School of Statistics 2024, Carry-le-Rouet

David Rousseau, IJCLab

ML for Higgs physics tutorial

Using ML to see the Higgs Boson Using Boosted Decision Tree Introduction to tutorial

Seeing the Higgs boson

Two fundamental entities

11111 Table

« Events » :

• All measurements from one proton collision

- List of particles with their properties
- o Derived quantities
- $\bullet \rightarrow$ ML to help select interesting events « Signal » with respect to « Background »
- « Particles »:
 - Extracted from an event
 - o Jet, lepton, photon Missing ET
 - $\bullet \rightarrow$ ML to help identifying particles, regressing properties

Before observation, all was known about the Higgs boson, except its mass

HEPMLtutorial introduction, David Rousseau

HEPMLtutorial introduction, David Rousseau

Classifier in Higgs Physics

HEPMLtutorial introduction, David Rousseau

Coordinates

- P : momentum
- \Box E : energy =sqrt(P²+M²)~P because P>>M
- Angles (cylindrical)
 - ϕ : azimuth angle]- π , + π]
 - θ : dip angle [0, + π]
 - η : eta, pseudo-rapidity = $-\log(tan(\theta/2))$, ~[-5,5]
- \square P_T : =P sin(θ) : transverse momentum
- \square ME_T : Missing Transverse Energy = - $\Sigma_{all \ particles}$ P_T : estimator of transverse momentum of neutrinos

 $\eta = 0$

 $\eta \to +\infty$

Tutorial dataset H→WW

Event weighting

Absolute normalisation

TIM TRAS

□ Say you are doing an experiment at the LHC

You are looking for a particular type of event

- How many do you expect ?
- $\square \mathsf{N}^{\mathsf{prod}} = \mathsf{L}^* \sigma(\theta)$
 - N^{prod}= number of produced events (before detector effect)
 - L « integrated luminosity » : for example 138 fb⁻¹ for LHC data taking at 13TeV center of mass energy in 2015-2018 prop number of proton collisions
 - 1 barn is 10⁻²⁸ m²
 - proportional to the total number of proton collision
 - o $\sigma(\theta)$: cross-section (in barn), can be calculated from first principles and θ parameters from nature (electric charge, higgs boson mass etc...)

 $\Box N^{exp} = L * \sigma(\theta) * \varepsilon$

- N^{exp}= number of expected events (actually counted in the detector). N^{exp} is a real number. The actual number of observed event will follow Poisson (N^{exp})
- \circ ϵ : efficiency, probability to detect a produced event (1. if perfect detector).
 - Measured on simulation (calibrated on data)
 - Can be product of many terms like: ϵ trigger * ϵ acceptance * ϵ lepton *

Simple Event Counting Experiment

□ One signal, we have some estimate of $\sigma_{sig}(\theta)$ but we actually want to assess its existence (exp==expected)

- $\circ N^{exp}_{sig} = = s = L * \sigma_{sig} * \epsilon_{sig}$
- □ one well-known background :

 $\circ N^{exp}_{bkg} = = b = L * \sigma_{bkg} * \epsilon_{bkg}$

- □ N^{exp}=s+b
- □ We do the experiment and count N^{obs} events
- Hence we measure:

o
$$\sigma_{sig} = (N^{obs} - b)/(L * \varepsilon_{sig})$$

o $\sigma_{sig} = (N^{obs} L^* \sigma_{bkg} \epsilon_{bkg})/(L \epsilon_{sig})$

 \Box Key inputs : $\epsilon_{sig} \epsilon_{bkg}$ determined from simulated datasets

Weights for overall normalisation

 \Box b=L * σ_{bkg} * ε_{bkg}

- \Box We measure on simulation : $\varepsilon_{bkg} = N_{bkg pass}/N_{bkg total}$
 - with N_{bkg pass}, number of events passing some criteria e.g. momentum of the two photons greater than 25 GeV, BDT score above 0.8 etc...
 - So b= L * σ_{bkg} * N_{bkg pass}/N_{bkg total}
- \Box We can define an event weight : w_i = L * $\sigma_{bkg/}$ N_{bkg total}
- □ And then simply: $b = \Sigma_{pass} W_i$
- Beware : if I take an unbiased subset of x% of dataset, I need to scale the weights by 1/x, so that

 \Box b^{subset}= Σ ^{subset}_{pass} w^{subset}_i=(1/x) * Σ ^{subset}_{pass} w_i ~b

Data / MC histo comparison

- Then one can histogram directly any quantity (using the weights) and it is normalised correctly to the real data
- By convention, real data is almost never weighted

Case of multiple backgrounds

Now suppose we have two different backgrounds:

- $\Box b=b_1+b_2=L * \sigma_{bkg1}*\varepsilon_{bkg1} + L * \sigma_{bkg2}*\varepsilon_{bkg2}$
- $\square b=b_1+b_2=L * \sigma_{bkg1}* N_{pass1}/N_{total1} + L * \sigma_{bkg2}* N_{pass2}/N_{total2}$
- □ If I define the event weight
 - o For dataset bkg 1 : w_i= L * $\sigma_{bkg1/}$ N_{total1}
 - For dataset bkg 2 : w_i= L * $\sigma_{bkg2/}$ N_{total2}
- □ And then : $b = \Sigma_{pass1} w_i + \Sigma_{pass2} w_i$
- So I can merge both datasets and ...
- $\square b = \Sigma_{\text{pass 1 and 2}} W_i$
- ditto for many backgrounds... (effective for collaborative work)

Multiple backgrounds

□Such plots can be made directly

JAN E

HEPMLtutorial introduction, David Rousseau

ML Application

 \mathbf{x}_1

B1 is the more annoying background : smaller but more similar to Signal

One can increase B1 dataset size and not B2, use weights for proper relative normalisation

HEPMLtutorial introduction, David Rousseau

Efficiency correction

- No, simply define a new weight:
 - wiphoton = 0.5 if one photon in that region, 1 elsewhere
- Then $w_i^* = w_i^{photon}$ ← weights of different sources can be multiplied
- And voilà, all event counting, all distributions are automagically corrected
- Particularly handy in large collaborations where many teams work on different aspect of event detection.
 - Each team comes up with its own weight
 - Physicists doing analysis can use (almost) blindly the weights they are given

HEPMLtutorial introduction. David Rousseau

General Re-weighting

HEPMLtutorial introduction, David Rousseau

Event Generator weight

Generators are software which creates event with multi particle final states with very precise correlation

Very complex calculations

 $\square \rightarrow$ weighted events (weights can even be negative!)

HEPMLtutorial introduction, David Rousseau

Uncertainty

When counting unweighted events uncertainty (Poisson case):

$$\circ$$
 N_{pass}= Σ_{pass} 1

o σ N_{pass}=
$$\sqrt{N_{pass}}$$
= $\sqrt{\Sigma_{pass}}$ 1

 $\circ \sigma N_{\text{pass}} / N_{\text{pass}} = 1 / \sqrt{N_{\text{pass}}}$

For weighted events (Poisson, binomial more involved):

- $N_{\text{pass}} = \Sigma_{\text{pass}} W_{\text{i}}$
- o σ N_{pass}= $\sqrt{\Sigma_{pass}}$ w²_i
- power 2!!! o σ N_{pass} / N_{pass} = $\sqrt{\Sigma_{pass}} w_i^2 / \Sigma_{pass} w_i$
- Note : if $w_i = 1 \rightarrow$ like unweighted
- o Note : if I scale all weights by a : σ N_{pass} / N_{pass} is unchanged (as expected)

Effective number of events

Suppose I have 2, and I add 1 (50%) in quadrature? What is the percentage increase ? (5 seconds)

- $\Box 12\% ! \qquad \sqrt{(2^2+1^2)/2} = \sqrt{5/2} = 1.118$
- Meaning : quadratic sum is dominated by the largest values
- \square \rightarrow having large weights destroy the statistical sensitivity
- Effective number of events of a sample == number of events of an equivalent weightless sample bringing the same precision
 - $N_{eff} = \Sigma^2 w_i / \Sigma w_i^2$
 - o $N_{eff}/N=1/(1+Var(x)/<x>^2) <1$
 - The larger the distribution of weights the larger the loss of sensitivity

Caveats

□ Reweighting applicable for small-ish corrections (otherwise variance of weight too large→loss of sensitivity)

- Of course cannot "invent" events
- Not really suitable to rescale variables (if says Energy of a particle is wrong by 2%, better rescale energy directly)
- Also weights are ~easy to compute if uncorrelated
- □ If correlated, can do 2-dimension reweighting more difficult (curse of dimensionality)
- Beware : not all software tools handle weights correctly, most tools do not handle negative weights correctly

HEPMLtutorial introduction, David Rousseau