Coincidence measurements of fusion reactions involving carbon and oxygen with the high-precision STELIar LAboratory

STELLA

Aurélie Bonhomme STELLA collaboration IPHC Strasbourg, France

arb

Fusion involving ¹²C and ¹⁶O: nuclear perspective

- Nuclear structure / resonances
 - Molecular states
 - Alpha-clustering
- Fusion hindrance
 - Observed in medium-mass range \rightarrow ^{12}C and ^{16}O systems?

<mark>3</mark>/18

cf. M. Heine

lecture!

The challenging ${}^{12}C+{}^{12}C$ case

08/10/24

Measurements of fusion reactions involving carbon and oxygen with STELLA

08/10/24

Heine *et al.* NIM A **903** (2018)

08/10/24

Measurements of fusion reactions involving carbon and oxygen with STELLA

Pixel detectors for angular distributions

- Additional coverage of steep angles: θ lab = 60° 90°
- Versatile configuration with two types of detectors (Micron Semiconductors): BB10 (granularity) and SUPER-X3 (timing)
- Unambiguous determination of angular distributions .

 $^{12}\mathrm{C} + ^{12}\mathrm{C} \rightarrow ^{24}\mathrm{Mg}^* \rightarrow ^{20}\mathrm{Ne} + \alpha_0 + \gamma$

Coincidence method power

- ns-precision timing: resolution γ -particle ~ 10ns random background estimation via delayed windows
- Alpha/proton separation based on timing

08/10/24

Coincidence method power

- ns-precision timing: resolution γ -particle ~ 10ns random background estimation via delayed windows
- Alpha/proton separation based on timing
- 2-3 o.m. background suppression \rightarrow clean signal

Nippert *et al.* submitted to PRC

10/18

8

Particle spectra

1³C $^{2}C d$ -d(

0.5

0.4

0.3

0.2 (b) 0.5

0.3

0.2

 θ_{lab} [rad]

 θ_{lab} [rad] 0.4

^{08/10/24}

STELLA measurements of ${}^{12}C+{}^{12}C$

- Explore different regimes: hindrance regime, Gamov windows
- At the lowest energies: $\leq 100 \text{ pb}$ cross-sections!
- Latest analysis: improved timing selection
- Next: reach the deep sub-barrier regime underground (proposal @Felsenkeller)

Fruet et al. PRL 124 (2020)

Nippert *et al.* submitted to PRC (2024)

STELLA measurements of ${}^{12}C+{}^{12}C$

- Explore different regimes: hindrance regime, Gamov windows
- At the lowest energies: $\leq 100 \text{ pb}$ cross-sections!
- Latest analysis: improved timing selection
- Next: reach the deep sub-barrier regime underground (proposal @Felsenkeller)
- Input for sensitivity studies: hydrodynamics calculations (stellar evolution)

A&A 660, A47 (2022) https://doi.org/10.1051/0004-6361/202141858 © E. Monpribat et al. 2022	Astronomy Astrophysics	
		Dumont <i>et al.</i> , A&A 688 , /
A new ¹² C + ¹² C nuclear reaction rate:	Impact on stellar evolution	Astro
E. Monpribat ¹ , S. Martinet ² , S. Courtin ^{1,3} , M. Heine ¹ , S. Ekström D. Curien ¹ , M. Moukaddam ¹ , J. Nippert ¹ , S. T	² , D. G. Jenkins ^{3,4} , A. Choplin ⁵ , P. Adsley ^{6,7} , Tsiatsiou ² , and G. Meynet ²	Astro
Monpribat <i>et al.</i> A&A 660 , A47 (2022)	Massive star evolution with	a new ¹² C + ¹² C nuclear reaction
	The core of	carbon-burning phase
	T. Dumont ¹ [®] , E. Monpribat ¹ , S. Courtin ^{1,2} , D. Curien ¹ [®] ,	, A. Choplin ³ , A. Bonhomme ¹ , S. Ekström ⁴ , M. I , J. Nippert ¹ , and G. Meynet ⁴

Fruet *et al.* PRL **124** (2020)

Nippert *et al.* submitted to PRC (2024)

Toward ${}^{12}C+{}^{16}O$ and ${}^{16}O+{}^{16}O$ with STELLA

Challenging systems: at astrophysical energies of interest: larger number of open channels \rightarrow experimental upgrade needed

08/10/24

Toward ${}^{12}C+{}^{16}O$ and ${}^{16}O+{}^{16}O$ with STELLA

Challenging systems: at astrophysical energies of interest: larger number of open channels \rightarrow experimental upgrade needed

Resolving complex final states: the ${}^{12}C+{}^{16}O$ case

08/10/24

At energies of interest: three-body exit channels are open Measured down to ~2mbarn (γ) Christensen Nucl. Phys. A280 (1977)

\rightarrow STELLA Si detector upgrade:

- ✓ full kinematics determination
- ✓ improved angular coverage
- \checkmark adapted thickness for ${\rm ^{12}C}{+}{\rm ^{16}O}$

Developments in cooperation with Micron Technologies

 $\theta \sim 1^{\circ}$ res. $\phi 11^{\circ}/22^{\circ}$ res.

Improved precision: energy resolution budget

08/10/24

Re-design the STELLA 90° line @Andromède

Beam optics simulations optimized on STELLA

ANDRO MEDE

• Measurement of the beam emittance planed on site this autumn

Upgrade of the beam line at Andromède

08/10/24

ANDRO MEDE **STELLA** station New focusing + diagnostic station for STELLA requirements CAO: **Guy Heitz** Existing 90° line **IPHC** 08/10/24 Measurements of fusion reactions involving carbon and oxygen with STELLA 18/18

Upgrade of the beam line at Andromède

Conclusion and perspectives

- STELLA successfully explored fusion cross-sections down to sub-nbarn region for ¹²C+¹²C
 virtual background suppression via coincidence and ns-timing precision
- Explore next fusion systems: ${}^{12}C + {}^{16}O$ and ${}^{16}O + {}^{16}O$
 - ✓ upgrade charged-particle detectors and improve beam focusing
 - \checkmark aim: exclusive measurement, full resolution of exit channels
- Rich physics program:
 - Nuclear physics: resonances, fusion hindrance?
 - Astrophysical impact for massive stars: structure, nucleosynthesis?
 - ightarrow New hydrodynamics calculations on-going for sensitivity studies
 - + inclusion of TDHF calculations
 - explore deep sub-barrier energies underground @Felsenkeller (ChETEC-INFRA)

Thank you for your attention!

arb

J. Nippert,^{1,*} S. Courtin,^{1,2,†} M. Heine,¹ D.G. Jenkins,³ P. Adsley,⁴ A. Bonhomme,¹ R. Canavan,^{5,6} D. Curien,¹ T. Dumont,¹ E. Gregor,¹ E. Monpribat,¹ L. Morrison,⁵ M. Moukaddam,¹ M. Richer,¹ M. Rudigier,⁵ J.G. Vega Romero,³ W.N. Catford,⁵ P. Cotte,⁷ S. Della Negra,⁷ G. Haefner,⁷ F. Hammache,⁷ J. Lesrel,⁷ S. Pascu,^{5,8} Zs. Podolyák,⁵ P.H. Regan,^{5,6} I. Ribaud,⁷ N. de Séréville,⁷ C. Stodel,⁹ and J. Vesić^{10,11}

(STELLA collaboration)

 ¹ Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
 ² University of Strasbourg Institute of Advanced Studies (USIAS), Strasbourg, France
 ³ University of York, York, YO10 5DD, UK
 ⁴ Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay Cedex, France
 ⁵ Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
 ⁶ National Physical Laboratory, Teddington, Middlesex, TW110 LW, UK
 ⁷ Université Paris-Saclay, IJCLab, CNRS/IN2P3, F-91405 Orsay, France
 ⁸ National Institute for Physics and Nuclear Engineering, R-77125, Bucharest-Magurele, Romania
 ⁹ GANIL, CEA/DSM-CNRS/IN2P3, Caen, F-14076, France
 ¹⁰ GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
 ¹¹ Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia

+ @IPHC Strasbourg: Guy Heitz, Cédric Mathieu, Marc Richer, Emil Traykov

UNIVERSITÉ DE STRASBOURG

ANDEO