School of Statistics 2024, Carry-le-Rouet

David Rousseau, IJCLab

ML for Higgs physics tutorial

Using ML to see the Higgs Boson Using Boosted Decision Tree Introduction to tutorial

Seeing the Higgs boson

Two fundamental entities

 \Box « Events » :

o All measurements from one proton collision

Not the first state of the state of

- o List of particles with their properties
- o Derived quantities
- $\circ \rightarrow$ ML to help select interesting events « Signal » with respect to « Background »
- \Box « Particles »:
	- o Extracted from an event
	- o Jet, lepton, photon Missing ET
	- \circ \rightarrow ML to help identifying particles, regressing properties

Before observation, all was known about the Higgs boson, except its mass

HEPMLtutorial introduction, David Rousseau

8 HEPMLtutorial introduction, David Rousseau

Classifier in Higgs Physics Classifier in Hinn 195 PM \sim \sim \pm 4 1 **s** 3 Julie 1

HEPMLtutorial introduction, David Rousseau

Coordinates

- P : momentum
- \Box E : energy =sqrt(P²+M²)~P because P>>M
- \Box Angles (cylindrical)
	- $\circ \phi$: azimuth angle $]-\pi$, $+\pi$]
	- θ : dip angle $[0, +\pi]$
	- o η : eta, pseudo-rapidity = -log(tan(θ /2)), ~[-5,5]
- \Box P_T : =P sin(θ) : transverse momentum
- \Box ME_T : Missing Transverse Energy = - Σ _{all particles} P_T : estimator of transverse momentum of neutrinos

 $\eta=0$

 $\eta\rightarrow +\infty$

Tutorial dataset $H\rightarrow WW$

Event weighting

Absolute normalisation

Say you are doing an experiment at the LHC

You are looking for a particular type of event

化三氯十二烷基 大麻

- How many do you expect ?
- \Box N^{prod} = L $*$ $\sigma(\theta)$
	- N_{prod} number of produced events (before detector effect)
	- **o** L « integrated luminosity » : for example 138 fb⁻¹ for LHC data taking at 13TeV center of mass energy in 2015-2018 prop number of proton collisions
		- **1** 1 barn is 10^{-28} m²
		- § proportional to the total number of proton collision
	- σ σ (θ) : cross-section (in barn), can be calculated from first principles and θ parameters from nature (electric charge, higgs boson mass etc…)

 \Box N^{exp}=L * $\sigma(\theta)$ * ε

- \circ N^{exp}= number of expected events (actually counted in the detector). Nexp is a real number. The actual number of observed event will follow Poisson (Nexp)
- \circ ε : efficiency, probability to detect a produced event (1. if perfect detector).
	- § Measured on simulation (calibrated on data)
	- Can be product of many terms like: ϵ trigger $*\epsilon$ acceptance $*\epsilon$ lepton $*\ldots$.

Simple Event Counting Experiment

- **Q** One signal, we have some estimate of $\sigma_{sig}(\theta)$ but we actually want to assess its existence (exp==expected)
	- **O** N^{exp} _{sig} = = $S=L$ $*$ σ_{sig} $*$ ε_{sig}
- \Box one well-known background :

IR ya M

O $N^{exp}_{bka} = b = L * \sigma_{bka} * \epsilon_{bka}$

- \Box Nexp=s+b
- \Box We do the experiment and count N^{obs} events
- \Box Hence we measure:

$$
\sigma_{sig} = (N^{obs} - b)/(L * \varepsilon_{sig})
$$

o $\sigma_{\text{sig}} = (N^{\text{obs}} - L^* \sigma_{\text{bkg}} * \varepsilon_{\text{bkg}}) / (L^* \varepsilon_{\text{sig}})$

 \Box Key inputs : $\varepsilon_{\text{sig}} \varepsilon_{\text{bkg}}$ determined from simulated datasets

The South of the Company of the South o

Weights for overall normalisation

 $D = L * \sigma_{bkg} * \varepsilon_{bkg}$

Q We measure on simulation : $\varepsilon_{bkg} = N_{bkg \text{ pass}}/N_{bkg \text{ total}}$

 \circ with N_{bkg pass}, number of events passing some criteria e.g. momentum of the two photons greater than 25 GeV, BDT score above 0.8 etc…

o So b= L $*$ $\sigma_{bkg}*$ N_{bkg pass}/N_{bkg total}

- **Q** We can define an event weight : $w_i = L * \sigma_{bkg}$ N_{bkg total}
- **Q** And then simply: $b=\sum_{pass} w_i$
- **Q** Beware : if I take an unbiased subset of $x\%$ of dataset, I need to scale the weights by 1/x, so that

a bsubset = Σ subset pass wsubset $i = (1/x) * \Sigma$ subset pass $W_i \sim b$

Data / MC histo comparison

- \Box Then one can histogram directly any quantity (using the weights) and it is normalised correctly to the real data
- \Box By convention, real data is almost never weighted

Case of multiple backgrounds

- \Box Now suppose we have two different backgrounds:
- \Box b=b₁+b₂=L * σ_{bka1} * ε_{bka1} +L * σ_{bka2} * ε_{bka2}
- \Box b=b₁+b₂=L * σ_{bka1} * N_{pass1}/N_{total1} +L * σ_{bkg2} * N_{pass2}/N_{total2}
- \Box If I define the event weight
	- **o** For dataset bkg $1 : w_i = L * \sigma_{bkg1}/N_{total1}$
	- **o** For dataset bkg 2 : $w_i = L * \sigma_{bkg2}/N_{total2}$
- **Q** And then : b= Σ_{pass1} w_i + Σ_{pass2} w_i
- \Box So I can merge both datasets and ...
- \Box b= $\Sigma_{pass 1 \text{ and } 2}$ W_i
- \Box ditto for many backgrounds... (effective for collaborative work)

Multiple backgrounds Aultinle hackarour unas \blacksquare -1 *s* = 8 TeV, 20.3 fb

Events *(H*(125) (µ=1) *ATLAS* **Z** n k Such plots can be made directly $\overline{1}$ Events / 0.17 Events / 0.17 $10^4 \Bigg|_{\text{E}}$ $\tau_{\text{lep}} \tau_{\text{had}}$ VBF \longrightarrow Data - Data $10⁴$ *H*(125) (μ =1.4) $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ $-H(125)$ ($\mu=1$) *ATLAS Z*→ ττ 10^3 **Others** Fake τ $\overline{\mathscr{W}}$ Uncert. $10²$ -1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0
1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0.5 1 -0. Bandary Contract of the Contra $\overline{}$ 10 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 BDT output BDT output

HEPMLtutorial introduction, David Rousseau

ML Application

 X_1

 \Box B1 is the more annoying background : smaller but more similar to Signal

 \Box One can increase B1 dataset size and not B2, use weights for proper relative normalisation

Efficiency correction

- No, simply define a new weight:
	- α w_iphoton=0.5 if one photon in that region, 1 elsewhere
- **Q** Then $w_i^* = w_i$ \leftarrow weights of different sources can be multiplied
- And voilà, all event counting, all distributions are automagically corrected
- Particularly handy in large collaborations where many teams work on different aspect of event detection.
	- o Each team comes up with its own weight
	- o Physicists doing analysis can use (almost) blindly the weights they are given

General Re-weighting

Event Generator weight

Generators are software which creates event with multi particle final states with very precise correlation

- \Box Very complex calculations
- $\Box \rightarrow$ weighted events (weights can even be negative!)

HEPMLtutorial introduction, David Rousseau

Uncertainty

 \Box When counting unweighted events uncertainty (Poisson case):

$$
\mathsf{O} \ \mathsf{N}_{\text{pass}} = \Sigma_{\text{pass}} \ \mathsf{1}
$$

$$
o \ \sigma \ N_{pass} = \sqrt{N_{pass}} = \sqrt{\Sigma_{pass}} \ 1
$$

 \circ σ N_{pass} / N_{pass} = 1/ $\sqrt{N_{pass}}$

GFor weighted events (Poisson, binomial more involved):

- **o** $N_{pass} = \sum_{pass} w_i$
- o σ N_{pass}= $\sqrt{\Sigma_{\text{pass}}}$ w²i
- \circ σ N_{pass} / N_{pass} = $\sqrt{\Sigma_{\text{pass}}}$ w²_i/ Σ_{pass} w_i power 2!!!
- **o** Note : if $w_i = 1 \implies$ like unweighted
- o Note : if I scale all weights by $a : \sigma N_{pass} / N_{pass}$ is unchanged (as expected)

Effective number of events

Q Suppose I have 2, and I add 1 (50%) in quadrature? What is the percentage increase ? (5 seconds)

The Hotel And All Manual Property of the Community of the Community of the Community of the Community of the Community

- **□** 12% ! $\sqrt{(2^2+1^2)/2} = \sqrt{5/2}=1.118$
- \Box Meaning : quadratic sum is dominated by the largest values
- $\Box \rightarrow$ having large weights destroy the statistical sensitivity
- \Box Effective number of events of a sample $==$ number of events of an equivalent weightless sample bringing the same precision
	- **o** $N_{\text{eff}} = \Sigma^2 w_i / \Sigma w_i^2$
	- o $N_{eff}/N=1/(1+Var(x)/^2)$ <1
	- o The larger the distribution of weights the larger the loss of sensitivity

Caveats

- Reweighting applicable for small-ish corrections (otherwise variance of weight too large \rightarrow loss of sensitivity)
- Of course cannot "invent" events
- Not really suitable to rescale variables (if says Energy of a particle is wrong by 2%, better rescale energy directly)
- Also weights are \sim easy to compute if uncorrelated
- If correlated, can do 2-dimension reweighting more difficult (curse of dimensionality)
- Beware : not all software tools handle weights correctly, most tools do not handle negative weights correctly

