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Outline

Markov chains 
• Definition and properties 
• The Metropolis-Hastings algorithm  
• Other algorithms

Bayesian inference 
• Reminder of Bayesian statistics 
• Application of Markov chains  
• Marginalisation, etc
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Introduction to Markov chains
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Markov chains: a primer

Markov Chain Monte-Carlo (MCMC) 
• Markov chains are a semi-random sequence of events, or states  
• Stochastic process: each state  is reached randomly 
• Sequential process: the probability of reaching a state  only depends on the 

state  reached before 
• Memory-less process: the chain does not remember states before 

⃗Z = {Zi}

Zi

Zi
Zi−1

Zi−1

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

Z0

P(Z1|Z0)

P(Z2|Z1)

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Many applications 
• Sampling of unknown distributions 
• Modelling stochastic processes  
• Random number generation

What we will focus on

Markov chains: a primer

Markov Chain Monte-Carlo (MCMC) 
• Markov chains are a semi-random sequence of events, or states  
• Stochastic process: each state  is reached randomly 
• Sequential process: the probability of reaching a state  only depends on the 

state  reached before 
• Memory-less process: the chain does not remember states before 

⃗Z = {Zi}

Zi

Zi
Zi−1

Zi−1
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Markov chain properties

Irreducibility 
• A Markov chain is irreducible if any state in  can be reached in a finite number 

of steps: 
⃗Z

P(Xt+τ = Zi | Xt = Zj) > 0

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

Z0

P(Z1|Z0)

P(Z2|Z1)

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Markov chain properties
(A)periodicity 

• A state  is periodic if it is visited every fixed number of step  (or a multiple  ) 
• The period  is given by the greatest commun denominator ( ): 

 
• If , the state is aperiodic, and so is the Markov chain

Zi Δ NΔ

di gcd
di = gcd{t : P(Xt = Zi | X0 = Zi) > 0}

di = 1

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

Z0

P(Z1|Z0)

P(Z2|Z1)

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Markov chain properties
Recurrence  

• A state  is recurrent if there is a non-0 probability that the Markov chain returns 
to , and positive recurrent if the number of steps to return to  is finite 

• The number of steps to return to  is: 
 

• Recurrence is defined that   
Positive recurrence is defined by the expectation is  

Zi
Zi Zi

Zi
τii = min{t > 0 : P(Xt = Zi | X0 = Zi) > 0}

P(τii < ∞) = 1
E(τii) < ∞

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

Z0

P(Z1|Z0)

P(Z2|Z1)

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Markov chain properties
Ergodicity  

• A Markov chain is ergodic if it is possible to reach any state    from any initial 
state  

• A chain is ergodic if it is aperiodic, irreducible and positive recurrent

Zi
Z0

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

Z0

P(Z1|Z0)

P(Z2|Z1)

A good reference on the topic: Gregory Gundersen article

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://gregorygundersen.com/blog/2019/10/28/ergodic-markov-chains/
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Markov chain properties

Stationarity  
• The probability to go from a state to another is:   

• The matrix of transition probabilities  give the probability to reach any state when 
in another 

• A distribution    is stationary if  :  
the distribution of states is invariant under the transition probability and remains 
unchanged as the chain progress 

• The chain goes to each state  proportionally to the distribution : 
for any    where  in the state space

Pij = P(Xt+1 = Zi | Xt = Zj)

P

Z Z = ZP

Zi Z
Zi, Zj ∈ S S

∑
i

Zi Pij = Zj
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Markov chain properties
Uniqueness  

• A chain that is irreducible and aperiodic has a unique stationary distribution Z

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

P(Z1|Z0)

Z0

P(Z2|Z1)

{Zi}

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Markov chain properties
Convergence 

• A chain that is irreducible and aperiodic will always converge to the unique 
stationary distribution :  

  when  
Z

P(Xt = Zi | X0 = Z0) → Z(t) t → ∞

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

P(Z1|Z0)

Z0

P(Z2|Z1)

{Zi}

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Markov chain properties

Sampling a distribution with a Markov chain 
• If we create a Markov chain that is:  

• irreducible (can reach any state in the state space) 
• aperiodic (is not stuck between a subset of the space) 
• positive recurrent (can visit all the steps) 

• then the chain is:  
• defined by a unique stationary distribution (for the chain steps transition) 
• ergodic (it can reach any state wherever it starts) 
• therefore convergent to the stationary distribution

If we can create a Markov chain with those properties, the steps of the chain will be 
proportional to a distribution → the chain steps are samples from the distribution
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Metropolis-Hastings algorithm

Metropolis-Hastings (MH) algorithm 
• Algorithm defining a Markov chain with the properties mentioned beforehand 
• Can sample any probability distribution   if we know a function  
• The sampled probability distribution is often referred to as the target distribution 
• Notably, the MH algorithm can sample: 

- multidimensional distributions  
- distributions with local minima 
- non-continuous functions 
- non-differentiable functions 

Z( ⃗x) f( ⃗x) ∝ Z( ⃗x)
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MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

G(x)

i = 1 xi
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MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

G(x)

i = 1 xi

i + 1 J(xi + 1 |xi)
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MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

G(x)

i = 1 xi

i + 1 J(xi + 1 |xi)

rMH rMH =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1 |xi)

rMH = 1.3
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MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  

G(x)

i = 1 xi

i + 1 J(xi + 1 |xi)

rMH rMH =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1 |xi)

A(xi+1, xi) = min{1, rMH}

rMH = 1.3
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MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
Equivalent to: 

•  → accept step  

G(x)

i = 1 xi

i + 1 J(xi + 1 |xi)

rMH rMH =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1 |xi)

A(xi+1, xi) = min{1, rMH}

rMH ≥ 1 i + 1
rMH = 1.3
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MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
Equivalent to: 

•  → accept step  

•  → throw a number  
                → accept step  
                → reject step  
                              count again step  

G(x)

i = 1 xi

i + 1 J(xi + 1 |xi)

rMH rMH =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1 |xi)

A(xi+1, xi) = min{1, rMH}

rMH ≥ 1 i + 1

rMH < 1 u ∈ ⊓ (0,1)
rMH ≥ u i + 1
rMH < u i + 1

i



Leïla Haegel  /  IP2I Lyon Bayesian inference with Markov chain Monte Carlo 21

MH algorithm: an exemple
Demonstration for target distribution = Gaussian distribution  

• First step : start with a random choice of hypothetical value   

• Propose a new step : using the jump function  

• Compute the Metropolis-Hastings ratio :    

• Apply  the acceptance function  
Equivalent to: 

•  → accept step  

•  → throw a number  
                → accept step  
                → reject step  
                              count again step  

• Iterate process until obtaining enough  
step to analyse the distribution

G(x)

i = 1 xi

i + 1 J(xi + 1 |xi)

rMH rMH =
G(xi+1) J(xi |xi+1)
G(xi) J(xi+1 |xi)

A(xi+1, xi) = min{1, rMH}

rMH ≥ 1 i + 1

rMH < 1 u ∈ ⊓ (0,1)
rMH ≥ u i + 1
rMH < u i + 1

i
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MH algorithm: an exemple

Z0

P(Z1|Z0)

P(Z2|Z1)

{Zi}

Case with local minima 

• Acceptance function :  
• Can accept steps where : can sample minima

A(xi+1, xi) = min{1, rMH}

rMH < 1

Jin, Seung-Seop & Ju, Heekun & Jung, Hyung-Jo. (2019). Adaptive Markov chain Monte Carlo algorithms for Bayesian inference: 
recent advances and comparative study. Structure and Infrastructure Engineering. 10.1080/15732479.2019.1628077. 

https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
https://www.tandfonline.com/doi/full/10.1080/15732479.2019.1628077
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

                                                     →  

                                                     → 

A(xi+1, xi) = min(1, r)

r ≥ 1 A(xi+1, xi) = 1

r < 1 A(xi+1, xi) = r
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                           

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)



Leïla Haegel  /  IP2I Lyon Bayesian inference with Markov chain Monte Carlo 27

Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )

   = min(G(xi) J(xi+1 |xi) , J(xi |xi+1)G(xi+1) )
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )

   = min(G(xi) J(xi+1 |xi) , J(xi |xi+1)G(xi+1) )

    = G(xi+1) J(xi |xi+1) A(xi, xi+1)
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

        

                                  

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi) J(xi+1 |xi) A(xi+1, xi)

= G(xi) J(xi+1 |xi) min(1, r)
J(xi |xi+1)G(xi+1)

J(xi+1 |xi)G(xi)
     = G(xi) J(xi+1 |xi) min(1, )

   = min(G(xi) J(xi+1 |xi) , J(xi |xi+1)G(xi+1) )

    = G(xi+1) J(xi |xi+1) A(xi, xi+1)

   = G(xi+1) T(xi |xi+1)
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Detailed balance equation
The detailed balance equation ensure that the steps follow the target distribution 

• The acceptance function is:   

• Defining the probability to transition to the step , i.e. the transition probability:  

    

• We can derive the detailed balance equation:  

      

• Interpretation: if we propose a step with  

The acceptance function is:   

       The transition probability is:  = 

       → The probability to jump back on the previous step is proportional to the ratio of    

             value 

A(xi+1, xi) = min(1, r)

xi+1

T(xi+1 |xi) = J(xi+1 |xi) A(xi+1, xi)

G(xi) T(xi+1 |xi) = G(xi+1) T(xi |xi+1)

G(xi+1) > G(xi)

A(xi+1, xi) = 1

T(xi |xi+1)

G(x)

G(xi+1)

G(xi)
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Other algorithms

There exist many algorithms fulfilling the sampling conditions 
• Hamiltonian MCMC: introduce gradient of sampled probability to propose more 

accepted steps. Can make the chain converge faster, at the expense of the time to 
compute the derivative of the target distribution. 

• Gibbs sampling: for multidimensional distributions hard to sample, sample 1-
dimension conditional posterior probability

Diagram from Florian Ruppin
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Other algorithms

There exist many algorithms fulfilling the sampling conditions 
• Hamiltonian MCMC: introduce gradient of sampled probability to propose more 

accepted steps. Can make the chain converge faster, at the expense of the time to 
compute the derivative of the target distribution. 

• Gibbs sampling: for multidimensional distributions hard to sample, sample 1-
dimension conditional posterior probability 

• Nested sampling: map the multidimensional distribution into a 1-dimensional case 
with a set of live points scanning the distribution to sample 

Diagram by Will Handley

Metropolis-Hastings algorithm Nested sampling

https://indico.ph.tum.de/event/7314/contributions/7425/attachments/5190/6706/Handley_Slides.pdf
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Application for Bayesian inference
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A reminder of Bayes theorem
Derivation from conditional probabilities 

• Probability to observe A and B:  
 

 

  

P(A ∩ B) = P(A) P(B |A) = P(B) P(A |B)

⇒ P(A |B) =
P(B |A) P(A)

P(B)

Physical interpretation 
• To perform Bayesian inference, we interpret A as the hypothesis H, 

and B as the data D: 

P(H |D) =
P(D |H ) P(H )

P(D)

Probability of the hypothesis H given the data D 
= “posterior probability on H” 

Probability of observing the data D  
according to hypothesis H = “likelihood” 

Probability of the hypothesis H 
= “prior probability” 

Probability of the data D independently of the 
hypothesis H  = “ evidence” 
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A reminder of Bayes theorem

Physical interpretation 
• To perform Bayesian inference, we interpret A as the hypothesis H, 

and B as the data D: 

P(H |D) =
P(D |H ) P(H )

P(D)

Probability of the hypothesis H given the data D 
= “posterior probability on H” 

Probability of observing the data D  
according to hypothesis H = “likelihood” 

Probability of the hypothesis H 
= “prior probability” 

Probability of the data D independently of the 
hypothesis H  = “ evidence” 

Bayesian inference is the process of updating the probability on a statement 
• Evaluation of the posterior probability on  according  the data  
• Bayes theorem reweighs the prior probability according to the likelihood 
• Also referred to as “updating belief on  “ 

H D

H
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Bayesian inference: example
Example from neutrino physics 

• We create a beam of   with a known spectrum shape νμ
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Example from neutrino physics 
• We create a beam of   with a known spectrum shape 

• We observe the  spectrum after a certain time and realise that some  are missing 
→  have oscillated into  or  

νμ

νμ νμ
νμ νe ντ

Bayesian inference: example
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Example from neutrino physics 
• We create a beam of   with a known spectrum shape 

• We observe the  spectrum after a certain time and realise that some  are missing 
→  have oscillated into  or  

• The oscillation probability depends on the parameters  and  
• We simulate the expected spectrum with several values of   and  

νμ

νμ νμ
νμ νe ντ

θ Δm2

{θi} {Δm2
i }

Bayesian inference: example



Leïla Haegel  /  IP2I Lyon Bayesian inference with Markov chain Monte Carlo 40

Example from neutrino physics 
• We create a beam of   with a known spectrum shape 

• We observe the  spectrum after a certain time and realise that some  are missing 
→  have oscillated into  or  

• The oscillation probability depends on the parameters  and  
• We simulate the expected spectrum with several values of   and  
• We compute the posterior probability for all the parameter values 
• The measured value correspond to the highest posterior probability

νμ

νμ νμ
νμ νe ντ

θ Δm2

{θi} {Δm2
i }

Bayesian inference: example

x 105
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Example from neutrino physics 
• We create a beam of   with a known spectrum shape 

• We observe the  spectrum after a certain time and realise that some  are missing 
→  have oscillated into  or  

• The oscillation probability depends on the parameters  and  
• We simulate the expected spectrum with several values of   and  
• We compute the posterior probability for all the parameter values 
• The measured value correspond to the highest posterior probability

νμ

νμ νμ
νμ νe ντ

θ Δm2

{θi} {Δm2
i }

Alternative option: a gradient descent towards the negative likelihood 
between the simulated spectrum and the data, and choosing the 
measured value as the minimal value

Bayesian inference: example
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How to sample the space?
The grid option  

• 2 parameters: we define a grid along the possible value and estimate  
• Issue: incorporating the systematical uncertainties   (due to our limited knowledge 

on the flux, the interaction process, the detector response…) 
→ need to be evaluated for each possible value of   and  
→ the posterior we need is actually   

• Grid searches become computationally expensive

P(θ, Δm2 |D)

⃗ς

{θi} {Δm2
i }

P(θ, Δm2, ⃗ς |D)

x 105
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How to sample the space?
The grid option  

• 2 parameters: we define a grid along the possible value and estimate  
• Issue: incorporating the systematical uncertainties   (due to our limited knowledge 

on the flux, the interaction process, the detector response…) 
→ need to be evaluated for each possible value of   and  
→ the posterior we need is actually   

• Grid searches become computationally expensive

P(θ, Δm2 |D)

⃗ς

{θi} {Δm2
i }

P(θ, Δm2, ⃗ς |D)

Markov Chain Monte Carlo (MCMC) option 
• Grid searches spend the same time on all points of the posterior distribution 
• If we define the posterior distribution as the target function for a Markov chain,  

the chain will visit each point of the distribution with a frequency proportional to its 
probability 

• More suitable for high-dimensional distributions 
• Many packages exist in python (emcee, pymc)
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MCMC applied to particle physics

An exemple of MCMC to sample neutrino oscillation parameters posterior 
probabilities  

• The target distribution is the posterior probability on the oscillation parameters   
and systematics parameters :  

• All parameters are treated the same by the Markov chain:  
a state  is defined by a value of  and  

• The parameters can have different prior probabilities: 
→ uniform is often chosen if no a priori knowledge 
→ Gaussian if the parameter has been previously estimated 
→ other option exist (Jeffrey priors, etc)

⃗ϑ
⃗ς P(ϑ, ⃗ς |D)

i ⃗ϑ(i) ⃗ς(i)
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MCMC applied to particle physics
3-  oscillation case:  

• 4 oscillation parameters 
to estimate 

•  systematics 
parameters 

• Results using T2K data 

ν

𝒪(100)

L.Haegel. Measurement of neutrino oscillation parameters using neutrino and 
antineutrino data of the T2K experiment. PhD thesis.

https://archive-ouverte.unige.ch/unige:103796
https://archive-ouverte.unige.ch/unige:103796
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MCMC applied to particle physics
3-  oscillation case:  

• 4 oscillation parameters 
to estimate 

•  systematics 
parameters 

• Results using T2K data 

ν

𝒪(100)

L.Haegel. Measurement of neutrino oscillation parameters using neutrino and 
antineutrino data of the T2K experiment. PhD thesis.

Where are the systematics?  
• We marginalise over 

them!

https://archive-ouverte.unige.ch/unige:103796
https://archive-ouverte.unige.ch/unige:103796
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Marginalisation
Marginal posterior probability:  

• When lowering the dimension 
of the sampled posterior, 
integrate the probability of the 
marginalised parameters

P(ϑ |D) = ∫ P(ϑ |ς) P(ς |D) dς
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Convergence & burn-in
The crucial point: did the chain converge to the stationary distribution before being  
stopped? 

• The chain can start far from the target distribution  
• A ergodic chain will reach the target distribution… eventually 
• How to ensure that you are in the stationary stage? 

Look at the Markov chain trace 
• Trace = value of the target distribution 

as a function of the step iteration 
• Sample around similar values at 

convergence 
• Steps before convergence must be 

discarded: called burn-in 
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Convergence tests
Ergodicity  

• Are the chains spanning the entire value of parameter space? 
• Test: comparison of independent chains

Chains not properly tuned Chains properly tuned
Not ergodic Ergodic

increase step size
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Convergence tests
Ergodicity  

• Are the chains spanning the entire value of parameter space? 
• Test: comparison of independent chains

Geweke diagnostic  
• Compare the beginning and the end of a Markov chain  
• Select 5% of the chain from its beginning and increment of 5% 

e.g. [0-5%], [5-10%], …, [45-50%] 
and compare with remaining 50% of the chain: [50-100%] 

• Useful to determine burn-in value and spot issues

Note: 5% is not a hard rule, other binning can be chosen
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Step size
Jump function parameter 

• The jump function can be symmetrical → Metropolis algorithm 
                                        or asymmetrical → Hastings addition 

• The jump function has a width parameter: 
→ this is referred to as the step size 
→ its value is heuristic, although literature exist about its optimisation 
 → strongly impacts the convergence rate of the chain
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Autocorrelation
The steps are correlated between them 

• Independent samples can be selected by subsampling the chain 
• Value of subsampling order can be determined from the autocorrelation function 

            𝒜(k) =

= expectation  
     value

where:
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Changing the prior
The posterior probability can be evaluated for a different definition of the prior 

• Equivalent to a variable change of the distribution:  
prior in  → prior in  

• Need to evaluate the Jacobian of the transformation: 
 

                                       

• Can be extended to multi-variable cases

x y = f(x)

P(H(x)) → P(H(y)) = P(H(x)) |J(y) |

= P(H(x)) |
∂x
∂y

|
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Changing the prior

A useful way to: 
• Check the robustness of the prior 

The posterior probability can be evaluated for a different definition of the prior 
• Equivalent to a variable change of the distribution:  

prior in  → prior in  

• Need to evaluate the Jacobian of the transformation: 
 

                                       

• Can be extended to multi-variable cases

x y = f(x)

P(H(x)) → P(H(y)) = P(H(x)) |J(y) |

= P(H(x)) |
∂x
∂y

|



Leïla Haegel  /  IP2I Lyon Bayesian inference for particle & astro physics 55

Changing the prior

A useful way to: 
• Check the robustness of the prior 
• Answer a different question 

e.g. what is the probability of  
CP-violation (instead of what is the 

 value) δCP

The posterior probability can be evaluated for a different definition of the prior 
• Equivalent to a variable change of the distribution:  

prior in  → prior in  

• Need to evaluate the Jacobian of the transformation: 
 

                                       

• Can be extended to multi-variable cases

x y = f(x)

P(H(x)) → P(H(y)) = P(H(x)) |J(y) |

= P(H(x)) |
∂x
∂y

|
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Bayes factor
Comparison of 2 hypotheses  

• If we have 2 hypotheses  and ,  we can compare them with the Bayes factor, i.e. 
the ratio of marginalised likelihood  

• Bayes factor:  
 

• If the prior probabilities are the same, this is equivalent to the ratio of posterior 
probabilities  

• Example: the Bayes factor for normal 
ordering is  on this plot

H1 H2

BF = 3.72

BF =
P(D |H1)
P(D |H2)
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Conclusion
Bayesian inference consist in computing a posterior probability density 

• Update the probability of a hypothesis according to the information on the data 
• Markov Chain Monte-Carlo is a useful tool to sample high dimensional cases 
• Can infer any shape of posterior probabilities

The process requires careful tuning 
• Asymptotically, MCMC properties ensure that it will converge to the target distribution 
• We do not have infinite time, neither an infinite number of processors 
• Ensuring convergence is key to the process  
→ convincing ourselves that the output is the needed one is not easy! 

• Extensive literature about it, but no « one-solution-fit-all »  
• Does not mean it should no be used! But not blindly 
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Hands-on 

Exercise 1: 
• Simple Markov chain sampling example  
• Exercise, solution on Google Colab

Exercise 2: 
• Bayesian inference with Markov chain example  
• Exercise, solution on Google Colab 
• Going further: reproduce with emcee or pyMC packages

https://drive.google.com/file/d/13Fspe08o42hs9Zrt33LE1CXE-nIZfTcb/view?usp=drive_link
https://drive.google.com/file/d/1pwcJ4xJzxkYjmKsSV63c2ulhCjUon_CQ/view?usp=drive_link
https://drive.google.com/file/d/1-BkkrMx7Y8pXXFUbkyu5xr1YP-8Nk4mY/view?usp=drive_link
https://drive.google.com/file/d/12l_1xafxm5dV3hoxFbBQfhMYdqS_hovE/view?usp=drive_link
https://emcee.readthedocs.io/en/stable/
https://www.pymc.io

