Sarah NAIMI (IJCLab/Paris-Saclay University) 3rd Rencontre PhyNuBe 6-11 Oct. 2024

Mass Measurements for Nuclear Astrophysics

$M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$

$M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$

$M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$

$M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - **Binding Energy**

Source of Energy in the Universe

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson

Astronomical Image Credits: ESA/NASA/AASNova

Other topics

rp-process (Type I X-ray Bursts)

Kelvin

Age of Sun: 20 million years

Age of the Earth crisis 1800s

Darwin

Age of Earth: few 100s million years Following geologist's estimation

Kelvin

Age of Sun: 20 million years

Radio France Inter Darwin et le problème de l'age de la Terre

Age of the Earth crisis 1800s

Darwin

Age of Earth: few 100s million years Following geologist's estimation

First Mass Spectrograph

$M_H = 1.008 \text{ u}$

Discovery Atomic Mass defect

F.W. Aston

Discovering about 200 isotopes

First Mass Spectrograph

 $M_H = 1.008 \text{ u}$

Discovery Atomic Mass defect

F.W. Aston

Discovering about 200 isotopes

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

First Mass Spectrograph

 $M_H = 1.008 \text{ u}$

Discovery Atomic Mass defect

F.W. Aston

Discovering about 200 isotopes

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

Solving the age of the Earth crisis

Eddington

Energy $Mc^2 = 0.007 \cdot 0.1 \cdot M_{sun} \cdot c^2$ *Lifetime* = Luminosity L_{sun}

 $[L_{sun}] = E/t$

Solving the age of the Earth crisis

Eddington

Energy $Mc^2 = 0.007 \cdot (0.1) \cdot M_{sun} \cdot c^2$ *Lifetime* = Luminosity L_{sun}

 $[L_{sun}] = E/t$

10% of the Sun undergo fusion

Solving the age of the Earth crisis

Eddington

Energy *Lifetime* = Luminosity L_{sun}

 $[L_{sun}] = E/t$

10% 0.7%

10% of the Sun undergo fusion

0.7% atomic mass difference between 4xH and 4He

Nier's mass spectrometer

Transition from Spectrograph to Spectrometer

Large impact in many areas:

- Geochronology
 - ⁴⁰K discovery—> K-Ar Geochronology
 - Age of the earth from U,Th-Pb technique
- Stable isotope geochemistry
- Extra-terrestrial materials (Mars & Venus Atmosphere)

For NASA

- Nuclear physics (U isotopic separation—> fission 1st controlled nuclear chain reaction)

F.W. Aston <u>Mass defect</u> $M_H = 1.008$ u

1933-1934

1948

F.W. Aston <u>Mass defect</u> $M_H = 1.008$ u

1919

1933-1934

1948

W. Elsasser

Discovery of <u>magic numbers</u> Z=2,8,20,28,50 N=126,82

Nuclear Structure from Atomic Masses

The Origin of the Solar System Elements

Graphic created by Jennifer Johnson

Astronomical Image Credits: ESA/NASA/AASNova

GRAVITATIONAL WAVES DISCOVERY

Neutron star mergers!

The light was also observed

This is very exciting for our field!!!

LIGO observatory is USA

Chemical element synthesis: r-process

Chemical element synthesis: r-process

Why measure masses?

Mass Measurement Market

Low Energy

Penning, MR-TOF-MS

100ms~1s

1~10 ms

High Energy

Storage Rings

Isochronous

1~10 s

Low energy vs. High energy

High precision

Fast measurement time

Long measurement time

The Atomic Mass Evaluation (AME)

Mass measurement: X absolute mass < connection between masses Basic properties of the atomic mass: constant & additive

All data available for 135Ba

68De17	162731	48	C8 N O H9- <mark>135Ba</mark>
68De17	117822	77	C11 H3-135Ba
68De17	154160	46	C12 H7- <mark>135Ba</mark> O
20De20	288.43	0.32	135Cs- <mark>135Ba</mark>
66Be10 -	203860	20	135Ba-C10 H14
66Be10	1177	2	135Ba-134Ba
68De17	1161	70	135Ba-134Ba
68De17	1168	78	135Ba-134Ba
77Ko.A	6973.2	0.4	134Ba(n,g) <mark>135Ba</mark>
90Is07,Z	6972.17	0.18	134Ba(n,g) <mark>135Ba</mark>
93Bo01,Z	6971.84	0.17	134Ba(n,g) <mark>135Ba</mark>
93Ch21	6973.24	0.22	134Ba(n,g) <mark>135Ba</mark>
06Fi.A	6971.87	0.18	134Ba(n,g) <mark>135Ba</mark>
70Vo04	4746	15	134Ba(d,p) <mark>135Ba</mark>
53Li01	205	5	135Cs(B-) <mark>135Ba</mark>
71Ba18,*	1200	10	135La(B+) <mark>135Ba</mark>
66Be10	-1115	3	136Ba- <mark>135Ba</mark>
68De17	-1119	50	136Ba- <mark>135Ba</mark>
68De17	-1074	50	136Ba- <mark>135Ba</mark>
69Ge07	9106.4	0.8	135Ba(n,g)136Ba
90Is07,Z	9107.74	0.04	135Ba(n,g)136Ba
06Fi.A	9107.73	0.19	135Ba(n,g)136Ba
70Vo04	6886	15	135Ba(d,p)136Ba
10Mc04	3089.1	0.6	137Ba 35Cl- <mark>135Ba</mark> 37Cl
66Be10	143	3	137Ba- <mark>135Ba</mark>
68De17	69	63	137Ba- <mark>135Ba</mark>
68De17	106	46	137Ba-135Ba

All data available for 134Ba

66Be10	205025	20	C10 H14-134Ba	68De17	126737	56	C11 H4- <mark>136Ba</mark>
68De17	205010	46	C10 H14-134Ba	68De17	171635	56	C8 N O H10-136Ba
68De17	111125	48	C11 H2-134Ba	136Ba+0	-92344	75	136La-u
68De17	156063	78	C8 N O H8-134Ba	10Mc04	2639.6	0.6	136Xe-136Ba
68De17	147531	64	C12 H6- <mark>134Ba</mark> O	11Ko03	2638.62	0.52	136Xe-136Ba
134Ba+0	-91442	54	134La-u	11Ko03	2553.46	0.29	136Ce-136Ba
134Ba+0	-91528	32	134La-u	12Ne10	2553.42	0.37	136Ce-136Ba
66Be10	-197229	20	134Ba-C10 H13	66Be10	-1115	3	136Ba-135Ba
66Be10	-553	4	134Ba-132Ba	68De17	-1119	50	136Ba-135Ba
68De17	-550	121	134Ba-132Ba	68De17	-1074	50	136Ba-135Ba
68Hs01,* 65Bi12 73Al20 66Be10 68De17 68De17 77Ko A	2058.6 3772 3692 1177 1161 1168 6973 2	0.4 50 30 2 70 78 0 4	134Cs(B-)134Ba 134La(B+)134Ba 134La(B+)134Ba 135Ba-134Ba 135Ba-134Ba 135Ba-134Ba 135Ba-134Ba	66Be10 68De17 68De17 69Ge07 90Is07,Z 06Fi.A 70Vo04	67 69 72 9106.4 9107.74 9107.73 6886	128 78 0.8 0.04 0.19 15	136Ba-134Ba 136Ba-134Ba 136Ba-134Ba 135Ba(n,g)136Ba 135Ba(n,g)136Ba 135Ba(n,g)136Ba 135Ba(d,p)136Ba
90Is07,Z 93Bo01,Z 93Ch21 06Fi.A 70Vo04 66Be10 68De17	6972.17 6971.84 6973.24 6971.87 4746 67 69 72	0.18 0.17 0.22 0.18 15 5 128 79	134Ba(n,g)135Ba 134Ba(n,g)135Ba 134Ba(n,g)135Ba 134Ba(n,g)135Ba 134Ba(n,g)135Ba 134Ba(d,p)135Ba 136Ba-134Ba 136Ba-134Ba	65Re07,* 59Gi50 66Be10 68De17 68De17 69Gr31 90Is07,Z 95Bo03,Z	2548.1 2549 2870 1249 1222 1227 6891 6905.54 6905.70	5 70 3 50 44 5 0.10 0.12	136Cs(B-)136Ba 136Cs(B-)136Ba 136La(B+)136Ba 137Ba-136Ba 137Ba-136Ba 137Ba-136Ba 136Ba(n,g)137Ba 136Ba(n,g)137Ba 136Ba(n,g)137Ba
08D611	12	78	1306a- <mark>1346a</mark>	06Fi.A 60Ge01 70Vo04 10Mc04 66Be10 68De17 68De17	6905.74 -6949 4680 3621.1 676 658 628	0.16 38 15 0.6 3 98 43	136Ba(n,g)137Ba 137Ba(g,n)136Ba 136Ba(d,p)137Ba 138Ba 35Cl-136Ba 37Cl 138Ba-136Ba 138Ba-136Ba 138Ba-136Ba

All data available for 136B

Experimental data —> linear equations

$$\sum_{\mu=1}^{M} k_i^{\mu} m_{\mu} = q_i \pm dq_i$$
$$m_{\rm A} + m_{\rm a} - m_{\rm b} - m_{\rm B} = q_i \pm dq_i$$

Example 1, linear system of equations: $x_1 = 10 \pm 0.5$, $x_1 - x_2 = 5 \pm 1$, $x_1 + x_2 = 13 \pm 0.5$, $x_3 - x_1 = 4 \pm 1;$ **Overdetermined systems**

The AME least-square method

2x + y = 7,No solution x + 3y = 6,3x - y = 3.minimizing $\begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + y \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 6 \\ 3 \end{bmatrix}$ $A\boldsymbol{x} = x\boldsymbol{a}_1 + y\boldsymbol{a}_2 = \boldsymbol{b}.$ $A\hat{x}$ \boldsymbol{a}_2

No combination of $a_1 \& a_2$ can give b

How do experimental uncertainties affect the mass determination?

But the best solution could be found by

 $\|A\hat{\boldsymbol{x}} - \boldsymbol{b}\|^2$

Which is the sum of squares of deviations

Example 1, linear system of equations: $x_1 = 10 \pm 0.5$,

 $x_1 - x_2 = 5 \pm 1,$ $x_1 + x_2 = 13 \pm 0.5,$ $x_3 - x_1 = 4 \pm 1;$

Nuclear Instruments and Methods in Physics Research A249 (1986) 443-450 North-Holland, Amsterdam

A METHOD OF DETERMINING THE RELATIVE IMPORTANCE OF PARTICULAR DATA ON SELECTED PARAMETERS IN THE LEAST-SQUARES ANALYSIS OF EXPERIMENTAL DATA

Georges AUDI *

Laboratoire René Bernas du CSNSM, Bat, 108, 91406 Orsay, France

Walter G. DAVIES and Graham E. LEE-WHITING

Atomic Energy of Canada Limited Research Company, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada KOJ IJO

Received 17 March 1986

In the framework of least-squares analysis of experimental data, a "flow-of-information" matrix is defined. This matrix displays the flow of information within the least-squares adjustment. Its elements, called "influences", show the relative importance of each datum in the determination of each of the adjusted parameters. The "significance", or quantity of information brought by each datum is defined. Illustrative examples are given.

The AME least-square method

1955: A.H. Wapstra established least-squares method to solve the overdetermination problem **1986:** G. Audi discovered the flow of information matrix

2006: A.H. Wapstra passed away

2008: G. Audi established the AME collaboration with China Tables: AME1955, AME1961, AME1964, AME1971, AME1977, AME1983, AME1993, AME2003, AME2012, AME2016, AME2020

A.H. Wapstra

Memorandum signing in China

Collaboration meeting in Orsay Sep. 2023

^{(9) s} 2020 β+=100%	s . β+=:	3.14(2) m 100%	4.25(15) m β+=100%	2.75(5) h β+=100%	293(1) m β+=100%	19.258(26) h β+=100%	4.28(7) d β+=100%	4.21(EC=100%.
90 Nb		Z=41 II=49				Isome	er: 6	
Mass excess (keV)) Half life	Excitation	Energy (keV)	Decay Modes	Spin and			
-82662(3)	14.60(5) h			β+=100%	8+*	more	····	
-82540(3)	63(2) us	122.3	370(22)	IT=100%	6+	more	····	
-82537(3)	18.81(6) s	124.	67(25)	IT=100%	4-*	more	2	
-82491(3)	<1 us	171.	10(10)	IT=100%	7+	more	2	
-82280(3)	6.19(8) ms	382.	01(25)	IT=100[gs=0,m=1	1+	more	2	
-80782(3)	471(6) ns	1880	.21(20)	IT=100%	(11-) more	2	

YMP	<u> </u>	β+=100%	β+=100%	β+=100%	β+=100%	² ? ΙΜΡ βτ =106%	^{2) s} 49.2(4 2 .2020 β+=100%	s . β+=1	3.14(2) m 00% βι	4.25(15) m -=100%	2.75(5) h β+=100%	293(1) m β+=100%	19.258(26) h β+=100%	4.28(7) d β+=100%	4.21(EC=100%.
5	88 ⁰⁺ 42 MO ₄₆	89 ^(9/2+) 42 MO 47	90 ⁰⁺ MO 42 48	91 ^{9/2+} MO 42 49 Mt 82200(6)	92 ⁰⁺ MO 42 50 84.8	.8	90 Nb		Z=41 II=49				Isome	r: 6	
	8.0(2) m β+=100%	2.11(10) m β+=100%	5.56(9) h β+=100%	15.49(1) m β+=100%	stbl IS=14.649(106)%	e State	Mass excess (keV) Half life	Excitation E	nergy (keV)	Decay Modes	Spin and	Parity		
	87 ^{(1/2)-}	88 (8+)	89 ^(9/2+)	90 ^{8+*}	91 ^{9/2+*}	gs	-82662(3)	14.60(5) h			β+=100%	8+*	more		
5	41 46 M:-73874(7)	41 47 M:-76170(60)	41 48 M:-80626(24)	41 49 M:-82662(3)	41 50 M:-86638 0(29) (7	m	-82540(3)	63(2) us	122.370)(22)	IT=100%	6+	more		
ſ	GOND	Z = 4	1 n = 49	Mi. 02002(3)	Yea	r of discl	overv:1951		Х	5)	IT=100%	4-*	more		
	 Counos									0)	IT=100%	7+	more	I	
	50U1~GG-		68.71 90N	b(B+)90Zr	Example: In 31.29 90Mo(B+	nfluence % ⊦)90Nb	+ Data sour	ces		5)	IT=100[gs=0,m=1	00]% 1+	more		
										20)	IT=100%	(11-) more]	
1	Decay Mode	; :		β+=10	0%							20	90	01 524	
Is	omer Mass exc	ess(keV) Half Li	fe Excitation	on energy(keV)	Particle sep	naration	energy	poss impos	sible sible sible						
	-8254	.0(3) 63(2) L	s 122.370	(22)	S(n)=10107(24)		S(2n)=	22630(60)					_	
	n -8253	37(3) 18.81(6)s 124.67(2	25)	S(p)=5073(4)		S(2p)=	12940(4)						_	
	p -8249	1(3) <1 us	171.10(10)	Q(α)=-5803(15)		Q(2β-)	=-11937(3	3)						
	q -8228	6.19(8)	ms 382.01(25)	Q(β-)=-2489(3)		Q(2β+)	=3835(3)							
	r -8078	2(3) 471(6)	ns 1880.21	(20)	Q(β+)=6111(3)										
					Q(Ep)=-2239(3)							Clobal 24°C Ciel couvert <u>^</u>			
				1	Q(β-,n)=-15718(5	5)							13/03/202		

r-process: which masses to measure?

These masses have the largest impact on abundance peak as concluded in sensitivity studies.

The masses of neutron-rich nuclei with the largest impact

S. Nikas et al., NPA-IX 1668, 012029 (2020).

The path of r-process in the region of N=50 including the isotopes of interest at N=55, N=56 (sub-shell closure) and N=57. Isotopes of interest: Ga, Ge, As

- These isotopes have a direct influence on the production of Sr, Y, Zr.
- Ansses of very neutron-rich Ge will help to understand additional fine features of the abundance pattern, for instance, the production of Sr in neutron star mergers.

Mass measurements at RIBF/Riken

Measurement based on time-offlight at low energy (MRTOF) and high energy (Ring) Advantages: SCRIT MRTOF: higher precision <10⁻⁷ MRTOF SAMURAI Ring: faster measurement <1ms Rare RI Ring ZeroDegree SLOWRI SHARAQ **BigRIPS**

Production of n-rich nuclei at Riken/Japan

Courtesy of M. Rosenbusch

The MR-TOF-MS principle

Mass measurements around A=90

^{83,84}Ga, ⁸²⁻⁸⁶Ge, ⁸²⁻⁸⁹As, ^{82,84-91}Se, ^{85,86,89-92}Br, ^{89,91,92}Kr, and ⁹¹Rb Some mass uncertainties improved from hundreds keV to <10keV Reaction rates for all these nuclei were calculate then used to estimate the final r-process abundances

Astrophysical conditions 0.3 < Ye < 0.42 and entropy S = 10 kb/baryon up to 20% difference in abundances compared to AME2020 Moderately n-rich

Neutron star: very compact object $1 M_{\odot}$ in about 10km

Neutron star: very compact object $1 M_{\odot}$ in about 10km

The outer crust contains neutron-rich isotopes

Neutron star: very compact object $1 M_{\odot}$ in about 10km

Neutron star: very compact object $1 M_{\odot}$ in about 10km

Neutron-rich isotopes properties?

Impact on neutron star crust

radius

R.N. Wolf et al., PRL110, 041101 (2013)

Neutron star crust composition:

General relativity equations for hydrostatic equilibrium (TOV equations) Relate pressure, mass-energy density with the neutron star mass and

-	-	-
1	С	_
į	٥	ט
1	5	_
1		_
1	٥	2
Ē	I	Ī
_		_

Impact on neutron star crust

-	-	-
1	С	_
į	٥	ט
1	5	_
1		_
1	٥	2
Ē	I	Ī
_		_

Impact on neutron star crust

-	-	-
1	С	_
į	٥	ט
1	5	_
1		_
1	٥	2
Ē	I	Ī
_		_

Mass spectrometry and Astromers

Astromer: a nuclear isomer that retains its metastable character in an astrophysical environment Misch et al., ApJS 252 2 (2021) In the hot thermal bath of the stellar environment, the

isomeric state is excited to higher intermediate states which in turn populate the ground state after de-excitation.

Not Astromer: Ground state = isomeric state Ground state \neq isomeric state Astromer:

ATLAS ARGONNE TANDEM LINAC ACCELERATOR SYSTEM

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ATLAS ARGONNE TANDEM LINAC ACCELERATOR SYSTEM

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Excitation energy measurement of ¹²⁸Sb

during r-process ¹²⁸Sb is populated in 10min (1keV) **Conclusion:** ^{128m}Sb is an astromer and accelerant ($t_{1/2}$ 10min vs. gs 9h) Calculated transition rates m->gs through 6- state vs thermalization temperature

rp-process in Type I X-ray Bursts

Mass measurements with storage ring

Modified ash composition

Possibly warmer accreted

GS 1826–24 event would be further and less compact

Fission study from isomeric ratios

Andreyev et al., Rep. Prog. Phys. 81 (2018) **Open question in fission: What is the origin of angular momentum?**

Fission study from isomeric ratios

Rakopoulos et al., PRC98(2018) Isomeric ratios of fission fragments of proton induced fission on U and ²³²Th @IGISOL —> dependence on fission system —> sensitive to nuclear structure effects

Fission study from isomeric ratios

Rakopoulos et al., PRC98(2018) Isomeric ratios of fission fragments of proton induced fission on U and ²³²Th @IGISOL —> dependence on fission system —> sensitive to nuclear structure effects

Other possible fission systems: In-flight fission —> MRTOF & R3 @RIBF Photofission —> MLLTrap/? @ALTO n-induced fission —> ? @NFS/GANIL

First study at IGISOL/JYFLTRAP

Rakopoulos et al., PRC66(2019)

Most yields are not reproduced by theoretical models

—> Need more data, which will lead to better theoretical description
First study at IGISOL/JYFLTRAP

Rakopoulos et al., PRC66(2019)

Most yields are not reproduced by theoretical models

—> Need more data, which will lead to better theoretical description

Strong correlation of In isotopes' angular momentum with electric quadrupole moment

—> fission fragments of In retain part of their deformation during their relaxation after scission. Coulomb force might contribute to the primary fission fragments momentum in In isotopes.

Nier's mass spectrometer

Transition from Spectrograph to Spectrometer

Solving the age of the Sun crisis

Nier's mass spectrometer

meter

Takeaway

Atomic Mass

, proton

neutron

electron

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - **Binding Energy**

Takeaway

Atomic Mass

, proton

neutron

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

Takeaway

Atomic Mass

proton

– neutror

electron

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

to reveal its composition ندی کم 10^{-4_'} AME 2020 error AME 2020 This work 10-AME2020 - 011 - 01 -8.0 ⁷ ¹ ² 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} t (days) SS17a This work 10-AME2020 Cental Value 10^{-2} AME2020 Uncertainty August 21, 2017 ust 17, 2017 Solar r-process (S. Goriely) oe & Magellan Teles 84 87 90 93 96 99 B. osmic ray fission 👘 🛁 21,2017· 1.5 -This wor 101 E200 101 E2 ars 🔯 🛛 lan Telescopes ng low mass stars 🛛 🕥 oloding white dwarfs 🙋 78 81 84 87 90 93 96 99 Mass number A 00m 57 58 59 60 61 62 63 64 65 66 67 68 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er ⁻

Takeaway

Atomic Mass

proton neutror electron

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

We can "drill" into the neutron star

to reveal its composition . 10⁻⁴.' ∽ AME 2020 error AME 2020 This work 10-_ວ 1.2 AME202 $-8.0 \frac{X}{V}$ 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} t (days) SS17a This work 10^{-1} ··· AME2020 Cental Value 10^{-2} AME2020 Uncertainty August 21, 2017 August 17, 2017 Solar r-process (S. Goriely) pe & Magellan Teles 84 87 90 93 96 99 81 78 B. ion 💮 osmic ray fission 👘 🛁 21,2017· 1.5 - $\stackrel{\text{TO}}{\underset{\text{IL}}{\text{I}}} \xrightarrow{\text{I}} 0.5 \xrightarrow{\text{I}} 78 \\ \text{Mass number } A \xrightarrow{\text{I}} 78 \\ \text{I} 78 \\$'s 🧕 lan Telescopes ow mass stars 🛛 🕥 rfs 👩 59 60 61 62 63 64 65 66 67 68 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er

Takeaway

Atomic Mass

proton neutror

electron

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

We can "drill" into the neutron star

to reveal its composition , ¹⁰⁻⁴ AME 2020 error — AME 2020 — This work 10-_ວ 1.2 AME202 -8.0 ^Z ^Z 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} t (days) SS17a This work 10-··· AME2020 Cental Value 10^{-2} AME2020 Uncertainty igust 17, 2017 August 21, 2017 Solar r-process (S. Goriely) oe & Magellan Teles 84 87 90 93 96 99 81 B. ion 💮 osmic ray fission 👘 🛁 21,2017· 1.5 -This woi 's 🞑 lan Telescopes ow mass stars 🛛 🕥 rfs 👩 78 81 84 87 90 93 96 99 Mass number A 59 60 61 62 63 64 65 66 67 68 Pr Nd Pm Sm Eu Gd Tb Dy Ho Er

Takeaway

Atomic Mass

proton

electron

 $M(^{4}He) = 2 \cdot m_{p} + 2 \cdot m_{n} + 2 \cdot m_{e}$ - Binding Energy

We can "drill" into the neutron star

4

T [keV]

6

10

2

	1 1
ed	
AME'20	
75 80 85	
ber	
50 20	J