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Seeing the Higgs boson
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Proton collisions

Young Einstein: E=mc2

Energy converting into mass

Creation of new particles

Most decay immediately
=>particles of 6 different 
types go through the detector  

I

inférence
HEPMLtutorial introduction,  David Rousseau
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Two fundamental entities
q « Events » :

o All measurements from one proton collision
o List of particles with their properties
o Derived quantities
o èML to help select interesting events « Signal » with respect to « Background »

q « Particles »:
o Extracted from an event 
o Jet, lepton, photon Missing ET
o èML to help identifying particles, regressing properties

HEPMLtutorial introduction,  David Rousseau
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Before observation, all was known about the Higgs boson, except its mass

Probabilités de désintégration
prédites pour une masse de 125 GeV 

H → bb 58%

H → WW* 21%

H → τ+τ- 6.4%

H → ZZ* 2.7%

H → γγ 0.2%
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E2=p2+m2

EH=Eg1+Eg2
pH=pg1+pg2

H

mH
2=EH

2-pH
2

H, before decay

H

gamma 1

gamma 2

H,Just after decay

E=mc2

_we get mH!  

Measured (et m=0)!

Einstein en 1905

Energy Momentum
conservation

HEPMLtutorial introduction,  David Rousseau
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1014 collisions / year

109 events on disk

Trigger: fast rough selection

Offline selection

105 events with 2 photons

Mass calculation
àhistogram

HEPMLtutorial introduction,  David Rousseau
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Classifier in Higgs Physics

HEPMLtutorial introduction,  David Rousseau
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Higgs evidence

BDT using ~dozen of high level variables
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Coordinates 

q P : momentum
q E : energy =sqrt(P2+M2)~P because P>>M
q Angles (cylindrical)

o f : azimuth angle ]-p, +p]
o q : dip angle [0, +p]
o h : eta, pseudo-rapidity = -log(tan(q/2)), ~[-5,5]

q PT : =P sin(q) : transverse momentum 
q MET : Missing Transverse Energy = -S all particles PT : estimator of transverse 

momentum of neutrinos
HEPMLtutorial introduction,  David Rousseau
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Tutorial dataset HàWW
qOne of the Higgs Discovery channel
qHàW+(àl+ n) W+(àl- n) 

o è2 leptons of opposite charge
o Neutrinos undetected ! => Missing Transverse 

Energy
o No invariant mass peak!

qBackground : 
o Other processes leading to W+(àl+ n) W+(àl- n)

HEPMLtutorial introduction,  David Rousseau

MET: MET, f

l+: PT, f,h

l-: PT, f,h

(jet): PT, f,h (jet): PT, f,h



Event weighting
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Absolute normalisation
q Say you are doing an experiment at the LHC
q You are looking for a particular type of event
q How many do you expect ? 
q Nprod=L * s(q)

o Nprod= number of produced events (before detector effect) 
o L « integrated luminosity » : for example 138 fb-1 for LHC data taking at 13TeV center of 

mass energy in 2015-2018 prop number of proton collisions
§ 1 barn is 10-28 m2
§ proportional to the total number of proton collision

o s (q) : cross-section (in barn), can be calculated from first principles and q parameters 
from nature (electric charge, higgs boson mass etc…)

q Nexp=L * s(q)*e
o Nexp= number of expected events (actually counted in the detector). Nexp is a real number. The actual 

number of observed event will follow Poisson (Nexp) 
o e : efficiency, probability to detect a produced event (1. if perfect detector).

§ Measured on simulation (calibrated on data)
§ Can be product of many terms like: e trigger * e acceptance * e lepton * ….

HEPMLtutorial introduction,  David Rousseau
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Simple Event Counting Experiment

q One signal, we have some estimate of ssig(q) but we actually want to assess 
its existence (exp==expected)
o Nexp

sig==s=L * ssig*esig

q one well-known background : 
o Nexp

bkg==b=L * sbkg*ebkg

q Nexp=s+b
q We do the experiment and count Nobs events
q Hence we measure:

o ssig=(Nobs- b)/(L*esig ) 
o ssig=(Nobs- L*sbkg*ebkg)/(L*esig )

q Key inputs : esig ebkg determined from simulated datasets

HEPMLtutorial introduction,  David Rousseau
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Weights for overall normalisation 

q b=L * sbkg*ebkg
q We measure on simulation : ebkg = Nbkg pass/Nbkg total 

o with Nbkg pass, number of events passing some criteria e.g. momentum of the two 
photons greater than 25 GeV, BDT score above 0.8 etc…

o So b= L * sbkg* Nbkg pass/Nbkg total 

q We can define an event weight : wi= L * sbkg/ Nbkg total 
q And then simply: b=Spass wi
q Beware : if I take an unbiased subset of x% of dataset, I need to scale the 

weights by 1/x, so that
q bsubset=Ssubsetpass wsubseti=(1/x) * Ssubsetpass wi ~b 

HEPMLtutorial introduction,  David Rousseau
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Data / MC histo comparison
q Then one can histogram directly any quantity (using the weights) and it is 

normalised correctly to the real data
q By convention, real data is almost never weighted

HEPMLtutorial introduction,  David Rousseau
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Case of multiple backgrounds
q Now suppose we have two different backgrounds:
q b=b1+b2=L * sbkg1*ebkg1 +L * sbkg2*ebkg2

q b=b1+b2=L * sbkg1* Npass1/Ntotal1 +L * sbkg2* Npass2/Ntotal2 
q If I define the event weight

o For dataset bkg 1 : wi= L * sbkg1/ Ntotal1 

o For dataset bkg 2 : wi= L * sbkg2/ Ntotal2

q And then : b=Spass1 w_i + Spass2 w_i
q So I can merge both datasets and …
q b= Spass 1 and 2 wi
q ditto for many backgrounds… (effective for collaborative work)

HEPMLtutorial introduction,  David Rousseau
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Multiple backgrounds

HEPMLtutorial introduction,  David Rousseau
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ML Application

q B1 is the more annoying background : smaller but more similar to Signal
q One can increase B1 dataset size and not B2, use weights for proper relative 

normalisation 

B2=10000

HEPMLtutorial introduction,  David Rousseau

B1=100

S=10

x1

x2
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Efficiency correction
q Suppose, a detector malfunction causes 

photon efficiency to be halved in a small 
region of the detector

q èresimulate everything taking into 
account this effect ? (== billion of 
compute hours ) 

HEPMLtutorial introduction,  David Rousseau
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q No, simply define a new weight:
o wiphoton=0.5 if one photon in that region, 1 elsewhere

q Then wi*= wi
photon    ç weights of different sources can be multiplied

q And voilà, all event counting, all distributions are automagically corrected
q Particularly handy in large collaborations where many teams work on different aspect of event 

detection. 
o Each team comes up with its own weight 
o Physicists doing analysis can use (almost) blindly the weights they are given
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General Re-weighting

Target Source

var

Target Source

var

Weights : wi
=

ptarget(vari)/psource(vari)

q Suppose a feature distribution is slightly different 
between a Source (e.g. Monte Carlo) and a Target (e.g. 
real data)
o èreweight!    …then use reweighted events

HEPMLtutorial introduction,  David Rousseau
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Event Generator weight

qGenerators are software which creates event with multi 
particle final states with very precise correlation

qVery complex calculations
qèweighted events (weights can even be negative!)

HEPMLtutorial introduction,  David Rousseau

B
S
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Uncertainty
qWhen counting unweighted events uncertainty (Poisson case):

o Npass=Spass 1
o s Npass=√Npass= √ Spass 1
o s Npass / Npass =1/ √Npass

qFor weighted events (Poisson, binomial more involved):
o  Npass=Spass wi 
o s Npass=√Spass w2i
o s Npass / Npass = √Spass w2i /Spass wi
o Note : if wi=1 è like unweighted
o Note : if I scale all weights by  a : s Npass / Npass is unchanged (as 

expected)

HEPMLtutorial introduction,  David Rousseau

power 2!!!
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Effective number of events
q Suppose I have 2, and I add 1 ( 50%) in quadrature? What is the 

percentage increase ?       (5 seconds)
q 12% !        √(22+12)/2= √5/2=1.118 
q Meaning : quadratic sum is dominated by the largest values
q èhaving large weights destroy the statistical sensitivity
q Effective number of events of a sample == number of events of an 

equivalent weightless sample bringing the same precision 
o Neff= S2 wi /S w2i 

o Neff/N=1/(1+Var(x)/<x>2) <1
o The larger the distribution of weights the larger the loss of sensitivity 

HEPMLtutorial introduction,  David Rousseau
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Caveats
q Reweighting applicable for small-ish corrections (otherwise variance of weight too 

largeèloss of sensitivity)
q Of course cannot “invent” events
q Not really suitable to rescale variables (if says Energy of a particle is wrong by 2%, better 

rescale energy directly)
q Also weights are ~easy to compute if uncorrelated
q If correlated, can do 2-dimension reweighting more difficult (curse of dimensionality)
q Beware : not all software tools handle weights correctly, most tools do not handle 

negative weights correctly

HEPMLtutorial introduction,  David Rousseau
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