

Study of Pygmy Dipole Resonances and their <u>potential</u> role in nuclear astrophysics

Iolanda Matea Macovei (IJCLab)

3rd PhyNuBE, Ile d'Oléron

SV

Collective vibrational excitations in nuclei

 $\Delta T, \Delta S, \Delta L$

6-11 October 2024

 $\Delta L = 1$

Dipole Strength in Nucleus

This strength distribution is related to the average probability of γ -ray <u>absorption</u> or <u>emission</u> as a function of γ -ray energy : γ SF

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

Dipole Strength in Nucleus

3rd PhyNuBE, Ile d'Oléron

Dipole Strength in Nucleus

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

Why studying PDR ?

PDR : macroscopic picture

→ linear displacement of core/neutron excess density distributions

- → density distributions : Wood-Saxon
- \rightarrow restoring force : np interaction

$$B(EA)_{PDR} = \frac{(N-N_c) Z \cdot E_{GDR}}{(2+N_c)N E_{PDR}} \cdot B(EI)_{GDR}$$

$$E_{PDR}^{*} = \left[\frac{2}{3(2+N_c)}\right]^{\frac{1}{2}} f(a_n, a_p, R_n, R_p) \cdot E_{GDR}$$

P. van Isacker et al, PRC45 (1992)

6-11 October 2024

PDR : macroscopic picture

- \rightarrow elasto-dynamic excitation of the electric PDR
- → elastic layer oscillation against elastic continuous core

S.I. Bastrokov et al, PLB664 (2008)

PDR : microscopic picture

E. Lanza et al, PPNP129 (2023)

3rd PhyNuBE, Ile d'Oléron

PDR : microscopic picture

E. Lanza et al, PPNP129 (2023)

ISGDR

8

10

6

r (fm)

Definition of PDR: 68-Ni (a) \rightarrow proton/neutron transition densities are isovector dB(E1)1/dE (e² fm² MeV 20 **IVGDR** in phase inside the nucleus \rightarrow only the neutron transition densities have non-zero contribution at the surface 10 PDR \rightarrow as such, PDR has a strong mixing of isoscalar and isovector excitation modes C e² fm⁶ MeV⁻¹) r²× -0.2 (b) PDR **IVGDR** -0.3 -10 0.2 dB(E1)//dE (10² e) x δρ (fm⁻¹) 0. ISGDR isoscalar -20 -0 -0.2 ∾, 10 20 30 40 0 E(MeV) -0.3

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

2

6

r (fm)

8

2

6

r (fm)

8

2

(a), (b) (e) photon scattering hadronic scattering (γ, γ') or $(\vec{\gamma}, \gamma')$ or $(\vec{\gamma}, \gamma' \gamma'')$ or det.(h, h') or $(h, h' \gamma)$ det. ion hadronic interaction (c) Coulomb excitation (f), (g) of target, e.g., via (p,p') Oslo method, particle transfer $(d, p\gamma), (^{3}He, \alpha\gamma), \dots$ det. ion Selected remarks and examples det. virtual follow ... d photons M det. (d) Coulomb excitation fragment det. (h) of (radioactive) beam β decay det. mother nucleus det. neutron virtual B photons a daughter 11/31

Measuring PDR

A. Zilges and D. Savran, Handbook of Nuclear Physics, Springer, 2022

Real photon scattering

- L=1 excitations dominant
- photon : EM interaction, under control
 - NRF (nuclear resonance fluorescence) with bremsstrahlung γ
 - tagged photon NRF : lower bandwidth
 - laser Compton back-scattered γ beam (LCB)
 - small bandwidth + polarized
- in-volume interaction
- iso-vector probe
- measure the strength up to S_n
- limited to stable nuclei
- detection usually HPGe with W(θ , ϕ) measure => clear measurement L and π (polarized) of γ -radiation

J. Isaak et al, PRC103 (2021)

6-11 October 2024

One remark about (γ, γ') experiments :

PDR is well above S_n in exotic n-rich nuclei => γ -decay is to slow ...

3rd PhyNuBE, Ile d'Oléron

Virtual photon scattering

– mixed L=1,2,3... excitations

– (polarized) proton at ~300-400MeV scattered at extreme forward angles

- detection of the scattered proton = measure the strength below and above S_n
- L=1 excitations favored, but not only ... MDA needed.
- $-\pi$ measurements (polarized proton beam)
- in-volume interaction
- iso-vector probe
- limited to stable nuclei

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

Virtual photon scattering

- radioactive nuclei
- inverse kinematics => less resolved γ spectra
- lower statistics
- relativistic beam energies => L=1 dominates
 can measure also above S_n (if neutrons are detected)

GQR (is)

GDR

σ (mb)

10

Different isospin response

- e.g., α or 12-C \rightarrow iso-scalar response
- non selective population of states; to pin down the E1 character \rightarrow (h,h' γ) function of the energy of the probe:
 - 30MeV neutrons : iso-vector
 - ~1GeV neutrons : iso-scalar
- surface interaction (ignoring the charge)
- most relevant studies were done below S_n
- direct or inverse kinematics => stable and radioactive nuclei

Mainly for the PDR structure studies (see Perine's poster)

3rd PhyNuBE, Ile d'Oléron

Exemple of NRF vs β -decay measurements : controlled interpretation available only on few stable nuclei

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

- (h) β decav mother nucleus daughte
- access to very exotic nuclei, <u>but a very partial picture</u>

- selective population of states around S_n

- but (very) low statistics

- beta decay of ⁸²Ga (L. Al Ayoubi, PhD Univ. Paris Saclay, 2023) - beta decay of ⁸⁰Ga (R. Li, PhD Univ. Paris Saclay, 2022)

K.R. Mashtakov et al, PLB820 (2021)

PDR for Nuclear Astrophysics

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

- under certain conditions (T, N_n, time), PDR (few % of TRK) is able to produce the A~130 peak in relative abundances where Lorentz-shaped GDR can't

- microscopic models (HFB+QRPA) for E1 distribution in nuclei predict an even more pronounced modification in the (n,y) x-sections for very exotic nuclei

- closer to stability, low energy E1 strength can also influence locally the abundance of i-process nuclei (M. Markova et al, PRC109 2024)

Oléron

uer certain conditions (T, N_n, time), PDR (few % of TRK) is able to produce the A~130 peak in relative abundances where Lorentz-shaped GDR

microscopic models (HFB+QRPA) for E1 distribution in nuclei predict an even more pronounced modification in the (n,y) x-sections for very exotic nuclei

- closer to stability, low energy E1 strength can also influence locally the abundance of i-process nuclei (M. Markova et al, PRC109 2024)

Oléron

3rd PhyNuBE, Ile d'Oléron

6-11 October 2024

Connection to EoS and NS

Astrophysical systems (like NS) require the knowledge of EoS of asymmetric matter, related to the <u>isovector</u> parameters of the symmetry energy : J and L

The natural choice for finding physical quantities that could be sensitive to the symmetry energy is to look at the iso-vector elementary nuclear excitations

GDR and *iso-vector part of the PDR*

3rd PhyNuBE, Ile d'Oléron

Connection to EoS and NS Neutron skin (R_{np}) and L

PDR is related with neutron skin !

3rd PhyNuBE, Ile d'Oléron

6-11 October 2024

Connection to EoS and NS Neutron skin (R_{np}) and L

X. Roca-Maza et al, PRL106 (2011)

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

Connection to EoS and NS PDR EWSR and L

A. Carbone et al, PRC81 (2010)

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

Connection to EoS and NS Dipole Polarizability and (L,J)

Connection to EoS and NS

Dipole Polarizability and (L,J)

Connection to EoS and NS Dipole Polarizability and (L,J)

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

Connection to EoS and NS

(one exemple among many ...)

6-11 October 2024

3rd PhyNuBE, Ile d'Oléron

PHYSICAL REVIEW C 81, 051303(R) (2010)

Information content of a new observable: The case of the nuclear neutron skin

P.-G. Reinhard¹ and W. Nazarewicz^{2,3,4,5}

6-11 October 2024

 208 Pb study case : EWSR of PDR \rightarrow not strongly correlated with Δr_{np} ! Polarizability \rightarrow strong correlation with Δr_{np} (even better, α_D^*J)

But there are indications that these correlations are model dependent (cf X. Roca-Maza studies)

Not the end of the story ...

3rd PhyNuBE, Ile d'Oléron

Connection to EoS and NS

Maybe not that clear ...