X-ray bursts studies using indirect methods

Nicolas de Séréville (nicolas.de-sereville@ijclab.in2p3.fr) Laboratoire de Physique des 2 Infinis Irène Joliot Curie Université Paris Saclay

Laboratoire de Physique des 2 infinis Irène Joliot-Curie

October 6th - 10th 2024

Outline

- 1. Generalities
- 2. Break out of the hot CNO cycle
 - a) The ¹⁵O(α,γ)¹⁹Ne reaction
 - b) The ¹⁸Ne(α ,p)²¹Na reaction
- **3**. The α p-process and the ³⁵K(p, γ)³⁶Ca reaction

Outline

1. Generalities

- 2. Break out of the hot CNO cycle
 - a) The ¹⁵O(α , γ)¹⁹Ne reaction
 - b) The ¹⁸Ne(α ,p)²¹Na reaction
- **3**. The α p-process and the ³⁵K(p, γ)³⁶Ca reaction

Type I X-ray burst in a nutshell

Thermonuclear runaway at the surface of a neutron star (NS) in a close binary system

Type I X-ray outbursts

- Very fast rise times: 2 10 s
- $L_{peak} \sim 10^{38} \text{ erg s}^{-1}$ (ccSN $L_{peak} \sim 10^{51} \text{ erg.s}^{-1}$)
- Short duration: 10 100 s
- Recurence time: ~ hours days
- Mass ejected: maybe (?)

```
Y. Herrera+ (2023)
```

October 6th - 10th 2024

Recurrent flashes [e.g. 4U/MXB 1820-30]

Precision era for X-ray observations

Understand the luminosity profile (one of the most important challenge)

- Sensitive to NS spin frequency (oscillations in rise part of light curve)
 S. Bhattacharyva+ (2007)
- Sensitive to NS mass-radius relation (tail of light curve)
 J. Nattila+ (2017)
- Very sensitive to nuclear inputs

Nuclear network and uncertainties

October 6th - 10th 2024

Cross-section determination: experimental strategies

- Measurement of cross section at higher energies and extrapolation to astrophysical energies E_a
 - → direct measurement approach
- Determination of resonant state properties (E_R , partial widths Γ_i , J^{π})
 - → indirect measurement approach

October 6th - 10th 2024

Direct measurements: requirements and challenges

Low cross section \rightarrow low yields \rightarrow poor signal-to-noise ratio

Sources of background

- Beam induced
 - Reactions with impurities in the target
 - Reactions on beam collimators/apertures
- Non beam-induced
 - · Interaction from cosmic muons with detection setup
 - Charged particles / γ-rays from natural background
 - Neutron induced reactions

Requirements & challenges →

Improving signal-to-noise ratio

- Improving signal
 - Very long measurements (weeks, months...)
 - High beam intensities: heating effects on target (limitation)
 - Thicker targets (?): exponential drop of the cross section
 - High detection efficiency
- Reducing noise/background
 - Ultra pure targets: difficult
 - Dedicated experimental setup

- Coincidence measurements (STELLA...)
- Recoil mass separator (DRAGON...)
- Underground laboratory (LUNA, Felsenkeller...)

see lectures from M. Heine and A. Bonhomme

Indirect measurements

Cross-section of astrophysical interest not measured directly

Main idea:

- Perform experiments above the Coulomb barrier at high energy (~ few 10's of MeV/u)
 - \rightarrow higher cross sections than for direct measurements

Pros and Cons:

- Experimental conditions are relatively less constraining than for direct measurement (not necessarily true with RIB studies)
- Results are model dependent
- Results depend on the uncertainties relative to the different model parameters
- Examples of indirect methods:
 - Transfer reactions, Asymptotic Normalization Coefficient (ANC) method, Trojan Horse Method (THM), surrogate method, Coulomb dissociation...

see lecture from F. Hammache

Outline

- 1. Generalities
- 2. Break out of the hot CNO cycle
 - a) The ¹⁵O(α,γ)¹⁹Ne reaction
 - **b)** The ¹⁸Ne(α ,p)²¹Na reaction
- **3**. The α p-process and the ³⁵K(p, γ)³⁶Ca reaction

Hot-CNO cycle breakout reactions

¹⁵ $O(\alpha, \gamma)$ ¹⁹Ne: first break out reaction

• ${}^{15}O(\alpha,\gamma){}^{19}Ne$ much slower than ${}^{19}Ne(p,\gamma){}^{20}Na$

Hot-CNO cycle breakout reactions

¹⁵ $O(\alpha, \gamma)$ ¹⁹Ne: first break out reaction

• ${}^{15}O(\alpha,\gamma){}^{19}Ne$ much slower than ${}^{19}Ne(p,\gamma){}^{20}Na$

Hot-CNO cycle breakout reactions

¹⁵ $O(\alpha, \gamma)$ ¹⁹Ne: first break out reaction

• ${}^{15}O(\alpha,\gamma){}^{19}Ne$ much slower than ${}^{19}Ne(p,\gamma){}^{20}Na$

¹⁸Ne(α ,p)²¹Na: break out reaction at higher temperature

• 18 Ne(α ,p) 21 Na slower than 14 O(α ,p) 17 F and 17 F(p, γ) 18 Ne

¹⁵O(α , γ)¹⁹Ne: ¹⁹Ne and ¹⁹F spectroscopy

Useful information:

- ${}^{15}O + \alpha \rightarrow {}^{19}Ne + \gamma$ (1/2-) (0+)
- Compound nucleus: ¹⁹Ne
- $\ell_{\alpha} = 0$ resonances: $J = 1/2^{-1}$
- $\ell_{\alpha} = 1$ resonances: $J = 3/2^+$
- $S_p = 6.410 \text{ MeV}; S_a = 3.528 \text{ MeV}$

Gamow window:

- $T_g = 0.4 \rightarrow E_o = 617 \text{ keV}; \quad \Delta = 337 \text{ keV}$
- $T_g = 1 \rightarrow E_o = 1137 \text{ keV}; \Delta = 723 \text{ keV}$
- Center of mass: [450 keV; 1500 keV]
- ¹⁹Ne excitation energy: [3.980 MeV; 5.027 MeV]

Mirror nuclei: ¹⁹Ne ↔ ¹⁹F

Swapped number of protons and neutrons

Analog states:

• Similar properties (J^{π} , Γ_i ...)

¹⁵O(α,γ)¹⁹Ne: what to measure and how?

Thermonuclear reaction rate

Dominant state at E_{v} = 4.033 MeV $(E_p = 505 \text{ keV}; J^{\pi} = 3/2^+; \ell_p = 1)$

Narrow resonance case

- $\mathcal{N}_A \langle \sigma v \rangle \propto \omega \gamma \ e^{-E_R/kT}$ $\omega \gamma = 0.5 \times (2J_R + 1) \frac{\Gamma_{\alpha} \Gamma_{\gamma}}{\Gamma}$
- Close to α -particle threshold (case of E_{γ} = 4.033 MeV state)

$$\rightarrow \Gamma_{\alpha} \ll \Gamma_{\gamma} \Rightarrow \Gamma = \Gamma_{\alpha} + \Gamma_{\gamma} \approx \Gamma_{\gamma}$$

 $\omega \gamma \approx 0.5 \times (2J_R + 1) \Gamma_{\alpha}$

resonance strength proportional to the α -particle width (smaller partial width)

¹⁵O(α,γ)¹⁹Ne: what to measure and how?

Thermonuclear reaction rate

Dominant state at $E_x = 4.033$ MeV $(E_{\rm p} = 505 \text{ keV}; J^{\pi} = 3/2^+; \ell_{\rm p} = 1)$

Narrow resonance case

• $\mathcal{N}_A \langle \sigma v \rangle \propto \omega \gamma \ e^{-E_R/kT}$

•
$$\omega \gamma = 0.5 \times (2J_R + 1) \frac{\Gamma_{\alpha} \Gamma_{\gamma}}{\Gamma}$$

• Close to α -particle threshold (case of E_{χ} = 4.033 MeV state)

$$\rightarrow \Gamma_{\alpha} \ll \Gamma_{\gamma} \Rightarrow \Gamma = \Gamma_{\alpha} + \Gamma_{\gamma} \approx \Gamma_{\gamma}$$

 $\omega\gamma\approx 0.5\times (2J_R+1)\,\Gamma_{\alpha}$

 \rightarrow resonance strength proportional to the α -particle width (smaller partial width)

Experimental approaches

- Direct measurement: requires ~ 10¹⁰ pps of low-energy ¹⁵O RIB [not available]
- Indirect approach: $\Gamma_{\alpha} = \frac{\Gamma_{\alpha}}{\Gamma} \times \Gamma = B_{\alpha} \times \Gamma$ | Measurement of α branching ratio B_{α} Measurement of state lifetime $\tau \propto 1/\Gamma$
- Transfer reaction approach: $\Gamma_{\alpha} = C^2 S_{\alpha} \times \Gamma_{\alpha}^{s.p.}$ Measurement of α spectroscopic factor $C^2 S_{\alpha}$

October 6th - 10th 2024

Lifetime of the 4.033 MeV state

Doppler-Shift Attenuation Method

DSAM: Doppler-Shift Attenuation Method

 \rightarrow lifetime of state inferred from the measured decaying γ -ray energy distribution

Doppler effect

• Detected γ -ray energy (E_{γ}) depends on the speed (v) of the nucleus at emission time and on the angle (θ) between the observer and the emitting nucleus direction

•
$$E_{\gamma} = E_{\gamma}^0 \left(1 + \frac{v}{c} \cos(\theta) \right)$$

DSAM principle

- Population of state of interest through a chosen nuclear reaction
- Slowing and stopping of recoil nucleus
- γ -ray emission at range of velocities

DSAM

Lifetime of the 4.033 MeV state

Doppler-Shift Attenuation Method

DSAM: Doppler-Shift Attenuation Method

 \rightarrow lifetime of state inferred from the measured decaying γ -ray energy distribution

Doppler effect

• Detected γ -ray energy (E_{γ}) depends on the speed (ν) of the nucleus at emission time and on the angle (θ) between the observer and the emitting nucleus direction

•
$$E_{\gamma} = E_{\gamma}^0 \left(1 + \frac{v}{c} \cos(\theta) \right)$$

DSAM principle

- Population of state of interest through a chosen nuclear reaction
- Slowing and stopping of recoil nucleus
- γ -ray emission at range of velocities

DSAM

Lifetime of the 4.033 MeV state

Doppler-Shift Attenuation Method

DSAM: Doppler-Shift Attenuation Method

 \rightarrow lifetime of state inferred from the measured decaying γ -ray energy distribution

Doppler effect

• Detected γ -ray energy (E_{γ}) depends on the speed (v) of the nucleus at emission time and on the angle (θ) between the observer and the emitting nucleus direction

•
$$E_{\gamma} = E_{\gamma}^0 \left(1 + \frac{v}{c} \cos(\theta) \right)$$

DSAM principle

- Population of state of interest through a chosen nuclear reaction
- Slowing and stopping of recoil nucleus
- γ -ray emission at range of velocities

DSAM

Fully shifted

Lifetime of the 4.033 MeV state

Doppler-Shift Attenuation Method

DSAM: Doppler-Shift Attenuation Method

 \rightarrow lifetime of state inferred from the measured decaying γ -ray energy distribution

Doppler effect

• Detected γ -ray energy (E_{γ}) depends on the speed (ν) of the nucleus at emission time and on the angle (θ) between the observer and the emitting nucleus direction

•
$$E_{\gamma} = E_{\gamma}^0 \left(1 + \frac{v}{c} \cos(\theta) \right)$$

DSAM principle

- Population of state of interest through a chosen nuclear reaction
- Slowing and stopping of recoil nucleus
- γ -ray emission at range of velocities

DSAM

Fully shifted

Lifetime of the 4.033 MeV state

Doppler-Shift Attenuation Method

DSAM: Doppler-Shift Attenuation Method

 \rightarrow lifetime of state inferred from the measured decaying γ -ray energy distribution

Doppler effect

• Detected γ -ray energy (E_{γ}) depends on the speed (ν) of the nucleus at emission time and on the angle (θ) between the observer and the emitting nucleus direction

•
$$E_{\gamma} = E_{\gamma}^0 \left(1 + \frac{v}{c} \cos(\theta) \right)$$

Target

(reaction)

beam

Backing

(stopper)

recoil: v(

- Population of state of interest through a chosen nuclear reaction
- Slowing and stopping of recoil nucleus
- γ -ray emission at range of velocities

 γ -ray line shape is sensitive to the lifetime of nuclear states

DSAM

Lifetime of the 4.033 MeV state Lifetime measurement of the 4033 keV state

R. Kanungo+ (2006)

DSAM

Experimental set-up

- ³He(²⁰Ne,α)¹⁹Ne* @ 34 MeV [TRIUMF]
- ³He (6x10¹⁷ at.cm⁻²) implanted in 12.5 μ m Au foil
- 2 HPGe at 0° and 90° $\,$
- ΔE (25 µm) E (500 µm) silicon detectors telescope
 - \rightarrow coincidence α - γ measurement

October 6th - 10th 2024

Lifetime of the 4.033 MeV state Lifetime measurement of the 4033 keV state

R. Kanungo+ (2006)

DSAM

Experimental set-up

Reaction channel identification

- ³He(²⁰Ne,α)¹⁹Ne* @ 34 MeV [TRIUMF]
- ³He (6x10¹⁷ at.cm⁻²) implanted in 12.5 μ m Au foil
- 2 HPGe at 0° and 90°
- ΔE (25 µm) E (500 µm) silicon detectors telescope
 - \rightarrow coincidence $\alpha\text{-}\gamma$ measurement

- Wide range of α -particle energy
 - \rightarrow fusion-evaporation ²⁰Ne + ¹²C (contaminant)
- Hatched area $[E_{\alpha} = 11 13 \text{ MeV}]$
 - $\rightarrow \alpha$ -particles corresponding to population of 4.033 MeV state

Lifetime of the 4.033 MeV state Lifetime measurement of the 4033 keV state

R. Kanungo+ (2006)

DSAM

Experimental set-up

Reaction channel identification

• ³He(²⁰Ne,α)¹⁹Ne* @ 34 MeV [TRIUMF]

- ³He (6x10¹⁷ at.cm⁻²) implanted in 12.5 μm Au foil
- 2 HPGe at 0° and 90°
- ΔE (25 µm) E (500 µm) silicon detectors telescope
 - \rightarrow coincidence $\alpha\text{-}\gamma$ measurement

- Wide range of α -particle energy
 - \rightarrow fusion-evaporation ²⁰Ne + ¹²C (contaminant)
- Hatched area [$E_{\alpha} = 11 13$ MeV]
 - $\rightarrow \alpha$ -particles corresponding to population of 4.033 MeV state

E_{γ} = 4033 keV line shape

- $\tau = 11^{+4}_{-3} \text{ fs} (1\sigma)$
- Good agreement with existing works:
 - $\tau = 13^{+9}_{-6} \text{ fs } (1\sigma)$ W. P. Tan+ (2005)
 - $\tau = 6.9^{+1.5}_{-1.5} \pm 0.7 \text{ fs} (1\sigma)$ S. Mythili+ (2008)

Branching ratio 4.033 MeV state How to determine branching ratios Coincidence measurement

W. P. Tan+ (2007, 2009)

 α -particle branching ratio $B_{\alpha} = \frac{\Gamma_{\alpha}}{\Gamma}$ is the probability for an unbound state to decay through α emission

Experimentally: coincidence measurement

- Detector close to 0° (silicon, spectrometer...)
 - Detection of particles allowing the identification of the reaction and states of interest (2-body kinematics)
 - \rightarrow "single" events $N_{singles}$
 - Strong alignment of magnetic substates
- Silicon detector array (stripped) surrounding the target
 - Detection of decaying particles
 - \rightarrow "coincident" events N_{coinc}
 - Angular correlation measurement
 - \rightarrow use to determine the number of decay N_{decays}

- Branching ratios
$$B_{\alpha} = rac{N_{decays}}{N_{singles}}$$

Branching ratio
4.033 MeV stateHow to determine branching ratiosCoincidence
measurement

W. P. Tan+ (2007, 2009)

 α -particle branching ratio $B_{\alpha} = \frac{\Gamma_{\alpha}}{\Gamma}$ is the probability for an unbound state to decay through α emission

Experimentally: coincidence measurement

- Detector close to 0° (silicon, spectrometer...)
 - Detection of particles allowing the identification of the reaction and states of interest (2-body kinematics)
 - \rightarrow "single" events $N_{singles}$
 - Strong alignment of magnetic substates
- Silicon detector array (stripped) surrounding the target
 - Detection of decaying particles
 - \rightarrow "coincident" events N_{coinc}
 - Angular correlation measurement
 - \rightarrow use to determine the number of decay N_{decays}

Branching ratios
$$B_{\alpha} = \frac{N_{decays}}{N_{singles}}$$

Challenge: low-energy $\alpha\text{-particle}$ (< 1 MeV)

Thin target, thin detector dead layer, low electronic threshold

October 6th - 10th 2024

Branching ratio results

Coincidence measurement

W. P. Tan+ (2007, 2009)

Branching ratio results

Coincidence measurement

W. P. Tan+ (2007, 2009)

α -particle energy spectrum (α -t coincidence)

Branching ratio results

Coincidence measurement

W. P. Tan+ (2007, 2009)

α -t angular correlation

α -particle energy spectrum (α -t coincidence)

October 6th - 10th 2024

Branching ratio results

Coincidence measurement

W. P. Tan+ (2007, 2009)

α -t angular correlation

α -particle energy spectrum (α -t coincidence)

Transfer reaction

Transfer reactions are a privileged tool to determine partial widths

- α -particle transfer reaction commonly use (⁷Li,t) reactions [⁷Li = α + t]
- Inverse kinematics since ¹⁵O is radioactive ($T_{1/2}$ = 122 s)

[not possible to produce targets]

Comparison between experimental and theoretical differential cross-section

$$\left(\frac{d\sigma}{d\Omega}\right)_{exp} = C^2 S_{\alpha} \left(\frac{d\sigma}{d\Omega}\right)_{DWBA}$$

• α -particle partial width: $\Gamma_{\alpha} = C^2 S_{\alpha} \times (\Gamma_{\alpha}^{s.p.}) \longrightarrow$ Theoretical calculation

3rd Rencontre PhyNuBE: Fission and Nuclear Astrophysics

 α -particle

partial width

October 6th - 10th 2024

October 6th - 10th 2024

October 6th - 10th 2024

Particle identification

Transfer reaction

- Good selectivity of recoils: A, Z, Q
- ¹⁹Ne well identified

 α -particle

partial width

- Crucial for background rejection
- MUGAST (light ejectiles)
 - Identification of tritons
 - Crucial for angular distribution
- AGATA (γ-rays)
 - Very good selectivity
 - High energy resolution (after Doppler correction)
 - → FWHM 10 keV (@ 1 MeV); 40 keV (@ 4 MeV)

γ-rays (AGATA)

3rd Rencontre PhyNuBE: Fission and N

¹⁹Ne – t – γ triple coincidences

Transfer reaction

¹⁹Ne – t – γ triple coincidences

Transfer reaction

¹⁹Ne – t – γ triple coincidences

Transfer reaction

Source of background

- Compton events from high-energy γ-ray lines
- Small leaking (2.3%) of ²⁰Ne in VAMOS ¹⁹Ne⁹⁺ selection

¹⁹Ne – t – γ triple coincidences

Transfer reaction

Source of background

- Compton events from high-energy γ-ray lines
- Small leaking (2.3%) of ²⁰Ne in VAMOS ¹⁹Ne⁹⁺ selection

$_{\text{partial width}}^{\alpha\text{-particle}}$ Angular distributions and α spectroscopic factors

Transfer reaction

FR-DWBA analysis (FRESCO)

- Optical potentials from mirror reaction: ¹⁵N(Li,t)¹⁹F F. de Oliveira Santos et al. (1996)
- C^2S_{α} determination: prescription from Becchetti+ (1978)
 - $L \ge 2$: α -cluster bound by 50 keV
 - L < 2: C^2S_{α} extrapolation to actual α -separation energy
- Uncertainty due to optical potential ~ 40%

October 6th - 10th 2024

3rd Rencontre PhyNuBE: Fission and Nuclear Astrophysics

Comparison with analog states in ¹⁹ F Preliminary						
		¹⁹ Ne		¹⁹ F		
J^{Π}	Q=2N+L	E_{χ} (keV)	C²S _α	E_{χ} (keV)	$C^2S_{\alpha}^{[a]}$	
5/2-	8	1508	0.25	1346	0.20	
3/2+	7	1536	0.15	1554	0.21	
3/2-	8	1615	0.23	1459	0.20	
9/2+	7	2794	0.22	2780	0.16	
3/2+	7	4033	0.063	3908	≤ 0.09	
(7/2-)	8	4140	0.16	3999	0.29	
(9/2-)	8	4197	0.41	4033		
7/2+	7	4379		4378		
		4549		4556		
(5/2+)	7	4600		4550		

[a] F. de Oliveira Santos et al. (1996)

- Good agreement with analog states
- Small C^2S_{α} for the E_x ⁽¹⁹Ne) = 4033 keV state
- C^2S_{α} determined for the 2 components of the $E_x(^{19}Ne)$ = 4140 + 4197 keV doublet

21/34

Determination of Γ_{α} for ¹⁹Ne unbound states

- $\Gamma_{\alpha} = 2P_l(r, E_r) \frac{\hbar^2 r}{2\mu} C^2 S_{\alpha} |\phi(r)|^2$
- Radius determined when asymptotic behavior of α + ¹⁵O radial wave function is reached

Comparison with existing data Preliminary

		Present work		Tan+ (2009)			Fortune+ (2010)	
(E _x keV)	Γ _α (μeV)	Β _α (x 10 ⁻⁴)	Γ _α (μeV)	Β _α (x 10 ⁻⁴)	τ (fS)	Γ _α (μeV)	τ (fS)
40	33	11.0 (4.4)		17 (13)	2.9 (2.1)	13^{+9}_{-6}	24 (18)	7.9 (1.5)
41	.40	1.0 (0.4)	0.3	44 (20)	12 (5)	18^{+2}_{-3}		
41	.97	12.6 (5.2)	+ 8.2	18 (9)	12 (5)	43 ⁺¹² ₋₉		

- 4033 keV state: Γ_{α} = 10.8 ± 4.3 µeV (uncertainty from DWBA only so far)
- 4140 keV + 4197 keV doublet
 → α-particle partial width for each component

compatible with existing results **BUT** obtained from a direct determination of the α -particle width

Outline

- 1. Generalities
- 2. Break out of the hot CNO cycle
 - a) The ¹⁵O(α,γ)¹⁹Ne reaction
 - b) The ¹⁸Ne(α ,p)²¹Na reaction
- **3**. The α p-process and the ³⁵K(p, γ)³⁶Ca reaction

¹⁸Ne(α ,p)²¹Na: status & future experiment

6.61 (2+)

Experimental status

- Activation of ¹⁸Ne(α ,p)²¹Na for T > 500 MK $\rightarrow E_x$ (²²Mg) > 8.5 MeV
 - $\rightarrow E_{c.m.} > 0.5 \text{ MeV}$
- Direct (α,p) measurement extremely challenging close to α-particle threshold (large barrier)
- Determination of nuclear properties of states in compound ²²Mg nucleus [Γ_{α} from analog ²²Ne states or assuming $\langle \theta_{\alpha}^2 \rangle$] [Giesen+ NPA (1994), Mohr+ PRC (2014)]

• High level density ~ 1 state / 125 keV, but only 3L = 0 and 4L = 1 states within 3 MeV

¹⁸Ne(α ,p)²¹Na: status & future experiment

Experimental status

- Activation of ¹⁸Ne(α ,p)²¹Na for T > 500 MK $\rightarrow E_x$ (²²Mg) > 8.5 MeV
 - $\rightarrow E_{c.m.} > 0.5 \text{ MeV}$
- Direct (α,p) measurement extremely challenging close to α-particle threshold (large barrier)

Determination of nuclear properties of states in compound ²²Mg nucleus [Γ_{α} from analog ²²Ne states or assuming $\langle \theta_{\alpha}^2 \rangle$] [Giesen+ NPA (1994), Mohr+ PRC (2014)]

• High level density ~ 1 state / 125 keV, but only 3L = 0 and 4L = 1 states within 3 MeV

Resonance strength determination $\omega \gamma = \omega \frac{\Gamma_{\alpha} \Gamma_{p}}{\Gamma} = \omega \Gamma_{\alpha} \times BR_{p}$

- α -particle transfer reaction (inverse kinematics) \rightarrow resonant ²²Mg states with strong coupling to the alpha channel (E_x , Γ_α)
- Proton decay measurement → BR_n
- ²¹Na* prompt-decay γ -ray $\rightarrow p_0$ vs p_1 decay channels

¹⁸Ne(α ,p)²¹Na: study with MUGAST + EXOGAM + ZDD

MUGAST + EXOGAM + ZDD @ LISE

Scheduled in next MUGAST 2025 campaign

- RIB: ¹⁸Ne @ 5 MeV/u
- Beam intensity: ~ 10⁶ pps
- Target: ⁷LiF of ~ 500 μ g/cm²

October 6th - 10th 2024

3rd Rencontre PhyNuBE: Fission and Nuclear Astrophysics

⁷Li(¹⁸Ne,t)²²Mg(**p**)²¹Na*(γ)²¹Na_{g.s.}

- Triple coincidence using:
 - MUGAST
 - Trapezoids: tritons
 → E_y: 560 keV (FWHM)
 - MUST2: proton emission
 - ZDD (modified version):
 - ¹⁸Ne (5 MeV/u) and ²¹Na recoil (3.3 MeV/u)
 - EXOGAM: prompt γ -rays (mainly $E_{\gamma} \sim 332$ keV)

25/34

Outline

- 1. Generalities
- 2. Break out of the hot CNO cycle
 - a) The ¹⁵O(α,γ)¹⁹Ne reaction
 - b) The ¹⁸Ne(α ,p)²¹Na reaction
- **3**. The α p-process and the ³⁵K(p, γ)³⁶Ca reaction

The αp -process and the ${}^{35}K(p,\gamma){}^{36}Ca$ reaction

(α ,**p**) process: (α ,**p**) (**p**, γ) reactions

- \rightarrow up to A < 60 (radioactive nuclides)
- $\rightarrow\,$ impact on energetics and light curve

10 most impacting (p, γ) reactions (close to waiting points)

³⁴Ar waiting point

- Small ³⁴Ar(p,γ)³⁵K Q-value [= 80 keV]
 - \rightarrow (p, γ) (γ ,p) equilibrium
- ${}^{34}Ar(\alpha,p){}^{37}K$ must be faster then ${}^{34}Ar\beta$ -decay (T_{1/2} = 846 ms)
- Other possibility: ³⁵K(p,γ)³⁶Ca

The ${}^{35}K(p,\gamma){}^{36}Ca$ reaction

Gamow window: X-ray burst temperature $\sim 0.5 - 2$ GK

- ³⁶Ca excitation energy: 3.0 4.5 MeV
- ³⁵K + p resonance energy: 0.4 2 MeV

Resonant reaction rate

•
$$\langle \sigma v \rangle \propto \omega \gamma \times e^{(-E_R/kT)}$$
 with $\left| \begin{array}{l} \omega \gamma = \frac{2J_R + 1}{8} \times \frac{\Gamma_p \Gamma_\gamma}{\Gamma} \\ E_R = E_X - Q_{(p,\gamma)} \end{array} \right|$

Very limited ³⁶Ca information available (prior to L. Lalanne's PhD thesis)

- Known first 2+ excitation energy: 3045.0 (2.4) keV
- BUT poorly known resonance energy
 - → mass excess $\Delta M(^{36}Ca) = -6440 \pm 40 \text{ keV}$

(updated value from mass measurement: -6483.6 (56) keV)

- No partial widths, branching ratios...
- Additional excited states in the Gamow window? Expected from mirror ³⁶S nuclide

Surbrook+ (2021) PRC

³⁷Ca(p,d)³⁶Ca experimental study

Transfer reaction

October 6th - 10th 2024

3rd Rencontre PhyNuBE: Fission and Nuclear Astrophysics

29/34

New ³⁶Ca states and differential cross-sections

Excitation energies

 \rightarrow in agreement with previous works

Differential cross-sections

- 2 new L = 0 excited states identified
- Lower one in the Gamow window
- Spin / parity based on analog states in ³⁶Si and shell-model calculations

Proton branching ratio (Γ_p/Γ)

Angular correlation

2nd order Legendre polynomial
 → confirm 2+ spin / parity

• BR =
$$\int_{\theta_{cm}=0}^{\pi} 2\pi \sin(\theta_{cm}) W(\theta_{cm}) d\theta_{cm}$$

 $B_p(2_1^+) = 0.16(2)$

The thermonuclear ${}^{35}K(p,\gamma){}^{36}Ca$ reaction rate

³⁵K + p resonance parameters

J^{π}	E_r (keV)	Γ_{γ} (meV)	$\Gamma_p \text{ (meV)}$	$\omega\gamma$ (meV)
(2+)	445(7)	0.99 ^a	0.20	0.102(50)
(1^{+})	1643(41)	65.4 ^a		25(14)
(2^+_2)	2106(100)	7.4 ^a		4.6(25)

Resonance strength $\omega \gamma = \frac{2J_R + 1}{8} \times \frac{\Gamma_p \Gamma_\gamma}{\Gamma}$

- γ -ray width (Γ_{γ}) from *sdpf* shell-model calculations
- Uncertainty of a factor of 1.7 based on other shellmodel calculations and mirror state property

Reaction rates: RatesMC code Longland+ (2010) NPA

- First 2+ state dominate the reaction rate
- Higher resonant states contribute for T > 2 GK
- In agreement with compilation work from Iliadis+ (2010)

 35 K(p, γ) 36 Ca sufficiently well constrained \rightarrow no impact on X-ray burst light-curve

Summary

- Type I X-ray bursts are fascinating objects
 - a few tens of $(\alpha, p) + (p, \gamma)$ reactions to study
 - \rightarrow relatively far from the valley of stability \rightarrow mostly radioactive beams
- Several complementary experimental approaches needed for a single reaction
- Indirect methods are a unique tool to determine spectroscopic properties of nuclei of interest (spin/parity, partial width, branching ratios...)
- Few key reactions
 - ${}^{15}O(\alpha,\gamma){}^{19}Ne$: very challenging measurement, complementary strength determination welcomed!
 - ${}^{18}Ne(\alpha,p){}^{21}Na$: low-energy cross-section still missing
 - → future experiment scheduled soon + other ideas (see C. Fougères' talk)
 - ${}^{35}K(p,\gamma){}^{36}Ca$ now well constrained
 - Other (α,p) & (p,γ) key reactions: ⁵⁹Cu(p,γ)⁶⁰Zn...

Suggested reading

- Nuclear astrophysics
 - Nuclear Physics of Stars, C. Iliadis (2015)
- Classical novae and type I X-ray bursts
 - Stellar Explosions: Hydrodynamics and Nucleosynthesis, J. José (2016)
- Nuclear reaction theory
 - Direct Nuclear Reactions, G. R. Satchler (1983)
- Transfer reactions
 - *Direct Nuclear Reaction Theories*, N. Austern (1970)
 - Transfer reactions as a Tool in Nuclear Astrophysics, F. Hammache and N. de Séréville (2021)
- Angular correlations
 - *Gamma-ray angular correlations from aligned nuclei produced by nuclear reactions*, A. E. Litherland and J. Ferguson (1961)
 - Angular correlations of sequential particle decay for aligned nuclei, J. G. Pronko and R. A. Lindgren (1972)