Advanced DL in Science

Tobias Golling, University of Geneva



Setting the stage

Personal view

Selection of what | consider interesting & promising
Lots of open-ended questions — like in real research!
At times speculative, provocative, exploratory,...

Let's make it interactive! [| added some questions for youl]



Trying to tell you a story of Al for Science

...and teach you a bit of ML on the side






The SM: blessing & curse...

Confirmed by every PP
experiment ever conducted !

Yet, open mysteries remain:




What lies
beyond the SM?




LHC interim evaluation

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary

Status: July 2018 [Ldt = (32-79.8) fo! V5=8,13TeV
Model ty Jetst ET™ [rdim] Limit Reference
T T T T T T T T — T T T T T — T
- ADD Gkk +g/q Oe pu 1-4j Yes 36.1 Mp 7.7 TeV n=2 1711.03301
g ADD non-resonant yy 2y - - 36.7 Ms 8.6 TeV n =3 HLZ NLO 1707.04147
‘% ADDQBH - 2j - 37.0 M, 89TeV n=6 1703.09217
©  ADDBH high ¥ pr >lepu >2j - 32 | M 8.2TeV n=6, Mp =3TeV, rot BH 1606.02265
§ ADD BH multijet - >3] - 3.6 M 9.55 TeV , Mp = 3 TeV, rot BH 1512.02586
: RS1 Gkx — yy 2y - - 36.7 | Guk mass 44 TeV k/Mp = 0.1 1707.04147
ﬁ Bulk RS Gy —» WW/ZZ multi-channel 36.1 Ggk mass 2.3TeV kiMp =1.0 CERN-EP-2018-179
W Bulk RS gxx — tt lepu 21b>1J2 Yes  36.1 gKk mass 3.8 TeV r/m=15% 1804.10823
2UED / RPP leu =22b23j Yes 36.1 KK mass 1.8 TeV Tier (1,1), B(AM) - ¢t) = 1 1803.09678
SSM Z' — ¢t 2ep - - 36.1 2’ mass 4.5TeV 1707.02424
[} SSM Z' - 7 27 - - 36.1 Z’ mass 242 TeV 1709.07242
[ ] § Leptophobic Z’ — bb - 2b - 36.1 Z' mass 21 TeV 1805.09299
N O S I n Of 'S Leptophobic 2 — 1t lepu =1b,>21J2 Yes 361 |z mass 3.0 TeV I/m=1% 1804.10823
©® SSMW' iy lepu - Yes  79.8 | W’ mass 5.6 TeV ATLAS-CONF-2018-017
S ssMw v 17 - Yes 361 | W’ mass 3.7 TeV 1801.06992
8 HVT V' - WV — gqqqg modelB O e,u 2J - 79.8 V' mass 4.15 TeV gv =3 ATLAS-CONF-2018-016
HVT V' - WH/ZH model B multi-channel 36.1 V' mass 2.93 TeV gy =3 1712.06518
LRSM Wy, — tb multi-channel 36.1 W’ mass 3.25 TeV CERN-EP-2018-142
_ Clqqqq - 2j - 37.0 A 21.8TeV 1703.09217
u S Clitqq 2epu - - 3.1 |a 40.0TeV 7, 1707.02424
I n Cl teet >leu  21b21j Yes 36.1 A 2.57 TeV |Cael = 4 CERN-EP-2018-174
= Axial-vector mediator (Dirac DM) Oe,pu 1-4j Yes 36.1 Mmed 1.55 TeV 84=0.25, g,=1.0, m(y) = 1 GeV 1711.03301
a Colored scalar mediator (Dirac DM) 0 e, 1-4j Yes 36.1 Mped 1.67 TeV g=1.0, m(y) = 1 GeV 1711.03301
VWWyy EFT (Dirac DM) Oep 1J,<1j Yes 32 |Mm. 700 GeV m(y) < 150 GeV 1608.02372
Scalar LQ 1%t gen 2e >2j - 3.2 LQ mass 1.1 TeV =1 1605.06035
S’. Scalar LQ 2" gen 2u 22j - 3.2 | Lamass 1.05 TeV p=1 1605.06035
Scalar LQ 3" gen Tepu >1b,>3j VYes 20.3 B=0 1508.04735
VLQ TT — Ht/Zt/Wb+ X multi-channel 36.1 T mass. 1.37 TeV SU(2) doublet ATLAS-CONF-2018-XXX
§'$ VLQ BB — Wt/Zb+ X multi-channel 36.1 B mass 1.34 TeV SU(2) doublet ATLAS-CONF-2018-XXX
5 VLQ T3 TsyalTsiz > Wt + X 2(SS)/z3 e 21b,21j  Yes 36.1 Tsj3 mass 1.64 TeV B(Tsi3 > Wt)=1, c(Ts;3Wi)=1 CERN-EP-2018-171
:‘,’:’ g_ VLQY —» Wb+ X lTeu =21b>1j Yes 3.2 Y mass 1.44 TeV B(Y — Whb)=1, c(YWb)=1/V2 | ATLAS-CONF-2016-072
VLQ B - Hb+ X Oeu,2y 21b,21j Yes 79.8 B mass 1.21 TeV k=05 ATLAS-CONF-2018-XXX
VLQ QQ —» WgWq Tepu >4j Yes 20.3 1509.04261
_—3 Excited quark ¢* — qg - 2j - 37.0 q* mass 6.0 TeV only v and d*, A = m(q"*) 1703.09127
2 g Excited quark g* — gy 1y 1j - 36.7 q" mass 5.3TeV only v and d*, A = m(q*) 1709.10440
g g Excited quark b — bg - 1b,1j - 36.1 b* mass 2.6 TeV 1805.09299
w j_) Excited lepton ¢* Sepu - - 20.3 A=3.0TeV 1411.2921
Excited lepton v* et - - 20.3 A=16TeV 1411.2921
Type Ill Seesaw Teu >2j Yes 79.8 N° mass 560 GeV ATLAS-CONF-2018-020
LRSM Majorana v 2e,p 2j - 20.3 m(Wg) = 2.4 TeV, no mixing 1506.06020
. Higgs triplet H** — (¢ 2,34 e,1 (SS) - - 36.1 H** mass 870 GeV DY production 1710.09748
= Higgs triplet H** — (1 Beut - - 20.3 DY production, B(H;* — (1) =1 1411.2921
5 Monotop (non-res prod) Teu 1b Yes 20.3 3non-res = 0.2 1410.5404
Multi-charged particles - - - 20.3 DY production, |g| = 5e 1504.04188
Magnetic monopoles - - - 7.0 DY production, |g| = 1gp. spin 1/2 1509.08059
" L MR | L L PR

*Only a selection of the available mass limits on new states or phenomena is shown.
‘tSmall-radius (large-radius) jets are denoted by the letter j (J).

10 Mass scale [TeV]



Today’s pulse of particle physics
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Exciting new experimental probes ! /

The utter lack of discoveries !

new LHC upgrades

new gravitational wave signals

new direct detection experiments

new experiments looking for XYZ new physics
new astrophysical probes

new opportunities

_____ " Adeep theory-fatigue

What next ?

[adopted from Veronica Sanz]






Machine learning

» Statistical algorithms to model data & perform tasks
without explicit instructions

* Thrives on big data

* Generalizes to unseen examples

10



Al/ML in Science has taken off !
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[Ben Blaiszik, “2021 AlI/ML Publication Statistics and Charts”. Zenodo, Sep. 07, 2022. doi: 10.5281/zenodo.7057437 .]



Postdocs

‘guarantee’
i

Research is exploration E



With great tools comes
great responsibility

Al = opportunity

Think big !




WHAT DO YOU THINK?



Why are you a scientist?



Join at

slido.com
#8223 694



https://app.sli.do/event/bg2PknbqUbHxvRJEo34CYE

How do you choose
what question to work on?

[don’t answer “because my supervisor told me so’]

17



Why ML?

[What are your expectations & hopes?]

18



Someone gives you 100 billion dollars
What science do you invest in?



Why become a scientist?

Curiosity — learn about & comprehend nature
You are good at it

Solve puzzles

Design tools [to maximize efficiency of science]
Publish, teaching, outreach,...



What makes fundamental research interesting”?

* |t connects to nature
* You can make progress on it [knowledge gain gradient]
* |t's la mode — someone else thinks it's interesting

[Matt Schwartz, EUCAIFCon 2024]

e Research metric?

knowledge gain

resources used



What is scientific understanding?

Three Dimensions of Computer-Assisted Scientific Understanding

Resource of
Inspiration

Computational
Microscope

Agent of
Understanding

22

[2204.01467]



https://arxiv.org/pdf/2204.01467.pdf

How to optimize the scientific method?
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Back to HEP

WHAT IS HOLDING




High energy physics challenges

Complex,
“4 =" high-dimensional
Lonsi & sparse data

.
e o°

Cannot calculate P(data|theory
SV S Slow simulation / limited accuracy

1 STUFE W ow .
5% (NCLUDING PES)

%
"DARK
MATTER”

% A GUIDE TO
. THE UNKNOWN UNIVE

Search for the unknown
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Hypothesis testing

I I > R R RN R R RN RN RN AR
Example Higgs boson discovery 8 35- ATLAS + o -
Hy: no Higgs 0 305 H o 77" — 4] E ]
Hy: Ho+Higgs L W
§ 25 :— B - o % Systematic uncertainty —

z 0

Neyman-Pearson lemma:
best™ statistics is the likelihood ratio

P(z|H;) ok
o
P(z|Ho) 0
80 90 100110120 130 140 150 160 170
\ m,, [GeV]
data theory [Phys. Rev. D. 90 (2014) 052004]

. . . . . 27
*Gives smallest missed discovery rate for fixed false discovery rate



Cannot calculate P(data|theory)

Showering

O
o
° e o of
® ' o
. I o
‘l

Parton Density / N SRNE

Functions LAY

Hard scattering

28
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MC simulation

(data|theory)
The need for synthetic data

Can simulate P



Tou example: draw events from 1D Gauss

) BLEL R AR LA B B
e o B =
:
0.4;— =

03 —
02 F —
LT R

0 - Y - | y | NN y | K

3 > p 0 3 > 3 [K. Cranmer]




Histogram ~ P(data|theory)

T

LU

-3 -2 -1 0 1

»  [K. Cranmer]

O(100) events needed to describe 1D distribution



And for an n-D distribution?

0(100")

Curse of dimensionality






Sufficient test statistics?

Project to O(1) dimension

W
(§)]

Events / 2.5 GeV
— N N w
(@) ] (@] (@) ] (@]

—_—
o
T T TT

mo I(J.II T

0 90 100110120 130 140 150 160 170
my, [GeV]

No guarantee of optimality !

Meaningful representation

@ piX

1D <x < 100M-D

34



Control dimensionality with ML

ML = learning generic functions



[D. Whiteson] §{

Functional space

All functions

Global
Optimum
e

36



[D. Whiteson]

Human approximation

All functions

o
Human
Approx Global
Optimum
e

37



[D. Whiteson]

Shallow space

"”-\

Shallower networks

Shallow
Optimum

Human

Approx

All functions

Global
Optimum
e
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[D. Whiteson]

Deep space

k =

Deeper nefworE?\

"’\

Sha”ower networks

Shallow
Optimum

® Deep
Human

Approx

Optimum ,

All functions |

Global
Optimum
e

39



Supervised vs unsupervised learning

Supervised

Data: (x, y)
X Iis data, y is label

Goal: learn mapping x — y

Examples:
classification, regression

Unsupervised

Data: x
X Is data, no labels !

Goal: learn underlying (hidden)
structure of data

Examples:
Clustering, compression, generation



State of the art of
supervised

Example: classification




The frontier of classification

Top tagger comparison: R, = BG rejection for 30% efficiency vs. #parameters

o
)
2

Transformers

P

g

rule the world

ParT f.t.
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1200 - ¢ © ® ResNeXt
TreeNjN ]
0" '\u PFNDNN EFP .CNN
8 Nsubg® S
800 - Re 3 \subg 5, oLBN
¢ EFNg ® . @P-CNN
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400 - . .Lmear EFPs .
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4 n-PELICAN TopoDNN o
0 '. LA IR | T ALY | T LR | T LI | LA
10! 102 103 104 10° 108 107
Parameters

[G. Kasieczka, EUCAIF 2024]

Inductive bias (Lorentz
invariance, symmetries,...):

* More parameter efficient
« BUT less performant

The bitter lesson vs. heroic
domain-specific modeling efforts

Exact symmetries in latent space — hard to learn
Only approximate symmetries in data space

42



http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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43
[Transformer-based GN2, FTAG-2023-01]



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/

Domain adaptation: calibrate synthetic to real data

1. Reweighting with ratios ["scale factors”] 2. “Transport your problems away”

Non-overlapping support
Battle curse of dimensionality*

pD)
p'(D) uncalibrated calibrated

p(x)

(b)
[*e.g. using classifiers 1506.02169] [2107.08648] 44



https://arxiv.org/abs/2107.08648
https://arxiv.org/abs/1506.02169

Decorrelation
[Ethical Al in Science]

104 J

1 /JSD5O

[e.g. 2211.02486]

More in a few slides!

Machine learning model
optimization, compression

his 4 ml

HLS
conversion

Many more challenges

103 J

— Ideal
\/\ DisCo
o , cf-DisCo
‘ MoDe [0]
N cf-MoDe [0] ~-Trained on true Z —Adversarial . . f
©  DNN (cf-inputs) —Uncertainty Aware Data Augmentation Maklng SCIentIfIC
T (et = decisions in the
© cfvDNN . presence of
5 10 2 3 2 125 uncertainties
Ry £ 1.00 4
[e.g. 2105.08742]
AMDZ

8 XILINX

/@ INTERPRETABILITY

power,

Tune configuration
laten ym ghpt
sage,

/ Offline — online
ASIC flow [On-the'edgea

1804.06913, his4dml] 45



https://arxiv.org/abs/2211.02486
https://arxiv.org/abs/1804.06913
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2105.08742

Which face is real?

https://thispersondoesnotexist.com



https://thispersondoesnotexist.com/

Why generative models?

Density estimation & outlier detection
Data compression

Mapping from one domain to another
— Language translation, text-to-speech,...

Representation learning
Understanding the data




The ML toolbox: generative models

Fast surrogate model* which maps
random numbers to structure

g > G2

*Deep generative NN model: | -..l
» Variational Autoencoders (VAES)
« Generative Adversarial Network (GANSs) pmodel ~o pdata

« Normalizing Flows (NFs)

. . 48
» Diffusion models



Example: image generation

Train on py,(X) Generate new samples p,.o0e/(X)

MH

Density estimation Q\O

Pmodel =~ Pdata

49



Faces Detector images

Eiot = 5.0 GeV Ewt=10.0GeV  FEi:=20.0GeV  Eir=50.0GeV  Eipr=95.0 GeV
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Considerations:
 Fast

Data Processing

[2210.06204 ,CaloFlow,...]

\
B

 High fidelity
ssssssss < Others « Sample rare events [tails] 50

Conditional sampling [e.g. p(model | prompt)]


https://arxiv.org/abs/2210.06204
https://arxiv.org/pdf/2106.05285.pdf

\ .Hl\l

Ll

Images — Point cloud

Decouple modeling
from detector geometry

.U
(5]
\3. L ...‘
) .

* Addresses sparsity issue
* Promotes portable solutions

51



Point cloud diffusion

Gradually add Gaussaan noise (rlght -to-left=forward)
Reverse “learn the noise”
1000 — 100 — ~few steps (over last ~year)

/ t=9 - P t=1 \
% i A . g W 08 e £

o

\_ % [JetNet data] /

Conditioning
Variables

' Jet pr,m H

J8SIeWIoN

Cosine
Encoding

Time:
~U(0,1)

[PC-JeDi]

Predicted
Noise: €g

—>»TE-Block
A

> TE-Block

] éf))

?

~+—>»TE-Block

_t

—> Dense

T

,—P

zy = y(t)x + o(t)e

o] ™
»

Normaliser
|
O O O

Constituents:
x ~ Data

A

Loss

Noise:

e~N(0,1)

Transformer Encoder (TE) Block

[See also 2206.

11898,...]**


https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/2303.05376
https://zenodo.org/record/4834876
https://arxiv.org/abs/2206.11898

Outlier detection

Example: autonomous driving

Normal data: sunny, highway, straight road

Task: detect new or rare events bl
Solution: outlier detection

/ Outllers:

Edge cases Harsh weather Pedestrians




Outlier detection with autoencoders — does it work?

Not ready for prime time!

Train on normal (=SM)

Encode Decode

Poor reconstruction = anomaly

’%x%&% [NAE]
Challenges: e L
« OQutlierin high-dimensional space Jet level [1808.08979, 1808.08992,

2007.01850, 2301.04660...]
Event level [1806.02350, 2105.14027...]

« Performance ~ leading feature separation
 How to add physics priors without becoming supervised

54


https://arxiv.org/abs/1808.08979
https://arxiv.org/abs/1808.08992
https://arxiv.org/abs/2007.01850
https://arxiv.org/abs/2301.04660
https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/2105.14027
https://arxiv.org/abs/2206.14225

Debiasing

Uncover underlying feature space in data
Possibility to correct for existing biases in the data

\'AS)

Homogeneous skin color & pose Diverse skin color, pose, illumination,...

= Fairness, decorrelation

95



Issue: background sculpting for bump hunting

Background after

Signal .
cut on classifier
[ ] Background ET — gi'g:’:und
2 1 Signal ] T~ 1 vDNN
3 10 L “113: cf-vDNN
O ™ 0
— ‘LLI_ E
€10 | LI;LHj
o}
= W |
™ 50 360 50 100 150 200 250 300
Mass [GeV|

Goal: decorrelate background from mass &




Decorrelation with normalizing flows

A flow is a map between S T
distributions e | Do

It is invertible: no change T(x) L
in separation power ! -

Can be made conditional i




Train a flow to learn

P(VDNN | m)

Inclusive

[T L] Background
] e vDNN
Ty cf-vDNN

g
il

i

"

50 100 150 200 250 300

[2211.02486, 2307.05187]

| —|_|—|_‘_‘:L [ 1 100<m

C—1 0<m
m < 70
70 < m < 100

_;;:_‘_\_—L

LT_LTTLT—Lj

0.0 0.2 0.4 0.6 0.8 1.0
vDNN

L1 0<m

m < 70

70 < m < 100
1 100 <m

00 02 04 06 08 1.0
cf-vDNN
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https://arxiv.org/abs/2211.02486
http://arxiv.org/abs/2307.05187

Explore & interpret learned feature space

LO DO Animal type LO D4 Pose, Animal type L1 D3 Shadow

"‘““0‘9!’1!’1!"7"’7 o 3 & [INfoSCC-GAN]
v o \ \'}Lu Y eRY P '

'-“-’”?WWM ««, by »_

59




The 4 paradigms of
scientific discovery

W=

Observation of natural phenomena
Theoretical models of nature
Numerical computation
Data-intensive scientific discovery

7 g
RNy, »
» e e

(;‘ , v
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“All physics is known, but the equations
are too difficult to be solved.”

- Paul Dirac, 1929 (paraphrased)

5th
The paradigm:

tackle this challenge with ML

61



Long list of hard-to-model systems

Schrodinger’s equation for “large"” systems

Quantum chemistry

Material design (~10'80 stable materials)

Molecule design (~10%° small-molecule drug candidates)
Fluid dynamics

Weather

Climate

Fusion

The Universe

LHC collisions: particles interactions with the ATLAS detector
Experiment design

Challenge: how to explore these vast spaces?



The 5" paradigm: new ML simulators

» Classical simulators are great !
— They encapsulate ALL our understanding to model complex systems

« But they are typically
— Prohibitively costly
— Non-differentiable

ML to rescue: generative models as effective emulators
— Data representation (image, time series, point cloud)
— Inductive bias (symmetries)
— Differentiable for automation (design, optimisation, inference)
— Low computing cost

Bishop, Microsoft]



https://www.microsoft.com/en-us/research/blog/ai4science-to-empower-the-fifth-paradigm-of-scientific-discovery/

Simulation & emulators
Amorﬂ/saﬂon throwgh dimulation

WPECC |\ appec @

Simulate train NN surrogate emulate
g

simulate Max Welling
T Ay @ EuCAIFCon 2024
train W "
slow
test = |
fast

emulate

03:6 Research

Accelerating fusion
science through learned
plasma control

February 16, 2022 Pangu-Weather: A 3D High-Resolution System
for Fast and Accurate Global Weather Forecast

a5, Lings Xou, Hungheng Zhang, Xin Chas, Xiaotes Gs, and O Tias?

Fodow, (EEE

[DeepMind blog]



https://deepmind.google/discover/blog/accelerating-fusion-science-through-learned-plasma-control/

What does a GenModel actually learn?

A07_Vlvllrv T T T T T T T T T T
X Ve
=
»— n

» Data memorization? J

_ Overfitting does NOT seem to be a problem o

02

0.1F

- The mechanism underlying this amazing  -—U il
performance is poorly understood

— Evis
“ D,s Jensen-Shannon divergence:
. 10 How well reproduce the truth density
° Related_ to u nd_erlyl n_g 10_2? Smaller is better
strong inductive bias Vo A
— [GANplification] - e
10-5 . gza;é Ay ~better than 50k real data

4 16 64 256 1k 4k 16k
nquant


https://arxiv.org/abs/2202.07352

Implicit inductive bias

Generative models let us estimate the
probabilities of data occurrences

— even In non-populated regions
of data space (sparsity)



Evaluation of generative models

Comparing multivariate (high-dim joint) distributions is hard
No best GOF test with power against all alternative hypotheses
— Need to know relevant alternatives p,

Set of practical tests to establish trust

— Reproducible ’?
— Standardizable (image, point cloud) .
— Computationally efficient Pmodel ~ PDdata

— Interpretable
— Pragmatic: good enough if OK for task at hand

Typical problems
— GAN: mode collapse [diversity]
— VAE: blurriness [quality]

[2211.10295]


https://arxiv.org/pdf/2211.10295.pdf

Search for the
Unknown




BSM stubbornly
resists discovery

O(8°’000) person years
~2 years per analysis
Average of ~4 people

Best use of resources ?

[Shikma Bressler, Hammers & Na '22]



Who thinks we can do better?



1 Priority

O




How much signature space have we explored?

i BSM — SM; x SM; BSM — SM; x SM3 BSM — complex
e 1 T q/g b t 5 Z|W H i
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=
wn .
T
E
[95]
M
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https://arxiv.org/pdf/1907.06659.pdf

How to quantify coverage?

SUPERSTRING \ & Frond suts)
: Unification
M-theory heteraticN g5,
Ga“olonon, EgxEyp

Type-EA Type-I
So(s2)

What theory prior? [Bayesian vs. Frequentist]

ro“h‘tj

3 Matter

How to interpret “model-agnostic” null results?

« Pragmatic metric?

Maximum model space coverage # excluded signal points

~y

Minimal set of searches # searches

— Benchmark dependence .
— Correlation of final states [stop, 3" gen LQ, tt+MET]
— Volume in embedded space [2208.05484]

What is the next best search given all existing search results?




Poor man’s assessment:. benchmarking

Compromise:
average over “many” benchmarks
100 | qm g Make analysis
sopBe 1 reinterpretable for
= o} : any future benchmark
<
= A0} 4 - _
NPC [Need to provide
- & - . .
o models & likelihoods]
"% 10 20

Median T1I
[2105.14027] 74



https://arxiv.org/abs/2105.14027

Smart sampling with active learning

What active learning can do for us

o
N A "
E)“ooooooooooo 3 - Thrlveson
G| e0000000000 &

0000000000 © . . .
S| sessevecsss 8 high-dimensional
; O 0000000 s
n| @ C ) "N X XK A
2| ofoecesesses ® theory space

o0 o0
. BSM Parameter 1

BSM Parameter 1

\ Q:W\I Ilf\'l'f\ 'aY a' AI\W\"\V\A

[Regress on upper limit with GP for ATLAS mono-H(bb) search, ACAT22] [ATL-PHYS-PUB-2022-045] 75


https://indico.cern.ch/event/1106990/contributions/4998037/attachments/2535599/4363788/activeLearning_acat22_track2.pdf
https://cds.cern.ch/record/2839789

Search for the
Unknown
Part 2




Our powerhorse: 2-hypothesis test
SUSY, etc.

Higgs

Works great if you know

> SARRN LARAN AR RAARY LA RARRY ARAAN LAREN RARRN
& 351 ATLAS ¢ o .
, . 0 E H o 77* o I:lsignal(n\‘:124.SGeVu:166) -
what you’re looking for ! G O e R
y " 2 E \s BTer ! o
S 251 D, srse
i
20

—_ —_
o (6]
EEEERARERRRREN

(&)}
T

T X

80 90 100110120 130 140 150 160 170

m,, [GeV]
Neyman-Pearson Lemma:
Best test statistics is likelihood ratio = p4/p,




K
MATTER”

“~— NoO cLUE

We don’t know what
we're looking for

No frust in p, = playing
the lottery!

po = SM
P, = everything else
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Ideal test: py & p; known (with high stats)

Optimal if: — 1 single LH test (sufficient test statistics)
* pp~ SM Add realism:
* py ~ true BSM * Finite stats

* Mismodeling
 ps NOT known

— Factorize problem
po ~ MC 1

« Limited accuracy | |
* Limited statistics P, assumptions inform

 Event selection
O  Feature choice

Py ~ in-situ BG estimate:

« CATHODE p1 choices:

« CURTAINS « Simplified MC model

« SALAD * Parametric model (fit, NN,...)
. FETA * Learn p, from data — NPLM

« Approximate LH ratio with CWolLa classifier


https://arxiv.org/abs/1806.02350

Learning high-D background templates™

Learn from simulation

Learn from data (SB)

Modeling the
likelihood ratio

aaaaaaaaaaaaaa

12
z
z10
E]
e 8 Sim. + Herwig)
2 6
N
s 4
£
22
0
z2'°
£ g w e i
& Sl
6 0.7
ig)

.u‘\

CATHODE*

[*see also LaCATHODE & ANODE]

Morphing the
features

FETA

[*Fidelity of simulation alone insufficient]

Flow4Flows -/ .o
{f (mign s mi )Y
> {z} ,'T#*]{;gx

_
Nu.
e

i }{ i
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https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2210.14924
https://arxiv.org/abs/2001.04990
https://arxiv.org/pdf/2203.09470.pdf
https://arxiv.org/abs/2211.02487
https://arxiv.org/abs/2001.05001
https://arxiv.org/abs/2212.11285

Classification without labeling (CWolLa)

_ MixedSample] ~ Mixed Sample2 Abandon notion of event label
©e0O®®
OCOO® Noisy labels to be S or B
OO®®G
%g%%% Bump hunt [1902.02634]
) J ATLAS analysis [2005.02983]

Beyond resonances
e.g. symmetries [2203.07529]

Noisy labels: \1

Maximize sensitivity to signal

Classtfier



https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1902.02634
https://arxiv.org/abs/2005.02983
https://arxiv.org/abs/2203.07529

Gedankenexperiment

Fast parametrized model
exists for all possible p;

p 1 / including the true p,

- Po

Known perfectly

How to design the optimal search strategy?



A question of automation

* One classifier?
3106||||||||||||||||||||||||||||||l|||||||||||||||||||||||||||||||| .
g ATLAS ® Data 2015 |:|3-I4-top .Higgs .(f+z/\N/ww th+y Dsingle top
2 10° Vs=13TeV,32 1" .di-hriboson |:|Z/W+Y(y) th+jets DY(Y)H'eiS iZ/Wﬂ'etS Dmultijets ° Event SeIeCtIOn?
= 10t L E™ + single lepton
wf * Feature space?

« Data slicing [# tests]?
— Look elsewhere effect

PY - n n ?
105 signal region [1807.07447] Dial up/down the physics prior”

* |nterpretation w/o benchmarks?

Lots of open questions & room for YOU to make a BIG impact


https://arxiv.org/abs/1807.07447

Optimal search for the unknown

Trade-off between generality and specificity

Knob to tune pareto optimality between the endpoints:
supervised & unsupervised

What metric to assess performance — should not be known
models

What's the follow-up strategy after an "anomalous” signal ?
— Balance cost of follow-up against frequency alerts ?



Diverse Search Strategy

Data-derived signal regions

Coverage & automation

Inject domain knowledge

Go beyond resonances

Sensitivity
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Concept — Production

[Innovate — EXxploit]

Use In Experiment!



The Classics

Reronahnce,
—Pi Idrd%’\

Scientists
model the
world v T

wype-nn  ppe-l
So(sx)y

wijii/j>/

THOUGHT ®F




All models are wrong, but some are are useful.

— GEORGE BOX

Useful in what sense?
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Statistical Modeling

X > | Nature - Y
Data > | Model > | Evaluation
Interpretable [e.g. SM] * Prediction
| - Decision-making
Black box [Al] » Discovery
« Explanation

[Leo Breiman 2001 on statistical modeling: the two cultures]



Hammers & Nails - Machine Learning & HEP
July 19-28, 2017 | Weizmann Institute of Science, Israel

Geoff Hinton

Learning, Optimization
and Generalization

Nati Srebro
TTI-Chicago

III

There exists some “universal” learning
algorithm that can learn anything: language,
vision, speech, etc. The brain is based on it, and
we’re working on uncovering it. (Hint: the brain
uses neural networks)

Expert knowledge:
full specific knowledge
|
Use data to fit
specific model

Machine Learning

more datg

Expert Systems: Physics laws no free lunch

(no data at all)

There is no “free lunch”: no learning is possible

without some prior assumption about the
structure of the problem (prior knowledge)




5. THE USE OF DATA MODELS

Statisticians in applied research consider data
modeling as the template for statistical analysis:
Faced with an applied problem, think of a data
model. This enterprise has at its heart the belief
physicist that a.statisticrarm, by imagination and by lookmg
at the data, can invent a reasonably good_para-
metric class of models for a complex mechanism
devised by nature. Then parameters are estimated
and conclusions are drawn. But when a model is fit
to data to draw quantitative conclusions:

e The conclusions are about the model’s mecha-
nism, and not about nature’s mechamsm

It follows that:

o If the model is a poor emulation of nature, the
[Breiman 2001]  conclusions may be wrong.
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[Breiman 2001]

7.1 A New Research Community

In the mid-1980s two powerful new algorithms
for fitting data became available: neural nets and
decision trees. A new research community using
these tools sprang up. Their goal was predictive
accuracy. The community consisted of young com-
puter scientists, physicists and engineers plus a few
aging statisticians. They began using the new tools
in working on complex prediction problems where it
was obvious that data models were not applicable:
speech recognition, image recognition, nonlinear
time series prediction, handwriting recognition,
prediction in financial markets.
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[Breiman 2001]

Their interests range over many fields that were
once considered happy hunting grounds for statisti-
cians and have turned out thousands of interesting
research papers related to applications and method-
ology. A large majority of the papers analyze real
data. The criterion for any model is what is the pre-
dictive accuracy. An idea of the range of research
of this group can be got by looking at the Proceed-
ings of the Neural Information Processing Systems
Conference (their main yearly meeting) or at the
Machine Learning Journal.
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Model vs. task culture

Model culture Task culture

Data first [e.g. LHC] Task first [e.g. cats vs. dogs]

Goal: build a data model (x, y) Goal: best possible task
fulfillment

Evaluate: generalization Evaluate: on task

Used to drive most of the Al
breakthroughs [e.g. AlphaFold]

Physicists do both !
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The essence of science?

Prediction machine
Finding new regularities
Learning saves computational resources

Reduce dimensionality of problem



[Example: Kepler]
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Learning meaningful latent representations

Plato: myth of the cave

The quest of science:

Learn true underlying
objects (latent variables)

from observed data
(shadows)

The promise of foundation models N



THE WORLD BEYOND
OUR CURRENT REACH
OF SCIENCE

Access to this hidden world with Al?



£

o ", &

e able to talk to
ales?

99



Imagine an Al oracle...

* ...which would give the true answer to any question !

» Such an oracle would revolutionize science and technology
as we know them

» Would scientists be satisfied?
— No. But what if it's the best we will get?
— What if the theory of everything is “beyond human comprehension”

— Does it matter if a human or an Al writes a popular science book
* And explains it to you like a 5-year-old?



Recap: what is a generative model?

An implicit model that describes how data
was generated [probability density]

there is no model-less model]
ChatGPT = implicit model of human-language text]
DALL.E2 = implicit model of natural images]
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SUPERSTRIN G

M-theory heterctic)
@ ﬂolonon’ ‘
Type-EA Type-I

g, &rond s'uts)
Uni€ication

...and we want a model/
of our natural world |

Theory-driven: human ingenuity

Data-learned: foundation models
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The idea of a foundation model (FM)

Random
initialization
»2® )

"

y, -\

Pre-training Fine-tuning | Physicist

Learn how
to speak

Become

an expert

wyer

arpenter

2. Fine-tune on
labeled data +
transfer learning

[Image credit: Kazuhiro Terao]
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Characteristic features of a FM

Pre-train using SSL — no labels needed !
Encode in meaningful data representation

Transferrable & finetunable: adopt to multiple downstream
tasks

Multimodality: common embedding / no pairing needed

FMs = stochastic generative models with high expressiveness and outstanding interpolation and
generalization power in ultra-sparse training data spaces of high dimensionality.



Pre-training

Augmentation [Re-sim]
Masking [next word prediction]
Novel physics-inspired training schemes?
Train using auxiliary tasks? [2008.02831]
Encode physics |[flexible prior]

v /o
\ /
\ /
\ /

_-A 7

Evaluation: go beyond downstream task? ORI RO

\
~ \ -
/ \
/ \
/ \
. N
Y
¢T—> @ @
n

230313937 1) Topogmaph
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https://arxiv.org/abs/2403.07066
https://arxiv.org/abs/2303.13937
https://arxiv.org/pdf/2008.02831
https://arxiv.org/abs/2002.05709

Example: masked particle modeling

Pre-training task: e
Mask & predict i 2 [
constituents of a jet m— 2 e

= TR Mitgation

Particle Tracks i gt
Calarmeater 5
Clusters Pretraining Fine-tuning , Track-Calo

Foundation Clustering

Fine-tune for Colonmeter - e
downstream tasks: > 30

- . . Small Labelled o
» Classification - Datase Sl
Multiple modaities !

» Weak supervision i
S5 | Detection

[2401.13537] 106



http://arxiv.org/abs/2401.13537

We have our own embedding spaces

Reconstruction = common embedding space of our data
Theory space = multi-modal common embedding space

What do FMs add to this?
— End-to-end
— Differentiable
— Democratize Al — commonly trained
— Common model across subdetectors, experiments, domains,...



FM trend: task culture — model culture

Implicit model of the data
Task-specific — generalizes across tasks
Model first — then downstream tasks

Al oracle < interpretability
— Machine understands & explains it to 5-year-old [us]
— Symbolic regression — map to our simple description of math symbols

— Limitation of human brain:
 Humans can only hold 5-9 concepts in working memory at once [length of equation]
2D visualization for human eyes < model of the universe



ML interpretability for science

Science Computer vision

Symbols

| earn
& @ ’ constants
Dataset Genetic Algorithm

s t

y outpu

Model: cos(x) + y + 3.1

Analytic models often generalize better than NN
meolic regression as inductive bias

» » Analytic
?2?? welghts PVS"‘ expression

[black box] [insights]

2G 1 6%Q

T Ao [Miles Cranmer — Hammers & Nails 2022] 109
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Learn Newton’

law from solar system
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GNN — PySR — Learn masses + dynamics

o
—
—



https://arxiv.org/abs/2202.02306

Search for the
Unknown

Part 3




L OOKIN G UNDER THE. LAMPPOST

YEOH,
LOST YOUR | LoST THEM ONER
KEXS? THERE. BUT TWE
K LIGHTS BETTER HERE
: /

5Ketchplamations
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Foundation models for discovery

Common / portable model [efficient]
Accelerate with surrogate models

Automation Automation Automation



Technology — automation — human evolution

The Industrial Revolution (18th Century):
Manual work = operating machinery

The Information Age (Late 20th Century):
Specialized knowledge in programming, data analysis, & more

Al & ML (21st Century):

Need for human expert knowledge, human-Al collaboration,
(personalized) human augmentation, building trust [e.g.
diagnosis]

[https://www.linkedin.com/pulse/paradox-ai-how-automation-amplifies-need-expertise-rishi-sharma]



Al — skill evolution & skill leveler

LLMs augment human intelligence:

0.8

fromusing/Al
across v 8jtasks
05

Did not Used Al
0.2 use Al

use Al

bottom half top half
improved 43% improved 17%

= SkKill leveler

Dell'Acqua et al, “Navigating the Jagged Technological Frontier”
(Harvard Buisness School. 2023)

The rest
of us !

10,000

I Einsteins?

115
[Matt Schwartz, EUCAIFCon 2024]



Humans are mixtures of experts

» Specialize in subset of input data
 Jointly perform complex tasks

« Same trend in Al:
— Increased model capacity
— Reduced computational burden
— Faster training



What if secrets of nature are NOT
In our current data?



p(data | theory)p(theory)

theory | data) =
p( y | data) (dat)

Ultimate goal:
Learning about Nature


https://kds.kek.jp/event/44830/contributions/231630/attachments/164945/214362/KEK_Workshop_2.pdf

Optimizing the science output

1.0
177 2 P— N \\
621 0.5 //, =N \‘
465 P’ Pe_ \ |l
3.09 P II' ’/ ~ \‘l ll
j‘:)z N:g 0.0 1 :’ |'I 'l\‘/) ,’l ,’l
-1.58 = |‘ \\ / /
-3.14 \ \‘ P
-4 69 —05 T ‘\ i ,I,
: -6.25 \\ 7
0.0 02 04 06 08 10 12 14 e
ST (thr=0) . Observed points -1.0 T T T
Estimation e Next point -1.0 -0.5 0.0 0.5 1.0-
fw V2IN?
Optimal Theory Optimal Data Taking / Optimal Optimal
Exploration Experiment Operations Reconstruction Analysis

[Lukas Heinrich - Detector design using differential programing] 119



https://kds.kek.jp/event/44830/contributions/231630/attachments/164945/214362/KEK_Workshop_2.pdf

Natural limit: true posterior p(theory | data)

unreachable

unoptimized
optimized (e.g. w/ ML)

Measurements Searches

(e.g. Higgs Couplings) (e.g. Supersymmetry)
Need better data

[Lukas Heinrich - Detector design using differential programing]
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https://kds.kek.jp/event/44830/contributions/231630/attachments/164945/214362/KEK_Workshop_2.pdf

Design new optimal detector
to optimize p(theory | data)

A

! % i
/B i :
\l ik ;'/ E “‘ . \
T\ :
{
unreachable
[Lukas Heinrich - Detector design using differential programing] @

v


https://kds.kek.jp/event/44830/contributions/231630/attachments/164945/214362/KEK_Workshop_2.pdf

Need design-conditional model p(x | 6,D)

3.0
2.5

Approximate p(x | 6,D) using generative model o |

— Fast B
— Differentiable

0.0
-0.5

True grads

= 0.5 : »

a0 .

Challenge:
p(x | D) without already exploring all design space D

3.0
2.5

Solution:

train local models as you optimize [2002.04632] S0

05 | °,

0.0
-0.5

-1.0

Optimal design = exciting frontier in ML@HEP
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https://arxiv.org/abs/2002.04632
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https://acceleratescience.github.io/assets/uploads/2022-12-15-dagstuhl-ml-for-science-final-ipdf.pdf

Data Science

Bridging High-Energy Physics and Machine Learning communitiés

9 - 13 November 2015, CERN
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The HEP-AI ecosystem

EuCAIF

Journal of Brief Ideas Home Newidea  Trendingideas  Allideas  About  Search Contact

Create standalone simulation tools to facilitate collaboration

between HEP and machine learning community

By Kyle Cranmer, Tim Head, jean-roch viimant, Vladimir Gligorov, Maurizio Pierini,
Gilles Louppe, Andrey Ustyuzhanin, Baldazs Kégl, Peter Elmer, Juan Pavez, Amir
Farbin, Sergei Gleyzer, Steven Schramm, Lukas Heinrich, Michael Williams,
Christian Lorenz MCiller, Daniel Whiteson, Peter Sadowski, Pierre Baldi

Discussions at recent workshops have made it clear that one of the key barriers to collaboration between high energy
physics and the machine learning community is access to training data. Recent successes in data sharing through the
HiggsML and Flavours of Physics Kaggle challenges have borne much fruit, but required significant effort to coordinate.

While static simulated datasets are useful for challenges, in the course of investigating new machine learning
techniques it is advantageous to be able to generate training data on demand (e.g. Refs. 1, 2, 3).
Therefore we recommend efforts be made to produce the ingredients required to facilitate such collaboration:

« Specific challenges for HEP experiments should be fully specified such that minimal domain-specific knowledge
is required to attack them.

Stand-alone simulators should be made open source. They should be developed to be easy to use without
domain-specific expertise, while still being representative of real experimental challenges. Such a simulation will
permit non-HEP researchers to generate realistic HEP datasets for training and testing. These simulators could
range from truth-level simulation of a hard scattering to fast simulation like Delphes, to full GEANT4 simulation of
sensor arrays.

Performance metrics (objective functions) and operational constraints should be defined to evaluate proposed
solutions.
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EUROPEAN Al FOR
FUNDAMENTAL PHYSICS

g CONFERENCE
EuCAIFCon 2024

Bottom-up, community consensus, organized

You can shape the future of Al in Science

We have a compelling Al-in-PP story to tell
Put PP on the global Al4Science map
Convince our community: Al4Science = future
Make Al4Science accessible to general public
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EuCAIF mission

Facilitate research, provide infrastructure, resources, data,
models, connect researchers, define problems & metrics

Topic of interest:
Large-scale foundation models for fundamental physics

Sign up: https://bit.ly/eucaifcon24-wg1 & provide input



https://bit.ly/eucaifcon24-wg1

“New directions in science are
launched by neuch
more often than by new
concepfts.”

- Freeman Dyson




“Solving intelligence, and then
using that to solve everything else.”

- Demis Hassabis, Google DeepMind
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“Go for the messes —
that’s where the action is.”

- Steven Weinberg

“Deep Learning today reminiscent of the field

of particle physics before the Standard
Model: veritable zoo of particies but few

unifying principles.”

- Michael Bronstein on geometric deep learning (freely quoted)




Concluding remarks

Science evolves

ML is one of our sharpest tools
Formulate open-ended questions
Tackle big goals as a community
Value human resources — automation
Concept — production

Al for scientific discovery

Need all you bright minds !
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Thank you !





