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Type I X-ray burst in a nutshell

artist’s 
view

Type I X-ray outbursts
● Very fast rise times: 2 – 10 s
● Lpeak ~ 1038 erg s-1 

           (ccSN Lpeak ~ 1051 erg.s-1)
● Short duration: 10 – 100 s
● Recurence time: ~ hours – days
● Mass ejected: maybe (?)

Thermonuclear runaway at the surface of a neutron star (NS) in a close binary system 

Recurrent flashes [e.g. 4U/MXB 1820-30] Precision era for X-ray observations
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Understand the luminosity profile (one of the most important challenge)
● Sensitive to NS spin frequency (oscillations in rise part of light curve)
● Sensitive to NS mass-radius relation (tail of light curve)

● Very sensitive to nuclear inputs

J. Nattila+ (2017) 

S. Bhattacharyya+ (2007) 

Y. Herrera+ (2023) 
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Nuclear network and uncertainties
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3a reaction
a + a + a 12C

ap-process:
14O(a,p)17F + 17F(p,g)
18Ne(a,p)21Na
30S(a,p)33Cl
…

rp-process:
(p,g) reactions

● Main nuclear path far from the 
valley of stability
→ ~ 300 – 500 relevant nuclides
→ several thousands reactions

● End point of nucleosynthesis:
Sn–Sb–Te cycle 

Nuclear Physics inputs
● Mass measurements along rp-process path
● Key reactions
● ...

Sensitivity studies
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Schatz+ 2001

Hot CNO cycle
15O(a,g)19Ne + 18Ne(a,p)21Na

Adapted from H. Schatz Only a few tens of key reactions are important

Parikh+ ApJ (2013), Meisel+ ApJ (2019) 
Cyburt+ ApJ (2016) 
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Cross-section determination: experimental strategies
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● Measurement of cross section at higher energies and extrapolation to astrophysical energies E0 
→ direct measurement approach

● Determination of resonant state properties (ER, partial widths Gi, Jp) 
→ indirect measurement approach
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Direct measurements: requirements and challenges
Low cross section → low yields → poor signal-to-noise ratio

Sources of background
● Beam induced

● Reactions with impurities in the target
● Reactions on beam collimators/apertures

● Non beam-induced
● Interaction from cosmic muons with detection setup
● Charged particles / g-rays from natural background
● Neutron induced reactions

Requirements & challenges → 
● Improving signal 

● Very long measurements (weeks, months…)
● High beam intensities: heating effects on target (limitation)
● Thicker targets (?): exponential drop of the cross section
● High detection efficiency

● Reducing noise/background
● Ultra pure targets: difficult
● Dedicated experimental setup

Improving signal-to-noise ratio

● Coincidence measurements (STELLA…)
● Recoil mass separator (DRAGON…)
● Underground laboratory (LUNA, Felsenkeller...)

see lectures from M. Heine 
and A. Bonhomme
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Indirect measurements

Main idea:
● Perform experiments above the Coulomb barrier at high energy (~ few – 10’s of MeV/u) 

→ higher cross sections than for direct measurements

Pros and Cons:
● Experimental conditions are relatively less constraining than for direct measurement (not necessarily true 

with RIB studies)

● Results are model dependent
● Results depend on the uncertainties relative to the different model parameters

● Examples of indirect methods:
● Transfer reactions, Asymptotic Normalization Coefficient (ANC) method, Trojan Horse Method (THM), 

surrogate method, Coulomb dissociation...

Cross-section of astrophysical interest not measured directly

 

 

see lecture from F. Hammache
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Hot-CNO cycle breakout reactions

15O(a,g)19Ne: first break out reaction 

● 15O(a,g)19Ne much slower than 19Ne(p,g)20Na
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Hot-CNO cycle breakout reactions

15O(a,g)19Ne: first break out reaction 

● 15O(a,g)19Ne much slower than 19Ne(p,g)20Na ● 18Ne(a,p)21Na slower than 14O(a,p)17F 
and 17F(p,g)18Ne

T ≥ 0.8 GK

18Ne(a,p)21Na: break out reaction at 
higher temperature

T ≥ 0.4 GK
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15O(a,g)19Ne: 19Ne and 19F spectroscopy

Useful information:
● 15O + a → 19Ne + g

(1/2-)   (0+)

● Compound nucleus: 19Ne
● ℓa = 0 resonances: J = 1/2-

● ℓa = 1 resonances: J = 3/2+

● Sp = 6.410 MeV; Sa = 3.528 MeV

Gamow window:
● T9 = 0.4 → E0 = 617 keV;   D = 337 keV
● T9 = 1    → E0 = 1137 keV; D = 723 keV
● Center of mass: [450 keV; 1500 keV]
● 19Ne excitation energy: [3.980 MeV; 5.027 MeV]

Mirror nuclei: 19Ne ↔ 19F
● Swapped number of protons and neutrons

Analog states:
● Similar properties (Jp, Gi ...)
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15O(a,g)19Ne: what to measure and how?
Thermonuclear reaction rate Narrow resonance case

●

●

● Close to a-particle threshold (case of Ex = 4.033 MeV state)

→

→ resonance strength proportional to the a-particle width 
(smaller partial width)● Dominant state at Ex = 4.033 MeV 

(ER = 505 keV; Jp = 3/2+; ℓa = 1) 
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15O(a,g)19Ne: what to measure and how?
Thermonuclear reaction rate Narrow resonance case

●

●

● Close to a-particle threshold (case of Ex = 4.033 MeV state)

→

→ resonance strength proportional to the a-particle width 
(smaller partial width)● Dominant state at Ex = 4.033 MeV 

(ER = 505 keV; Jp = 3/2+; ℓa = 1) 

Experimental approaches
● Direct measurement: requires ~ 1010 pps of low-energy 15O RIB [not available]
● Indirect approach:

● Transfer reaction approach: 

● Measurement of a branching ratio Ba

● Measurement of state lifetime t ∝ 1/G

● Measurement of a spectroscopic factor C2Sa
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Doppler-Shift Attenuation Method
DSAM: Doppler-Shift Attenuation Method
→ lifetime of state inferred from the measured decaying g-ray energy distribution

Doppler effect
● Detected g-ray energy (Eg) depends on the speed (v) of the nucleus 

at emission time and on the angle (q) between the observer and the 
emitting nucleus direction

●

DSAM principle
● Population of state of interest through a 

chosen nuclear reaction
● Slowing and stopping of recoil nucleus
● g-ray emission at range of velocities

beam

Target
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Backing
(stopper)

recoil: v(t)

Detector
(HPGe)
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DSAMLifetime of the 
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g-ray line shape is sensitive to the lifetime of nuclear states

Fully shifted
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Partialy shifted
   t ≈ tstopping

Fully stopped
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DSAMLifetime of the 
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Lifetime measurement of the 4033 keV state

Experimental set-up

● 3He(20Ne,a)19Ne* @ 34 MeV [TRIUMF]
● 3He (6x1017 at.cm-2) implanted in 12.5 mm 

Au foil
● 2 HPGe at 0° and 90°
● DE (25 mm) - E (500 mm) silicon detectors 

telescope
→ coincidence a-g measurement

Lifetime of the 
4.033 MeV state

DSAM

R. Kanungo+ (2006)
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Lifetime measurement of the 4033 keV state

Experimental set-up

● 3He(20Ne,a)19Ne* @ 34 MeV [TRIUMF]
● 3He (6x1017 at.cm-2) implanted in 12.5 mm 

Au foil
● 2 HPGe at 0° and 90°
● DE (25 mm) - E (500 mm) silicon detectors 

telescope
→ coincidence a-g measurement

Reaction channel identification

● Wide range of a-particle energy
→ fusion-evaporation 20Ne + 12C 
(contaminant) 

● Hatched area [Ea = 11 – 13 MeV]

→ a-particles corresponding to 
population of 4.033 MeV state

Eg = 4033 keV line shape

●

● Good agreement with existing 
works:
●

●

HPGe @ 0° t =   4 fs
t = 11 fs
t = 19 fs

W. P. Tan+ (2005) 

S. Mythili+ (2008) 

Lifetime of the 
4.033 MeV state

DSAM

R. Kanungo+ (2006)
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How to determine branching ratios

a-particle branching ratio                is the probability for an unbound state to decay through a emission

Experimentally: coincidence measurement
● Detector close to 0° (silicon, spectrometer…)

● Detection of particles allowing the identification of the reaction and states of interest (2-body kinematics)
→ “single” events Nsingles 

● Strong alignment of magnetic substates

● Silicon detector array (stripped) surrounding the target
● Detection of decaying particles

→ “coincident” events Ncoinc

● Angular correlation measurement
→ use to determine the number of decay Ndecays

● Branching ratios

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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→ “single” events Nsingles 

● Strong alignment of magnetic substates

● Silicon detector array (stripped) surrounding the target
● Detection of decaying particles

→ “coincident” events Ncoinc

● Angular correlation measurement
→ use to determine the number of decay Ndecays

● Branching ratios Challenge: low-energy a-particle (< 1 MeV)
● Thin target, thin detector dead layer, low electronic threshold

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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Branching ratio results

Triton energy spectrum (single)

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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Branching ratio results

Triton energy spectrum (single) a-particle energy spectrum (a-t coincidence)

Left:
● Solid 
  (all coincidences)
● Dashed 
(background)

Right:
● Backgound 
subtracted

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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Branching ratio results

Triton energy spectrum (single) a-particle energy spectrum (a-t coincidence)

Left:
● Solid 
  (all coincidences)
● Dashed 
(background)

Right:
● Backgound 
subtracted

a-t angular correlation

● Ba (4.033 MeV) = 2.9 ± 2.1 x 10-4

● Compatible with previous upper limits
● Very low statistics (6 t-a on 20 background) 

with Ba compatible with 0 at the 2s level

Coincidence
measurement

Branching ratio 
4.033 MeV state

W. P. Tan+ (2007, 2009)
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The 7Li(15O,t)19Ne a-particle transfer reaction Transfer
reaction

a-particle 
partial width

Transfer reactions are a privileged tool to determine partial widths

● a-particle transfer reaction commonly use (7Li,t) reactions [7Li = a + t] 
● Inverse kinematics since 15O is radioactive (T1/2 = 122 s) 

[not possible to produce targets]

● Comparison between experimental and theoretical differential cross-section

● a-particle partial width: 

15O

7Li

a + 15O = 19Ne

t

Theoretical calculation
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The MUGAST + VAMOS + AGATA set-up

15O @ 4.7 MeV/u
● ~ 2x107 pps
● SPIRAL1 beam
● 15N contaminant < 0.5 %

7LiF target
1.25 mg/cm2

+ natC 20 mg/cm2

7Li(15O,t)19Ne* → g + 19Neg.s.

Transfer
reaction

a-particle 
partial width

J. Sanchez Rojo (2022 PhD)
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15O @ 4.7 MeV/u
● ~ 2x107 pps
● SPIRAL1 beam
● 15N contaminant < 0.5 %

7LiF target
1.25 mg/cm2

+ natC 20 mg/cm2

MUS
T2

MUST2
● DSSSD 300 mm + CsI
● 128+128 strips (10x10 cm2)

AGATA

AGATA @ 18 cm
● 37 crystals
● e(1 MeV) ~ 8% 

w/ add-back

VAMOS
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Particle identification

● VAMOS spectrometer (recoils)
● Good selectivity of recoils: A, Z, Q
● 19Ne well identified
● Crucial for background rejection

● MUGAST (light ejectiles)
● Identification of tritons
● Crucial for angular distribution

● AGATA (g-rays)
● Very good selectivity
● High energy resolution (after Doppler correction)

→ FWHM 10 keV (@ 1 MeV); 40 keV (@ 4 MeV)

(VAMOS)

g-rays (AGATA)

Particle identification Transfer
reaction

a-particle 
partial width

J. Sanchez Rojo (2022 PhD)Light ejectiles (MUGAST)
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19Ne – t – g triple coincidences Transfer
reaction

a-particle 
partial width

● Gate on 19Ne9+

● g-ray multiplicity = 1
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19Ne – t – g triple coincidences Transfer
reaction
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Angular distributions and a spectroscopic factors
Comparison with analog states in 19F

FR-DWBA analysis (FRESCO)
● Optical potentials from mirror reaction: 15N(Li,t)19F

● C2Sa determination: prescription from Becchetti+ (1978)
● L ≥ 2: a-cluster bound by 50 keV
● L < 2: C2Sa extrapolation to actual a-separation energy

● Uncertainty due to optical potential ~ 40% 

19Ne 19F

JP Q=2N+L EX (keV) C2Sa EX (keV) C2Sa
[a]

5/2- 8 1508 0.25 1346 0.20

3/2+ 7 1536 0.15 1554 0.21

3/2- 8 1615 0.23 1459 0.20

9/2+ 7 2794 0.22 2780 0.16

3/2+ 7 4033 0.063 3908 ≤ 0.09

(7/2-) 8 4140 0.16 3999
0.29

(9/2-) 8 4197 0.41 4033

7/2+ 7 4379 4378

4549 4556

(5/2+) 7 4600 4550

● Good agreement with analog states
● Small C2Sa for the Ex(

19Ne) = 4033 keV state

● C2Sa determined for the 2 components of the Ex(
19Ne) 

= 4140 + 4197 keV doublet

[a] F. de Oliveira Santos et al. (1996)

F. de Oliveira Santos et al. (1996)

a-particle 
partial width

Transfer
reaction

P r e l i m i n a r y
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a-particle partial widths in 19Ne

Determination of Ga for 19Ne unbound states

●

● Radius determined when asymptotic behavior 
of a + 15O radial wave function is reached

Comparison with existing data

Present work Tan+ (2009) Fortune+ (2010)

EX 

(keV)
Ga 

(meV)
Ba

(x 10-4)
Ga 

(meV)
Ba

(x 10-4)
t (fs)

Ga 
(meV) t (fs)

4033 11.0
(4.4) 17 (13) 2.9 (2.1) 24 (18) 7.9 (1.5)

4140 1.0
(0.4) 0.3 44 (20)

12 (5)

4197 12.6
(5.2) 8.2   18 (9) 43−9

+12

18−3
+2

13−6
+9

+

● 4033 keV state: Ga = 10.8 ± 4.3 meV
(uncertainty from DWBA only so far)

● 4140 keV + 4197 keV doublet
→ a-particle partial width for each component

compatible with existing results BUT obtained from a 
direct determination of the a-particle width

a-particle 
partial width

Transfer
reaction

P r e l i m i n a r y
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Outline

1.  Generalities

2.  Break out of the hot CNO cycle

a) The 15O(a,g)19Ne reaction

b) The 18Ne(a,p)21Na reaction

3.  The ap-process and the 35K(p,g)36Ca reaction
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18Ne(a,p)21Na: status & future experiment

5.834

7.263

7.925

3/2+

5/2+

7/2+

1/2+

J. He+ EPJA (2008) 

T 9 >
 0

.5

● Activation of 18Ne(a,p)21Na for T > 500 MK 
→ Ex(

22Mg) > 8.5 MeV
→ Ec.m. > 0.5 MeV

● Direct (a,p) measurement extremely 
challenging close to a-particle threshold 
(large barrier)

● Determination of nuclear properties of 
states in compound 22Mg nucleus [Ga from 
analog 22Ne states or assuming         ] 

A
na

st
as

io
u+

 P
R

C
 (2

02
2)

 

● High level density ~ 1 state / 125 keV, but only 3 L = 0 and 4 L = 1 states within 3 MeV

Experimental status

[Giesen+ NPA (1994), Mohr+ PRC (2014)]

[ANASEN, FSU]
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Resonance strength determination
● a-particle transfer reaction (inverse kinematics) 

→ resonant 22Mg states with strong coupling to the alpha channel (Ex, Ga)

● Proton decay measurement → BRp

● 21Na* prompt-decay g-ray → p0 vs p1 decay channels

● High level density ~ 1 state / 125 keV, but only 3 L = 0 and 4 L = 1 states within 3 MeV

Experimental status

[Giesen+ NPA (1994), Mohr+ PRC (2014)]

[ANASEN, FSU]

24 / 34



October 6th - 10th 2024 3rd Rencontre PhyNuBE: Fission and Nuclear Astrophysics

18Ne(a,p)21Na: study with MUGAST + EXOGAM + ZDD

MUGAST + EXOGAM + ZDD @ LISE

● RIB: 18Ne @ 5 MeV/u
● Beam intensity: ~ 106 pps
● Target: 7LiF of ~ 500 mg/cm2

7Li(18Ne,t)22Mg(p)21Na*(g)21Nag.s.

Kinematic line

● Triple coincidence using:
● MUGAST 

● Trapezoids: tritons 
→ EX: 560 keV (FWHM)

● MUST2: proton emission
● ZDD (modified version): 

● 18Ne (5 MeV/u) and 21Na recoil (3.3 MeV/u)
● EXOGAM: prompt g-rays (mainly Eg ~ 332 keV)

Scheduled in next MUGAST 2025 campaign
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Outline

1.  Generalities

2.  Break out of the hot CNO cycle

a) The 15O(a,g)19Ne reaction

b) The 18Ne(a,p)21Na reaction

3.  The ap-process and the 35K(p,g)36Ca reaction
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(a,p) process: (a,p) (p,g) reactions
→ up to A < 60 (radioactive nuclides)
→ impact on energetics and light curve

34Ar waiting point

The ap-process and the 35K(p,g)36Ca reaction

10 most impacting (p,g) reactions 
(close to waiting points)

C
yb

ur
t+

 2
01

6

● Small 34Ar(p,g)35K Q-value [= 80 keV]

→ (p,g) (g,p) equilibrium
● 34Ar(a,p)37K must be faster then 34Ar b-decay (T1/2 = 846 ms)
● Other possibility: 35K(p,g)36Ca
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The 35K(p,g)36Ca reaction
E

X
 [M

eV
]

0+

2+

p: GpEr

g: Gg

4.5

G
am

ow
 w

in
do

w

Sp

36Ca

35K + p

(1+)

(2+)

4.0

3.5

3.0

2.5

0.0

3/2+

Gamow window: X-ray burst temperature ~ 0.5 – 2 GK
● 36Ca excitation energy: 3.0 – 4.5 MeV
● 35K + p resonance energy: 0.4 – 2 MeV

Very limited 36Ca information available (prior to L. Lalanne’s PhD thesis)
● Known first 2+ excitation energy: 3045.0 (2.4) keV
● BUT poorly known resonance energy

→ mass excess DM(36Ca) = -6440 ± 40 keV
(updated value from mass measurement: -6483.6 (56) keV)

● No partial widths, branching ratios…
● Additional excited states in the Gamow window? Expected from 

mirror 36S nuclide

Resonant reaction rate

●                                        with

Surbrook+ (2021) PRC
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37Ca(p,d)36Ca experimental study
CATS: Tracking and identification 

of incoming ions

CRYPTA: LH2 cryo target 

Density: 
9 mg/cm2

Thickness: 
0.5-1.5 mm

 MUST2: Light particle id.

p

d
t

3He

4He
Ca
K
Ar

 ZDD: Outgoing heavy ions id.

Zero Degree 
Detection (ZDD)

Transfer
reaction

Energy: 48 MeV/A
Intensity: few 104 pps 
Purity: 20%

37Ca36K
35Ar

32S
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New 36Ca states and differential cross-sections
Excitation energies Differential cross-sections

s ~ 550 keV

● DM(36Ca) = -6480 (40) keV
● EX(2+) = 3057 (20) keV

→ in agreement with previous works

● 2 new L = 0 excited states identified
● Lower one in the Gamow window
● Spin / parity based on analog states in 36Si 

and shell-model calculations
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Proton branching ratio (Gp/G)
Integral ratio Angular correlation

with

● 2nd order Legendre polynomial
→confirm 2+ spin / parity

●
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The thermonuclear 35K(p,g)36Ca reaction rate

35K + p resonance parameters

● g-ray width (Gg) from sdpf shell-model calculations
● Uncertainty of a factor of 1.7 based on other shell-

model calculations and mirror state property

Reaction rates: RatesMC code

Resonance strength

● First 2+ state dominate 
the reaction rate

● Higher resonant states 
contribute for T > 2 GK

● In agreement with 
compilation work from 
Iliadis+ (2010)

Iliadis+ (2010) NPA

Longland+ (2010) NPA

35K(p,g)36Ca sufficiently well constrained 
→ no impact on X-ray burst light-curve
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Summary

● Type I X-ray bursts are fascinating objects
● a few tens of (a,p) + (p,g) reactions to study

→ relatively far from the valley of stability → mostly radioactive beams

● Several complementary experimental approaches needed for a single reaction

● Indirect methods are a unique tool to determine spectroscopic properties of nuclei of interest 
(spin/parity, partial width, branching ratios…)

● Few key reactions
● 15O(a,g)19Ne: very challenging measurement, complementary strength determination welcomed!
● 18Ne(a,p)21Na: low-energy cross-section still missing

→ future experiment scheduled soon + other ideas (see C. Fougères’ talk)
● 35K(p,g)36Ca now well constrained 
● Other (a,p) & (p,g) key reactions: 59Cu(p,g)60Zn... 
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Suggested reading

● Nuclear astrophysics
● Nuclear Physics of Stars, C. Iliadis (2015)

● Classical novae and type I X-ray bursts
● Stellar Explosions: Hydrodynamics and Nucleosynthesis, J. José (2016)

● Nuclear reaction theory
● Direct Nuclear Reactions, G. R. Satchler (1983)

● Transfer reactions
● Direct Nuclear Reaction Theories, N. Austern (1970)
● Transfer reactions as a Tool in Nuclear Astrophysics, F. Hammache and N. de Séréville 

(2021)

● Angular correlations
● Gamma-ray angular correlations from aligned nuclei produced by nuclear reactions, 

A. E. Litherland and J. Ferguson (1961)
● Angular correlations of sequential particle decay for aligned nuclei, J. G. Pronko and 

R. A. Lindgren (1972)
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