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o Markov chains o Bayesian inference
e Definition and properties  Reminder of Bayesian statistics
* The Metropolis-Hastings algorithm e Application of Markov chains
e Other algorithms * Marginalisation, etc
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Nntrocduction to Markov chains




Nlarkov chains: a primer

o Markov Chain Monte-Carlo (MCMC)
» Markov chains are a semi-random sequence of events, or states Z = {Z}
» Stochastic process: each state Z; is reached randomly

» Sequential process: the probability of reaching a state Z; only depends on the
state Z;_, reached before

* Memory-less process: the chain does not remember states before Z;_;

to -~ /\\\_/"\Z\ f)
t N MZy P(Zi|Zy)
) o—-
tr
s .
ty .
t ZS P //i 7\\\\/' - )
5 > ! _ N .
t6 _ . . /Z ’6\.\ _//\\\ @

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference:
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077.

Leila Haegel / IP2I Lyon Bayesian inference with Markov chain Monte Carlo


https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077

Nlarkov chains: a primer

o Markov Chain Monte-Carlo (MCMC)
» Markov chains are a semi-random sequence of events, or states Z = {Z}
» Stochastic process: each state Z; is reached randomly

» Sequential process: the probability of reaching a state Z; only depends on the

state Z;_, reached before

* Memory-less process: the chain does not remember states before Z;_;

o Many applications

-(Sampling of unknown distributions What we will focus on

* Modelling stochastic processes

e Random number generation
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Nlarkov cnain properties

o Irreducibility

e A Markov chain is irreducible if any state in 7 can be reached in a finite number
of steps: P(X,,, =7Z | X,=7Z) > O
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Nlarkov cnain properties

o (A)periodicity
» Astate Z is periodic if it is visited every fixed number of step A (or a multiple NA)

* The period d; is given by the greatest commun denominator (gcd):

o Ifd =1, the state is aperiodic, and so is the Markov chain

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference:
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077.
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Nlarkov cnain properties

o Recurrence

» Astate Z is recurrent if there is a non-0 probability that the Markov chain returns
to Z, and positive recurrent if the number of steps to return to Z; is finite

e The number of steps to return to Z; is:
* Recurrence is defined that P(r;; < 00) =1
Positive recurrence is defined by the expectation is E(7;) < oo
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Nlarkov cnain properties

o Ergodicity

* A Markov chain is ergodic if it is possible to reach any state Z; from any initial
state £,

e Achainis ergodicifitis aperiodic, irreducible and positive recurrent

A good reference on the topic: Gregory Gundersen article
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Nlarkov cnain properties

o Stationarity

* The probability to go from a state to anotheris: P, =PX, ., =24, | X,=Z)

if
* The matrix of transition probabilities P give the probability to reach any state when
in another

o Adistribution Z is stationary it Z = ZP:
the distribution of states is invariant under the transition probability and remains
unchanged as the chain progress

* The chain goes to each state Z; proportionally to the distribution Z: ZZ P, =2
forany Z,Z € § where §in the state space
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Nlarkov cnain properties

o Uniqueness

e A chainthatis irreducible and aperiodic has a unique stationary distribution Z
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Nlarkov cnain properties

o Convergence

e A chainthatis irreducible and aperiodic will always converge to the unique
stationary distribution Z:
PX =7 |Xy=2y — Z() when t - o
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Nlarkov cnain properties

o Sampling a distribution with a Markov chain

* |f we create a Markov chain that is:
 irreducible (can reach any state in the state space)
e aperiodic (is not stuck between a subset of the space)
e positive recurrent (can visit all the steps)

e thenthe chainis:
e defined by a unique stationary distribution (for the chain steps transition)
e ergodic (it can reach any state wherever it starts)

* therefore convergent to the stationary distribution

If we can create a Markov chain with those properties, the steps of the chain will be

proportional to a distribution — the chain steps are samples from the distribution
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Netropolis-Hastings algorithm

o Metropolis-Hastings (MH) algorithm
* Algorithm defining a Markov chain with the properties mentioned beforehand
e Can sample any probability distribution Z(X) if we know a function f(X) o« Z(x)

* The sampled probability distribution is often referred to as the target distribution

* Notably, the MH algorithm can sample:
- multidimensional distributions
- distributions with local minima
- non-continuous functions
- non-differentiable functions
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NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

. MCMC: step 1
x; =-0.9 | T(x;) = 0.27

4 -

w

o

% 37

—

o

@

g 21

=

=

Leila Haegel / IP2I Lyon Bayesian inference with Markov chain Monte Carlo



NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)
o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

. MCMC: step 2
x; =-0.9 | T(x;) = 0.27
4 - Xi+1 =-0.55]|T(x;) = 0.34
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NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

. Compute the Metropolis-Hastings ratio ry;;: 1y =

G(x;y1) JOg X 40)

G(x;) J(xipq | x)

MCMC: step 2

number of steps

x; =-0.9 | T(x;) = 0.27
Xi+1 = -0.55| T(x;) = 0.34
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NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)

o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

. Compute the Metropolis-Hastings ratio ry;;: 1y =

G(x;y1) JOg X 40)

G(x;) J(xipq | x)

* Apply the acceptance function A(x;,,x;) = min{1, ry;y}

MCMC: step 2

number of steps

x; =-0.9 | T(x;) = 0.27
Xi+1 = -0.55| T(x;) = 0.34
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NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)
o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(Xi+1) J(xi | xi+1)
G(x;) J(xipg | x;)

. Compute the Metropolis-Hastings ratio ry;;: 1y =

* Apply the acceptance function A(x;,,x;) = min{1, ry;y}

Equivalent to:
MCMC: step 2

o ryy=>1—acceptstepi+ 1 X = -0.9 | T(;) = 0.27

4 - X1 =-0.55|T(x;) = 0.34

number of steps
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NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)
o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(Xi+1) J(xi | xi+1)
G(x;) J(xipg | x;)

. Compute the Metropolis-Hastings ratio ry;;: 1y =

* Apply the acceptance function A(x;,,x;) = min{1, ry;y}

Equivalent to:
MCMC: step 3

e ryy=>1—acceptstepi+ 1 x; =-0.55 | T(x;) = 0.34

o 1y <1 — throwanumberu enmn(,l) = %s1=-3.05| T} = 0.0
Iy = U — acceptstepi + 1

Fyg < U = rejectstepi+ 1

count again step i

number of steps
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NIH algorithm: an exemple

°© Demonstration for target distribution = Gaussian distribution G(x)
o Firststepi = 1: start with a random choice of hypothetical value x;

* Propose a new step i+ 1: using the jump function J(x; + 1| x;)

G(Xi+1) J(xi | xi+1)
G(x;) J(xipg | x;)

. Compute the Metropolis-Hastings ratio ry;;: 1y =

Apply the acceptance function A(x;, , Xx;) = min{1, 1y}
Equivalent to:
MCMC: step 100000

p(MCMC) =-0.00055
o(MCMC)= 1.005

e ryy=>1— acceptstepi+1 0404 p(T(x)
o(T(x))

_— O

o 1y <1 — throwanumberu enmn(,l)
Iy = U — acceptstepi + 1
Fyg < U = rejectstepi+ 1
count again step i

number of steps (normalised)
o
o
o

 [terate process until obtaining enough
step to analyse the distribution 0.05

Leila Haegel / P2l Lyon Bayesian inference with Markov chain Monte Carlo



NIH algorithm: an exemple

o Case with local minima

» Acceptance function : A(x;, |, x;) = min{1, ryy}

e Can accept steps where 1,y < 1: can sample minima
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)
r>1-2Akx,,x) = 1

r<l1-AM,.,x) = r
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T(x;py [ x) = J Qi 1) AQy 1, %)
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T(x;py [ x) = J Qi 1) AQy 1, %)
* We can derive the detailed balance equation:

Gx) Ty lx) =Gx) JOr[x) A, x)
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)
» Defining the probability to transition to the step x;,, i.e. the transition probability:
T 1x) = T 1) Alxgy g, x)
* We can derive the detailed balance equation:
Gx) T(xyrlx) =G0 JOog1x) Al x)
=G(x;) J(x;.q|x;) min(l, r)
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T 1x) = T 1) Alxgy g, x)
* We can derive the detailed balance equation:
G(x) T(xy|x) =G0 JOry|x) ACgy . x;)
=G(x;) J(x;.q|x;) min(l, r)
G(xipp) SO xip)
G(x) SOy |x)

=G(x;) J(x;.q|x;) min(1,
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T 1x) = T 1) Alxgy g, x)
* We can derive the detailed balance equation:
G(x) T(xy|x) =G0 JOry|x) ACgy . x;)
=G(x;) J(x;.q|x;) min(l, r)
G(xipp) SO xip)
G(x) SOy |x)

=G(x;) J(x;.q|x;) min(1,

= min(G(x;) Jx 1 |1x), GOy JOxglxg) )
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T 1x) = T 1) Alxgy g, x)
* We can derive the detailed balance equation:
G(x) T(xy|x) =G0 JOry|x) ACgy . x;)
=G(x;) J(x;.q|x;) min(l, r)
G(xipp) SO xip)
G(x) SOy |x)

=G(x;) J(x;.q|x;) min(1,

= min(G(x;) Jx 1 |1x), GOy JOxglxg) )

= G(xy ) JOx | x4 ) ACx, x4 0)
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution
e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T 1x) = T 1) Alxgy g, x)
* We can derive the detailed balance equation:
G(x) T(xy|x) =G0 JOry|x) ACgy . x;)
=G(x;) J(x;.q|x;) min(l, r)
G(xipp) SO xip)
G(x) SOy |x)

=G(x;) J(x;.q|x;) min(1,

= min(G(x;) Jx 1 |1x), GOy JOxglxg) )
= G(x; 1) JO | x1) A, X40)

= G(x;1) TOG x4 p)
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Detalled balance eguation

o The detailed balance equation ensure that the steps follow the target distribution

e The acceptance function is: A(x;,,x;) = min(l, r)

» Defining the probability to transition to the step x;,, i.e. the transition probability:
T(x;py [ x) = J Qi 1) AQy 1, %)

* We can derive the detailed balance equation:
Gx) T(xylx) = Gl T0|x;)

* Interpretation: if we propose a step with G(x;, ;) > G(x;)
The acceptance functionis: A(x;,,x;) = 1

G(x;11)
G(x;)

The transition probability is: T(x; | x;, ) =

— The probability to jump back on the previous step is proportional to the ratio of

G(x) value
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Other algorithms

o There exist many algorithms fulfilling the sampling conditions

e Hamiltonian MCMC: introduce gradient of sampled probability to propose more
accepted steps. Can make the chain converge faster, at the expense of the time to
compute the derivative of the target distribution.

e Gibbs sampling: for multidimensional distributions hard to sample, sample 1-
dimension conditional posterior probability

Gibbs HMC _Metropolis-Hastings
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Diagram from Florian Ruppin
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Other algorithms

o There exist many algorithms fulfilling the sampling conditions

e Hamiltonian MCMC: introduce gradient of sampled probability to propose more
accepted steps. Can make the chain converge faster, at the expense of the time to
compute the derivative of the target distribution.

e Gibbs sampling: for multidimensional distributions hard to sample, sample 1-
dimension conditional posterior probability

e Nested sampling: map the multidimensional distribution into a 1-dimensional case
with a set of live points scanning the distribution to sample

Metropolis-Hastings algorithm Nested sampling

Diagram by Will Handley
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Application for Bayesian inference




A reminder of Baves theorem

o Derivation from conditional probabilities

e Probability to observe A and B:
PANnB) = PA) P(BIA) = P(B) P(A|B)

P(B|A) P(A)

= P(A|B) = B,

o Physical interpretation

* To perform Bayesian inference, we interpret 4 as the hypothesis H,
and B as the data D:

Probability of observing the data D Probability of the hypothesis H
according to hypothesis H = “likelihood T T = “prior probability”

MLLILGLD

Probability of the data D independently of the
Probability of the hypothesis H given the data D hypothesis H = “ evidence”

= “posterior probability on H”
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A reminder of Baves theorem

o Bayesian inference is the process of updating the probability on a statement
e Evaluation of the posterior probability on H according the data D
e Bayes theorem reweighs the prior probability according to the likelihood

« Also referred to as “updating belief on H*

o Physical interpretation

* To perform Bayesian inference, we interpret 4 as the hypothesis H,
and B as the data D:

Probability of observing the data D Probability of the hypothesis H
according to hypothesis H = “likelihood T T = “prior probability”

_(P|H) (PH))

P(D)

N

Probability of the data D independently of the
Probability of the hypothesis H given the data D hypothesis H = “ evidence”

= “posterior probability on H”
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Bavesian inference: example

o Example from neutrino physics

» We create a beam of v, with a known spectrum shape

Charged-current v, event rate in the DUNE far detector

1 unoscillated spectrum

200 A1

150 A

100 A

vy, CC Events /| kTon /| POT

50

0 1 2 3 5 6 7 8

4
Energy (GeV)
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Bavesian inference: example

o Example from neutrino physics
» We create a beam of v, with a known spectrum shape

» We observe the v, spectrum after a certain time and realise that some v, are missing

— v, have oscillated into v, or v,

Charged-current v, event rate in the DUNE far detector

1 unoscillated spectrum
+ observed spectrum

200 A

150 A

100 A

vy, CC Events [ kTon /| POT

50
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Bavesian inference: example

o Example from neutrino physics
» We create a beam of v, with a known spectrum shape

» We observe the v, spectrum after a certain time and realise that some v, are missing

— v, have oscillated into v, or v,
 The oscillation probability depends on the parameters 8 and Am?

* We simulate the expected spectrum with several values of {6} and {Amiz}

Charged-current v, event rate in the DUNE far detector

| unoscillated spectrum
1 6=0.79, Am?=2.2-1073 eV?
1 6=0.75, Am?=2.1-1073 eV?
0=0.85 Am?=2.-1073 eV?
+ observed spectrum

200

150

100

vy, CC Events [ kTon /| POT

50

0 1 2 3 5 6 7 8

4
Energy (GeV)
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Bavesian inference: example

o Example from neutrino physics
» We create a beam of v, with a known spectrum shape

» We observe the v, spectrum after a certain time and realise that some v, are missing

— v, have oscillated into v, or v,
 The oscillation probability depends on the parameters 8 and Am?

* We simulate the expected spectrum with several values of {6} and {Amiz}
 We compute the posterior probability for all the parameter values

e The measured value correspond to the highest posterior probability

0.00224
0.00222

g
<1 0.00220

(al,wy ‘g)d

0.00218

0.00216
072 074 076 078 080 082 0.84
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Bavesian inference: example

o Example from neutrino physics

We create a beam of v, with a known spectrum shape

We observe the v, spectrum after a certain time and realise that some v, are missing

— v, have oscillated into v, or v,
The oscillation probability depends on the parameters 8 and Am?

We simulate the expected spectrum with several values of {6;} and {Amiz}
We compute the posterior probability for all the parameter values

The measured value correspond to the highest posterior probability

Alternative option: a gradient descent towards the negative likelihood

between the simulated spectrum and the data, and choosing the

measured value as the minimal value
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How to sample the space”

o The grid option
2 parameters: we define a grid along the possible value and estimate P(6, Am?| D)

e lIssue: incorporating the systematical uncertainties ¢ (due to our limited knowledge
on the flux, the interaction process, the detector response...)

— need to be evaluated for each possible value of {6} and {Am?}

— the posterior we need is actually P(8, Am?,Z|D)

e Grid searches become computationally expensive

x 105
0.00224

0.00222

g
<1 0.00220

(al,wy ‘g)d

0.00218

0.00216
072 074 076 078 080 082 0.84
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How To sample the space”

o The grid option
2 parameters: we define a grid along the possible value and estimate P(6, Am?| D)

e lIssue: incorporating the systematical uncertainties ¢ (due to our limited knowledge
on the flux, the interaction process, the detector response...)

— need to be evaluated for each possible value of {6} and {Am?}

— the posterior we need is actually P(8, Am?,Z|D)

e Grid searches become computationally expensive

o Markov Chain Monte Carlo (MCMC) option
e Grid searches spend the same time on all points of the posterior distribution

* |f we define the posterior distribution as the target function for a Markov chain,

the chain will visit each point of the distribution with a frequency proportional to its
probability

* More suitable for high-dimensional distributions

 Many packages exist in python (emcee, pymc)
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MCMC applied to particle pn

o An exemple of MCMC to sample neutrino oscillation parameters posterior
probabilities

—

* The target distribution is the posterior probability on the oscillation parameters 9

and systematics parameters ¢: P(8, ¢| D)

o All parameters are treated the same by the Markov chain:

a state i is defined by a value of% and m

 The parameters can have different prior probabilities:
— uniform is often chosen if no a priori knowledge
— Gaussian if the parameter has been previously estimated
— other option exist (Jeffrey priors, etc)
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MCMC applied to particle pn

o 3-v oscillation case:

e 4 oscillation parameters
to estimate

e O(100) systematics

parameters

e Results using T2K data

002 004 00604 0.5 0.6.002 0.0025 0.003 -2 0 2
.2 L2 2
sin” 0, sin” ©,, A m3, dcp

L .Haegel. Measurement of nheutrino oscillation parameters using heutrino and

antineutrino data of the T2K experiment. PhD thesis.
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o 3-v oscillation case:

e 4 oscillation parameters
to estimate

e O(100) systematics

parameters

e Results using T2K data

o Where are the systematics?

 We marginalise over

them!

0.02 0.04 0.06 0.4 0.5 0.6.002 0.0025

2 2 2
sin” 6, sin” 6,, A m3,

L .Haegel. Measurement of nheutrino oscillation parameters using heutrino and

antineutrino data of the T2K experiment. PhD thesis.
Leila Haegel / IP2I Lyon Bayesian inference with Markov chain Monte Carlo
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Narainalisation

o Marginal posterior probability: o 0.08

 When lowering the dimension cf‘g
of the sampled posterior,
integrate the probability of the

marginalised parameters

P@A|D) = JP(8|€) P(¢|D) dg

marg. post. proba. density

1 III IIII 1 1
837035 04 045 05 055 06 065 07
)
sin 623
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Converoence & burn-in

o The crucial point: did the chain converge to the stationary distribution before being
stopped?

* The chain can start far from the target distribution
* A ergodic chain will reach the target distribution... eventually

 How to ensure that you are in the stationary stage?

. ~ -

o Look at the Markov chain trace g 18000
L =

* Trace = value of the target distribution = 1700~

: —

as a function of the step iteration N 1600k

e Sample around similar values at soob-
convergence :

» Steps before convergence must be
discarded: called burn-in

I
l | | 1 | | 1 I | | | I | | | I 1 | 1 I 1 | | X 1 03
0 20 40 60 80 100 120

step
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Convergence tests

o Ergodicity

e Are the chains spanning the entire value of parameter space?

e Test: comparison of independent chains

Chains not properly tuned increase step size

v

Not ergodic

Chains properly tuned

Ergodic

ITT

1800

-2 In(L/Lmax)
-2 In(L/Lmax)

1700

1600

||||||1I||'f

1500
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Convergence tests

o Ergodicity
e Are the chains spanning the entire value of parameter space?

e Test: comparison of independent chains

o Geweke diagnostic
e Compare the beginning and the end of a Markov chain

e Select 5% of the chain from its beginning and increment of 5%
e.g.[0-5%], [5-10%], ..., [45-50%)]
and compare with remaining 50% of the chain: [50-100%]

e Useful to determine burn-in value and spot issues

§ 7 i
2 -
“6 1.5:—
_ _ T E
Q— Lini — Lfin 3 osé— L oe
2 2 k: + ¥
\/‘7(37)im: + U(w)fm e T
0.5
1'1E_ + + +
Note: 5% is not a hard rule, other binning can be chosen a3
-2 b rcbacamrbarartdraed e derrvrdcierdea s rarab e

0 5 10 15 20 25 30 35 40 45 50
start of chain A [%]
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o Jump function parameter

 The jump function can be symmetrical = Metropolis algorithm
or asymmetrical = Hastings addition

e The jump function has a width parameter:
— this is referred to as the step size
— its value is heuristic, although literature exist about its optimisation
— strongly impacts the convergence rate of the chain

= 0.65 0655
NS B : e 1"’!' “
S S i : e
| L 1) R
: (|- I : chih LT
055 | M Fi ,”-"i- it 0551 | LT I
' LU L I 1,1’ | | E L e T AR |
J] | | |’} L oy ||Il "ﬁ' } I ost- L LR 1T
- TR AL 1 o B g b
asi 1kl | . ] 045k /114 1
045‘1L li‘,"' Hu' I \| hili' |-|h|'! “ | %:%l
0.4}\1[ i I .} 04}
E , | . | . | . | . 035: ! | | | ) | ) | |
60000 62000 64000 66000 68000 70000 60000 62000 64000 66000 63000 70000
step step
. . 2
(c) sin? 623, large step scale (a) sin” 623, correct step scale
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Autocorrelation

o The steps are correlated between them
* Independent samples can be selected by subsampling the chain

e Value of subsampling order can be determined from the autocorrelation function

k
0(0) . i
where: é ;
8 06
o(k) = E(z; — z) E(ziyx — T) o[
] N—Fk 0.4:—
= —— S (% — %) (@isk — T :
TP BCELICE
[ e
o
071020304050 60 08090100

E = expectation
value
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o The posterior probability can be evaluated for a different definition of the prior

e Equivalentto a variable change of the distribution:
prior in x = prioriny = f(x)
* Need to evaluate the Jacobian of the transformation:

P(H(x) — PHGY)) = PHW) |JO)]
0

- P(H®) | =)

dy

e Can be extended to multi-variable cases
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o The posterior probability can be evaluated for a different definition of the prior

e Equivalentto a variable change of the distribution:
prior in x = prioriny = f(x)

e Need to evaluate the Jacobian of the transformation:
P(H(x)) — P(H(y)) = PHx)) |J(y)]
o0x
P(H(x)) |[—|
dy

e Can be extended to multi-variable cases

5 3F
o -
B V —— prior flat in sin®0, ,
2~
o A useful way to: - — prior flatin 6,
1_
e Check the robustness of the prior -
ol — 90% interval
= I VR S | INETITR 68% interval
-2 * 2D best fit
_3__ ] 1 1 K 1 "l' 1 1 1 | ] | 1 | 1 ] ] |
0 0.02 0.04 0.06 0.08 0.1
sin*(0,,)
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o The posterior probability can be evaluated for a different definition of the prior

e Equivalentto a variable change of the distribution:

prior in x = prioriny = f(x)

e Need to evaluate the Jacobian of the transformation:

P(H(x) — PHGY)) = PHW) |JO)]
0

- P(H®) | =)

dy

e Can be extended to multi-variable cases

0.5

o A useful way to: 0.4

e Check the robustness of the prior 03

* Answer a different question
e.g. what is the probability of
CP-violation (instead of what is the

0.2

I'T'I||'T'I||'T"III]'TIIT“_

Posterior probability density

Scp value) 0.1

)
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Prior flat in SCP:

Bliccl

[]90% c.L.
[ ]95% C.L.

Prior flat in sin SCP:

----90% C.I.
—-95% C.I.
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Baves factor

o Comparison of 2 hypotheses

 If we have 2 hypotheses H, and H,, we can compare them with the Bayes factor, i.e.
the ratio of marginalised likelihood

P(D|H,)
P(D | H,)

e Bayesfactor: Bp =

 |f the prior probabilities are the same, this is equivalent to the ratio of posterior

probabilities
> SRERELELE B L I
» Example: the Bayes factor for normal Z 3500~ [l 1cClI
o -
ordering is B = 3.72 on this plot 2 3000 7] 90% C.1
£ 25001 95% C.I.
e -
2 20001
= .
S 1500
Q C
%' 1000
= -
500:—
0C L | Loy | |
32 a0 0 1
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Conclusion

o Bayesian inference consist in computing a posterior probability density
» Update the probability of a hypothesis according to the information on the data
* Markov Chain Monte-Carlo is a useful tool to sample high dimensional cases

e Can infer any shape of posterior probabilities

o The process requires careful tuning

e Asymptotically, MCMC properties ensure that it will converge to the target distribution
* We do not have infinite time, neither an infinite number of processors

e Ensuring convergence is key to the process

— convincing ourselves that the output is the needed one is not easy!
 Extensive literature about it, but no « one-solution-fit-all »

* Does not mean it should no be used! But not blindly
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Hands-on

o Exercise 1:
e Simple Markov chain sampling example

e Exercise, solution on Google Colab

o Exercise 2:
e Bayesian inference with Markov chain example

e Exercise, solution on Google Colab

e Going further: reproduce with emcee or pyMC packages
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https://drive.google.com/file/d/1-BkkrMx7Y8pXXFUbkyu5xr1YP-8Nk4mY/view?usp=drive_link
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https://emcee.readthedocs.io/en/stable/
https://www.pymc.io

