%** efficiency **4.6%** Analysis Line CD₂ target thick (9.4 mg/cm²) cea PhyNuBE 3rd meeting 2024 (Oléron, France)

²⁵Al(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{Al},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

FRIB

GRETINA&S800@FRIB/ARIS Fougères et al (2023)

²⁵Al(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{Al},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

GRETINA&S800@FRIB/ARIS Fougères et al (2023)

²⁵AI(*p*,γ)²⁶Si **Experimental setup**

Direct transfer $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ Extension of $d({}^{26}\text{Al},n\gamma){}^{27}\text{Si}$ Kankainen, EPJ 52 (2016)

GRETINA&S800@FRIB/ARIS Fougères et al (2023) 1st experiment supported by IRL NPA (FRIB & CNRS/IN2P3)

²⁵Al(*p*,γ)²⁶Si Investigation of bound states

²⁵Al(*p*,γ)²⁶Si Investigation of bound states

E_x (MeV)▲

11 states identified among 14 referenced ones in ${}^{26}Si$ (< S_p)

²⁵Al(*p*,γ)²⁶Si Investigation of bound states

²⁵AI(*p*,γ)²⁶Si Investigation of bound states

Direct radiative capture contribution on ${}^{25}AI(p, \gamma){}^{26}Si$ rate

²⁵Al(*p*,γ)²⁶Si

Resonant states

²⁵Al(*p*,γ)²⁶Si

Resonant states

²⁵Al(*p*,γ)²⁶Si

Resonant states

3 states identified among 6 of interest in ²⁶Si (> S_p)

²⁵Al(*p*,γ)²⁶Si **Resonant states**

²⁵Al(*p*,γ)²⁶Si **Resonant states**

3 states identified among 6 of interest in ²⁶Si (> S_p)

²⁵Al(*p*,γ)²⁶Si **Resonant states**

Separation of *d*-wave contribution from the total cross section with angular distribution of γ -rays?

²²Na(*p*, *y*)²³Mg **Spectroscopy of a resonant state**

 $^{22}Na(p, \gamma)^{23}Mg$

Spectroscopy of a resonant state

³He(²⁴Mg,⁴He)²³Mg*

Target + Beam Catcher ³He surface implantation in gold 10¹⁷ at.cm⁻²

²⁴Mg at 4.6 MeV/u

³He(²⁴Mg,⁴He)²³Mg*

 $\beta_{ejectil}, \theta_{ejectil}, E_x^{VAMOS}$

VAMOS++

Zero-degree setup α -reaction efficiency ~ 4 % Resolution E_x = 250 keV, θ = 0.5 deg

Target + Beam Catcher ³He surface implantation in gold 10¹⁷ at.cm⁻²

 3 He(24 Mg, 4 He) 23 Mg*(γ)

Compton tracking global level

 3 He(24 Mg, 4 He) 23 Mg*(γ)

 $eta_{ejectil}, eta_{ejectil}, E_x^{VAMOS}$

²⁴Mg at 4.6 MeV/u

³He/gold Target 10¹⁷ at.cm⁻² Beam Catcher

AGATA 31 crystals X 36 segments

Reasonant state identification

³He(²⁴Mg,⁴He)²³Mg*(γ) $E_x^{VAMOS} E_{\gamma}^{DC}$

Reasonant state identification

³He(²⁴Mg,⁴He)²³Mg*(γ) $E_x^{VAMOS} = E_{\gamma}^{DC}$

²²Na(*p*, *y*)²³Mg

Reasonant state identification

³He(²⁴Mg,⁴He)²³Mg*(γ) $E_x^{VAMOS} E_{\gamma}^{DC}$

²²Na(*p*, *y*)²³Mg

Accessing femtosecond nuclear lifetimes

 3 He(24 Mg, 4 He) 23 Mg*(γ)

(1) Particle-particle correlations

- β_{reac} from (β_{beam} , $\beta_{ejectil}$, $\theta_{ejectil}$) with 2-body kinematics
- β_{ems} from $(\mathsf{E}_{\gamma}, \theta)$ with Doppler effect $\frac{R^2 \cos(\theta) + \sqrt{1 + R^2 \cos^2(\theta) R^2}}{R^2 \cos^2(\theta) + 1}$ $R = \frac{E_{\gamma}}{E_{\gamma,0}}$

 $^{22}Na(p, \gamma)^{23}Mg$

Accessing femtosecond nuclear lifetimes

 3 He(24 Mg, 4 He) 23 Mg*(γ)

High energy and spatial resolution for particle- and γ -ray spectrometers

Fougères, Nat. Commun. 14 (2023)

²²Na(*p*, *y*)²³Mg Accessing *p*-branching-ratio

³He(²⁴Mg,⁴He)²³Mg*(*p*)

³He(²⁴Mg,⁴He)²³Mg*(*p*)

p-branching: particle-particle correlation

²²Na(*p*,*y*)²³Mg Accessing *p*-branching-ratio

³He(²⁴Mg, ⁴He)²³Mg*(*p*)

p-branching: particle-particle correlation and quantification of excited state decay channels $BR_p = 1 / (1 + Counts_{Ex\&_V} / Counts_{Ex\&$

B Towards observations

E710 C. Michelagnoli, F. de Oliveira Santos, C.Fougères, et al.

³He(²⁴Mg,⁴He)²³Mg* @4.6MeV/u

(lifetime, *p*-branching) of *p*-unbound state

²²Na(*p,γ*)²³Mg

Determination of reaction rates

E710 C. Michelagnoli, F. de Oliveira Santos, C.Fougères, et al.

s, C.Fougères, et al. ³He(²⁴Mg,⁴He)²³Mg* @4.6MeV/u (lifetime, *p*-branching) of *p*-unbound state

²²Na(p, y)²³Mg **Determination of reaction rates**

²²Na(p, y)²³Mg **Determination of reaction rates**

Expectations in ONe novae (1)

Stellar modelling

²²Na*

²²Na

abundance in novae	X (²² Na)	3.1 ×10 ^{−4}	3.2 × 10 ⁻⁴	3.7 × 10 ⁻⁴	9.1 × 10⁻⁴
	$M_{\rm ejec}~(10^{-5}M_{\odot})$	4.63	2.46	1.90	0.46
Input parameter	<i>Т</i> _{реак} (10 ⁸ К)	2.12	2.27	2.48	3.13
	R _{WD} (km)	4428	4334	3797	2258
	$M_{ m WD}$ (M_{\odot})	1.15	1.15	1.25	1.35
	HD code	MESA	SHIVA	SHIVA	SHIVA
	Model	115a	115b	125	135

Expectations in ONe novae (2)

²²Na*

Expectations in ONe novae (2)

²²Na*

Expectations in ONe novae (2)

Fougères, Nat. Commun. 14 (2023)

30

Constrain novae parameters with observed flux

²²Na*

Tomsick, Proc. Of Science 444 (2023)

« AMEGO/NASA »

PhyNuBE 3rd meeting 2024 (Oléron, France)

Tomsick, Proc. Of Science 444 (2023)

Survey of 8 observed ONe novae (60 yr) Hachisu, Astrophys. J. Suppl. Ser. 242 (2019) José, CRC Press (2016)

Survey of 8 observed ONe novae (60 yr) Hachisu, Astrophys. J. Suppl. Ser. 242 (2019) José, CRC Press (2016)

²²Na γ –ray flux

Survey of 8 observed ONe novae (60 yr) Hachisu, Astrophys. J. Suppl. Ser. 242 (2019) José, CRC Press (2016)

²²Na γ –ray flux

Low limit in detection frequency ≥1 event / 60 yr ≥1 event / 20 yr

Limit in detection distance e-ASTROGAM *De Angelis (2018)*

2.7(5) kpc COSI Tomsick (2020) 4.0(7) kpc

Survey of 8 observed ONe novae (60 yr) Hachisu, Astrophys. J. Suppl. Ser. 242 (2019) José, CRC Press (2016)

²²Na γ –ray flux

Low limit in detection frequency ≥1 event / 60 yr ≥1 event / 20 yr

> **High limit** F_{novae} x (R_{det.} / R_{galaxy})²

Limit in detection distance e-ASTROGAM *De Angelis (2018)* R_{det} 2.7(5) kpc COSI Tomsick (2020)

R_{det} 4.0(7) kpc

Survey of 8 observed ONe novae (60 yr) Hachisu, Astrophys. J. Suppl. Ser. 242 (2019) José, CRC Press (2016)

²²Na γ –ray flux

Detection frequency $1 \text{ evt } / 3 \text{ yr} \ge F \ge 1 \text{ evt } / 60 \text{ yr}$ $3 \text{ evt } / 4 \text{ yr} \ge F \ge 1 \text{ evt } / 20 \text{ yr}$

Limit in detection distance e-ASTROGAM *De Angelis (2018)* R_{det} 2.7(5) kpc COSI Tomsick (2020)

R_{det} 4.0(7) kpc

Future investigations?

Constraining sulphur Abundances in Novae presolar grains: ${}^{32}S/{}^{33}S$ strong hint of novae origin w.r.t. SNe II? ${}^{33}Cl(p,\gamma){}^{34}Ar$ unc. rate >x2

Constraining sulphur Abundances in Novae presolar grains: ${}^{32}S/{}^{33}S$ strong hint of novae origin w.r.t. SNe II? ${}^{33}Cl(p, \gamma){}^{34}Ar$ unc. rate >x2

³⁴Ar

Constraining sulphur Abundances in Novae presolar grains: ³²S/³³S strong hint of novae origin w.r.t. SNe II? ³³Cl(p, γ)³⁴Ar unc. rate >x2

³⁴Ar

EXPERIMENTAL SETUP

- Radioactive fragmentation beam ³³Cl@20MeV/u
- Particle recoil spectrometer
- γ–ray spectrometer

- \rightarrow LISE/GANIL, ARIS/FRIB, ...
- → ZDD, S800, ...
- \rightarrow EXOGAM, GRETINA , ...

Kennington, Phys. Rev. L 124 (2020)

Constraining sulphur Abundances in Novae presolar grains: ${}^{32}S/{}^{33}S$ strong hint of novae origin w.r.t. SNe II? ${}^{33}Cl(p, \gamma){}^{34}Ar$ unc. rate >x2

³⁴Ar

EXPERIMENTAL SETUP

- Radioactive fragmentation beam ³³Cl@20MeV/u
- Particle recoil spectrometer
- γ–ray spectrometer

- \rightarrow LISE/GANIL, ARIS/FRIB, ...
- \rightarrow ZDD, S800, ...
- \rightarrow EXOGAM, GRETINA , ...

Kennington, Phys. Rev. L 124 (2020)

Radiative spectroscopy of ³⁴Ar ($E_X > S_p$)

Another explosive site of interest: X-ray bursts

Explosive H-, He burning ($T \leq 2 \text{ GK}$) Matter accretion at surface of compact star (NS)

Opened questions

Compact star mass? Accretion? Light Curve? Heaviest element / nucleosynthesis end?

Spectroscopy of ¹⁹Ne ($E_X > S_\alpha$)

a Santos et al

Spectroscopy of α -unbound ¹⁹Ne*_{F. de Oliveira Santos et al.}

Lifetime: particle-particle correlations and angle-integrated velocity-difference profile ($\Delta\beta = \beta_{reac} - \beta_{ems}$) *a*-branching: particle-particle correlation and quantification of excited state decay channels $BR_{\alpha} = 1 / (1 + Counts_{Ex\&_{\gamma}} / Counts_{Ex\&_{\alpha}})$ Spin: angular distribution of particle decay

EXPERIMENTAL SETUP

- Stable beam ²⁰Ne@4MeV/u
- Particle spectrometer
- γ–ray spectrometer

- \rightarrow GANIL, ATLAS, LEGNARO,...
- \rightarrow VAMOS, FMA, PRIMSA, ...
- → AGATA, GRETINA

Spectroscopy of α -unbound ¹⁹Ne* F. de Oliveira Santos et al.

Lifetime: particle-particle correlations and angle-integrated velocity-difference profile ($\Delta\beta = \beta_{reac} - \beta_{ems}$) *a*-branching: particle-particle correlation and quantification of excited state decay channels $BR_{\alpha} = 1 / (1 + Counts_{Ex\&_{\gamma}} / Counts_{Ex\&_{\alpha}})$ Spin: angular distribution of particle decay

 \rightarrow GANIL, ATLAS, LEGNARO,...

 \rightarrow VAMOS, FMA, PRIMSA, ...

50

30

20

10

-0.001

0

0.001

High energy and spatial resolution for particle- and γ -ray spectrometers

EXPERIMENTAL SETUP

- Stable beam ²⁰Ne@4MeV/u
- Particle spectrometer
- γ–ray spectrometer

 $\Rightarrow \text{AGATA, GRETINA}$ $1^{9}\text{Ne at } E_{X} = 4.7 \text{ MeV}$ $\begin{array}{c} & & & \\ & &$

0.004

0.005

0.003

0.002

 $\Delta \beta = \beta_{reac} - \beta_{emi}$

Another explosive site of interest: X-ray bursts

Explosive H-, He burning (T \leq 2 GK) Matter accretion at surface of compact star (NS)

Direct cross section measurement at astrophysical energy with an active target in inverse kinematics

- Stellar environment T > 1 GK, $E_{cm} \sim \text{MeV/u} \Leftrightarrow \sigma \gtrsim 1 \text{ mb}$
- High (thickness, efficiency)
- Excitation function in a single experiment

Direct cross section measurement at astrophysical energy with an active target in inverse kinematics

- Stellar environment T > 1 GK, $E_{cm} \sim \text{MeV/u} \Leftrightarrow \sigma \gtrsim 1 \text{ mb}$
- High (thickness, efficiency)
- Excitation function in a single experiment

Time of flight (radioactive beams)

Reaction at different energies

Direct cross section measurement at astrophysical energy with an active target in inverse kinematics

- Stellar environment T > 1 GK, $E_{cm} \sim \text{MeV/u} \Leftrightarrow \sigma \gtrsim 1 \text{ mb}$
- High (thickness, efficiency)
- Excitation function in a single experiment

PPAC Time of flight (radioactive beams)

Anode segmentation Reaction at different energies

¹⁸Ne(*a*,*p*)²¹Na N. de Séréville et al.

EXPERIMENTAL SETUP

- Radioactive beam ¹⁸Ne@2.7MeV/u
- Active gaseous target

→ RAISOR/ANL, ... → MUSIC, ...

Direct cross section measurement at astrophysical energy with an active target in inverse kinematics

- Stellar environment T > 1 GK, $E_{cm} \sim \text{MeV/u} \Leftrightarrow \sigma \gtrsim 1 \text{ mb}$
- High (thickness, efficiency)
- Excitation function in a single experiment

¹⁸Ne(*a*,*p*)²¹Na N. de Séréville et al.

EXPERIMENTAL SETUP

- Radioactive beam ¹⁸Ne@2.7MeV/u
- Active gaseous target

→ RAISOR/ANL, ... → MUSIC, ...

The last words

□ Need of nuclear data for processes involved in astrophysics

High-resolution spectroscopy of compound nuclei Direct access of resonances strengths

Active experimental programs

@GANIL *p*-capture resonances & novae @FRIB *p*-capture resonances & novae

□ Prospects for explosive nucleosynthesis in novae & X-ray bursts

High-resolution spectroscopy of compound nuclei Direct cross-section measurements of α captures

 \rightarrow active gaseous targets

\rightarrow resonant spectroscopy & ¹⁸F in novae

FRIB

The last words

□ Need of nuclear data for processes involved in astrophysics

High-resolution spectroscopy of compound nuclei Direct access of resonances strengths

□ Active experimental programs

@GANILp-capture resonances & novae@FRIBp-capture resonances & novae

□ Prospects for explosive nucleosynthesis in novae & X-ray bursts

High-resolution spectroscopy of compound nuclei Direct cross-section measurements of α captures

→ resonant spectroscopy & $^{\rm 18}{\rm F}$ in novae

- \rightarrow high resolution γ -ray arrays
- \rightarrow active gaseous targets

Progress in explosive H-burning nucleosynthesis thanks to
 (+) radioactive beam luminosity
 (+) energy and spatial resolution of *γ*-ray and particle spectrometer

Search for ²²Na in novae supported by a novel method for measuring femtosecond nuclear lifetimes

Chloé Fougères 🖾, François de Oliveira Santos 🖾, Jordi José, Caterina Michelagnoli, Emmanuel Clément, Yung Hee Kim, Antoine Lemasson, Valdir Guimarães, Diego Barrientos, Daniel Bemmerer, Giovanna Benzoni, Andrew J. Boston, Roman Böttger, Florent Boulay, Angela Bracco, Igor Čeliković, Bo Cederwall, Michał Ciemala, Clément Delafosse, César Domingo-Pardo, Jérémie Dudouet, Jürgen Eberth, Zsolt Fülöp, Vicente González, Andrea Gottardo, Johan Goupil, Herbert Hess, Andrea Jungclaus, Ayşe Kaşkaş, Amel Korichi, Silvia M. Lenzi, Silvia Leoni, Hongjie Li, Joa Ljungvall, Araceli Lopez-Martens, Roberto Menegazzo, Daniele Mengoni, Benedicte Million, Jaromír Mrázek, Daniel R. Napoli, Alahari Navin, Johan Nyberg, Zsolt Podolyák, Alberto Pullia, Begoña Quintana, Damien Ralet, Nadine Redon, Peter Reiter, Kseniia Rezynkina, Frédéric Saillant, Marie-Delphine Salsac, Angel M. Sánchez-Benítez, Enrique Sanchis, Menekşe Şenyiğit, Marco Siciliano, Nadezda A. Smirnova, Dorottya Sohler, Mihai Stanoiu, Christophe Theisen, Jose J. Valiente-Dobón, Predrag Ujić & Magdalena Zielińska — Show fewer authors

The collaboration

Angle-integrated measurement of the $d({}^{25}\text{Al},n\gamma){}^{26}\text{Si}$ transfer reaction to probe resonance strengths in ${}^{25}\text{Al}(p,\gamma){}^{26}\text{Si}$ relevant for the production of ${}^{26}\text{Al}$ in novae FRIB experiment with GRETINA - S800

C. Fougères^{1,2}, F. Hammache³, F. de Oliveira Santos⁴, N. de Séréville³, C. Benetti⁵, A. Gade⁵, S. Gillespie⁵, J. Swartz⁵, J. Pereira⁵, D. Weisshaar⁵, S. M. Ali⁵, H. Arora⁵, M. L. Avila¹, L. Balliet⁵, K. Bhatt¹, T. Beck⁵, S. Ahn⁶, J. Chung-Jung⁵, L. Dienis⁴, P. Farris⁵, V. Girard-Alcindor³, S. Giraud⁵, J. Huffman⁵, H. Jacob³, D. Kim⁶, M. Kuich⁵, C. Maher⁵, F. Montes⁵, C. Müller-Gatermann¹, D. Neto⁷, M. Portillo⁵, B. M. Sherrill⁵, O. B. Tarasov⁵, A. Tumino⁸, and R. Zegers⁵

O Appendices

Cea Nuclear Structure 2024 (ANL/US)

Explosive H-, He burning (T \leq 2 GK) Matter accretion at surface of compact star (NS)

²²Na(*p*, *y*)²³Mg

Shell model insights

3