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Mass Measurements for Nuclear Astrophysics
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Source of Energy in the Universe

Fusion

Fission





Other topics
Neutron stars structure rp-process  (Type I X-ray Bursts)

Fission
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Kelvin Darwin

Radio France Inter
Darwin et le problème de l’age de la Terre
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Energy

Luminosity
=

Mc2

Lsun
=

0.007 ⋅ 0.1 ⋅ Msun ⋅ c2

Lsun
≈

Eddington

10 Billion years

10% of the Sun undergo fusion

The Sun

0.7% atomic mass difference between 4xH and 4He
[Lsun] = E/t



Nier’s mass spectrometer 
Transition from Spectrograph to Spectrometer

For NASA 

A. O. Nier 1951, Phys. Rev 81, 507 

Large impact in many areas:
- Geochronology 

- 40K discovery—> K-Ar Geochronology
- Age of the earth from U,Th-Pb technique

- Stable isotope geochemistry
- Nuclear physics (U isotopic separation—> fission 1st controlled nuclear chain reaction)
- Extra-terrestrial materials (Mars & Venus Atmosphere)
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Atomic Masses & Nuclear Physics Discoveries 

1919

F.W. Aston
Mass defect
MH = 1.008 u

1933-1934

Discovery of 
magic numbers
Z=2,8,20,28,50

N=126,82

W. Elsasser

1948

Nuclear Shell Model

Goeppert-Mayer

1951

Nier’s 
spectrometry Nuclear deformation at N=90  

1954 1974

Disappearance of 
magic number N=20



Nuclear Structure from Atomic Masses
S2n(Z, N) = B(Z, N) − B(Z, N − 2)Two neutron separation energy





GRAVITATIONAL WAVES DISCOVERY �

Neutron star mergers!� LIGO observatory is USA�

The light was also observed 
 
This is very exciting for our field!!!�
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Mass Measurement Market
The Mass Market�

Storage Rings Penning, MR-TOF-MS 

Precision <10-8 Precision 10-7 

< 1ms 

5 6/2/17  ARIS2017 Sarah Naimi  

100ms~1s� 1~10 ms�

Precision 10-7 Precision 10-6 

 1~10 s 

Courtesy of I. Murray 

Low Energy High Energy

Isochronous



Low energy vs. High energy

Fast measurement time

Long measurement time

Low precision

High precision



The Atomic Mass Evaluation (AME)
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The AME least-square method
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r-process: which masses to measure?





Mass measurements at RIBF/Riken 



Production of n-rich nuclei at Riken/Japan



Energy Degrader

RFGC
length: 50 cm

helium: 220 mbar*
temperature: ~180 K

Outer Chamber
Cryo-Head

Quadrupole RF Ion Guides

Flat Type RF Ion Trap

Fast RI Beam

RF
Carpets

Slow RI Ion Beam

Electrostatic Mirror Electrodes
length: ~80 cm

reflection: ~600 laps

MRTOF TOF Detector

Plastic Scintillator 

~ 10000 cps

* room temperature equivalent pressure

ZD-MRTOF Setup

Marco Rosenbusch, RIBF seminar, RIKEN Wako campus, Japan, 14.02.2023

Courtesy of M. Rosenbusch



The MR-TOF-MS principleThe multi-reflection time-of-flight (MRTOF) technique

injection of ions

multiple reflections of ions

precise time of flight measurement

Total time of flight 
predominantly determined 
by the electrostatic term of 
the system

Ekin ≈ 3keV

H.Wollnik and M. Przewloka, Int. J. Mass Spectrom. Ion Proc. 96, 267 (1990)

ion trap detector

detector

electrostatic
contribution

device constant

average 
from ion 

distribution

Flight path of a few kilometers possible

Marco Rosenbusch, RIBF seminar, RIKEN Wako campus, Japan, 14.02.2023

Courtesy of M. Rosenbusch



Mass measurements around A=90
83,84Ga, 82-86Ge, 82-89As, 82,84-91Se, 85,86,89-92Br, 89,91,92Kr, and 91Rb                    Xian et al, PRC109 (2024)
Some mass uncertainties improved from hundreds keV to <10keV
Reaction rates for all these nuclei were calculate then used to estimate the final r-process abundances

Astrophysical conditions 0.3<Ye<0.42 and entropy S = 10 kb/baryon             Later time -> smaller difference in Sr abundance      
up to 20% difference in abundances compared to AME2020
Moderately n-rich 
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The Structure of Neutron Stars

The outer crust contains 
neutron-rich isotopes 

Neutron-rich isotopes properties? 

Neutron star: very compact object
1 M⊙ in about 10km

1000 x



Mass measurement at ISOLDE/CERN
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Mass spectrometry and Astromers
Astromer: a nuclear isomer that retains its metastable character in an astrophysical environment
Misch et al., ApJS 252 2 (2021) In the hot thermal bath of the stellar environment, the 

isomeric state is excited to higher intermediate 
states which in turn populate the ground state after 
de-excitation. 

Not Astromer: Ground state = isomeric state 
Astromer:        Ground state  isomeric state ≠











Excitation energy measurement of 128Sb 
Hoff et al, PRL131 (2023)

Calculated transition rates m->gs through 
6- state vs thermalization temperatureduring r-process 128Sb is populated in 10min (1keV)

Conclusion: 128mSb is an astromer and accelerant (t1/2 10min vs. gs 9h)



rp-process in Type I X-ray Bursts 







Mass measurements with storage ring 
Zhou et al., Nature Physics 19 (2023) Modified light curve

Modified ash composition

Possibly warmer accreted 
neutron-star crust

GS 1826–24 event would be 
further and less compact 
neutron star



Fission study from isomeric ratios
Andreyev et al., Rep. Prog. Phys. 81 (2018)
Open question in fission:  What is the origin of angular momentum? 
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(PI-ICR) R>106

Rakopoulos et al., PRC98(2018) 
Isomeric ratios of fission fragments of proton 
induced fission on U and 232Th @IGISOL 
—> dependence on fission system
—> sensitive to nuclear structure effects 



Fission study from isomeric ratios

Phase-Imaging Ion 
Cyclotron Resonance 

(PI-ICR) R>106

Rakopoulos et al., PRC98(2018) 
Isomeric ratios of fission fragments of proton 
induced fission on U and 232Th @IGISOL 
—> dependence on fission system
—> sensitive to nuclear structure effects 

Other possible fission systems: 
In-flight fission —> MRTOF & R3 @RIBF
Photofission —> MLLTrap/? @ALTO
n-induced fission —>  ? @NFS/GANIL



First study at IGISOL/JYFLTRAP
Rakopoulos et al., PRC66(2019) 

Most  yields are not reproduced by 
theoretical models
—> Need more data, which will lead to 
better theoretical description



First study at IGISOL/JYFLTRAP
Rakopoulos et al., PRC66(2019) 

Most  yields are not reproduced by 
theoretical models
—> Need more data, which will lead to 
better theoretical description

Strong correlation of In isotopes’ angular momentum with electric 
quadrupole moment
—> fission fragments of In retain part of their deformation during 
their relaxation after scission. Coulomb force might contribute to 
the primary fission fragments momentum in In isotopes.   
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