IN2P3 School of Statistics Leïla Haegel

15th of May, 2024

IP2I Lyon / CNRS

Bayesian inference with Markov Chains for particle & astro physics

Markov chains \circ

- Definition and properties
- The Metropolis-Hastings algorithm
- Other algorithms

Bayesian inference $\mathsf O$

- Reminder of Bayesian statistics
- Application of Markov chains
- Marginalisation, etc

Introduction to Markov chains

Markov chains: a primer

Markov Chain Monte-Carlo (MCMC) $\mathsf O$

- \bullet Markov chains are a semi-random sequence of events, or states $Z = \{Z_i\}$
- Stochastic process: each state Z_i is reached randomly
- Sequential process: the probability of reaching a state Z_i only depends on the state Z_{i-1} reached before
- *Memory-less process*: the chain does not remember states before *Zi*−¹

Markov chains: a primer

Markov Chain Monte-Carlo (MCMC) $\mathbf O$

- \bullet Markov chains are a semi-random sequence of events, or states $Z = \{Z_i\}$
- Stochastic process: each state Z_i is reached randomly
- Sequential process: the probability of reaching a state Z_i only depends on the state Z_{i-1} reached before
- *Memory-less process*: the chain does not remember states before *Zi*−1

Many applications $\mathbf O$

- Sampling of unknown distributions *What we will focus on*
- Modelling stochastic processes
- Random number generation

Irreducibility \circ

• A Markov chain is *irreducible* if any state in Z can be reached in a finite number of steps: $P(X_{t+\tau} = Z_i \mid X_t = Z_j) > 0$

(A)periodicity \circ

- A state Z_i is *periodic* if it is visited every fixed number of step Δ (or a multiple $N\Delta$)
- The period d_i is given by the greatest commun denominator (gcd): $d_i = \gcd\{t : P(X_t = Z_i \mid X_0 = Z_i) > 0\}$
- If $d_i = 1$, the state is aperiodic, and so is the Markov chain

Recurrence \circ

- A state Z_i is *recurrent* if there is a non-0 probability that the Markov chain returns to $Z_{\dot\imath}$, and *positive recurrent* if the number of steps to return to $Z_{\dot\imath}$ is finite
- \bullet The number of steps to return to Z_i is: $\tau_{ii} = min\{t > 0 : P(X_t = Z_i \mid X_0 = Z_i) > 0\}$
- *Recurrence* is defined that $P(\tau_{ii} < \infty) = 1$ *Positive recurrence is defined by the expectation is* $\mathit{E}(\tau_{ii}) < \infty$

Ergodicity \circ

- \bullet A Markov chain is *ergodic* if it is possible to reach any state $\,Z_{\!i}\,$ from any initial state $Z_{\rm 0}$
- A chain is ergodic if it is *aperiodic*, *irreducible* and *positive recurrent*

A good reference on the topic: [Gregory Gundersen article](https://gregorygundersen.com/blog/2019/10/28/ergodic-markov-chains/)

Stationarity \circ

- The probability to go from a state to another is: $P_{ij} = P(X_{t+1} = Z_i \mid X_t = Z_j)$
- The matrix of transition probabilities P give the probability to reach any state when in another
- A distribution Z is *stationary* if $Z = ZP$: the distribution of states is invariant under the transition probability and remains unchanged as the chain progress
- The chain goes to each state Z_i proportionally to the distribution $Z\colon\sum Z_i\ P_{ij}=Z_j$ for any $Z_i, Z_j \in S$ where S in the state space *i*

Uniqueness \circ

• A chain that is irreducible and aperiodic has a *unique* stationary distribution *Z*

Convergence \circ

• A chain that is irreducible and aperiodic will always *converge* to the unique stationary distribution Z:

 $P(X_t = Z_i \mid X_0 = Z_0) \rightarrow Z(t)$ when $t \rightarrow \infty$

Sampling a distribution with a Markov chain \circ

- If we create a Markov chain that is:
	- irreducible (can reach any state in the state space)
	- aperiodic (is not stuck between a subset of the space)
	- positive recurrent (can visit all the steps)
- then the chain is:
	- defined by a unique stationary distribution (for the chain steps transition)
	- ergodic (it can reach any state wherever it starts)
	- therefore convergent to the stationary distribution

If we can create a Markov chain with those properties, the steps of the chain will be *proportional to a distribution* \rightarrow *the chain steps are samples from the distribution*

Metropolis-Hastings algorithm

Metropolis-Hastings (MH) algorithm $\mathbf O$

- Algorithm defining a Markov chain with the properties mentioned beforehand
- Can sample any probability distribution $Z(\vec{x})$ if we know a function $f(\vec{x}) \propto Z(\vec{x})$
- The sampled probability distribution is often referred to as the *target distribution*
- Notably, the MH algorithm can sample:
	- multidimensional distributions
	- distributions with local minima
	- non-continuous functions
	- non-differentiable functions

Demonstration for target distribution = Gaussian distribution *G*(*x*) \circ

• First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$

- First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$
- Propose a new step $i + 1$: using the *jump function* $J(x_i + 1 | x_i)$

algorithm: an exemp

Demonstration for target distribution = Gaussian distribution *G*(*x*) \circ

- First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$
- Propose a new step $i + 1$: using the *jump function* $J(x_i + 1 | x_i)$

• Compute the Metropolis-Hastings ratio $r_{MH}: r_{MH} =$ $G(x_{i+1}) \, J(x_i \, | \, x_{i+1})$ *G*(*x_i*)</sub> *J*(*x_{i+1}* | *x_i*)

algorithm: an exemp

- First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$
- Propose a new step $i + 1$: using the *jump function* $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio $r_{MH}: r_{MH} =$ $G(x_{i+1}) \, J(x_i \, | \, x_{i+1})$ *G*(*x_i*)</sub> *J*(*x_{i+1}* | *x_i*)
- Apply the *acceptance function* $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$

algorithm: an exemp

- First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$
- Propose a new step $i + 1$: using the *jump function* $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio $r_{MH}: r_{MH} =$ $G(x_{i+1}) \, J(x_i \, | \, x_{i+1})$ *G*(*x_i*)</sub> *J*(*x_{i+1}* | *x_i*)
- Apply the *acceptance function* $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$ Equivalent to:
	- $r_{MH} \geq 1 \rightarrow \text{accept step } i + 1$

- First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$
- Propose a new step $i + 1$: using the *jump function* $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio $r_{MH}: r_{MH} =$ $G(x_{i+1}) \, J(x_i \, | \, x_{i+1})$ *G*(*x_i*)</sub> *J*(*x_{i+1}* | *x_i*)
- Apply the *acceptance function* $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$ Equivalent to:

- First step $i=1$: start with a random choice of hypothetical value $x_{\widetilde t}$
- Propose a new step $i + 1$: using the *jump function* $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio $r_{MH}: r_{MH} =$ $G(x_{i+1}) \, J(x_i \, | \, x_{i+1})$ *G*(*x_i*)</sub> *J*(*x_{i+1}* | *x_i*)
- Apply the *acceptance function* $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$ Equivalent to:

Case with local minima O

- Acceptance function : $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$
- Can accept steps where $r_{MH} < 1$: can sample minima

The *detailed balance equation* **ensure that the steps follow the target distribution**

• The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$

$$
r \ge 1 \to A(x_{i+1}, x_i) = 1
$$

$$
r < 1 \to A(x_{i+1}, x_i) = r
$$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$

The *detailed balance equation* **ensure that the steps follow the target distribution**

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

 $G(x_i)$ $T(x_{i+1} | x_i) = G(x_i)$ $J(x_{i+1} | x_i)$ $A(x_{i+1}, x_i)$

The *detailed balance equation* **ensure that the steps follow the target distribution**

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

 $G(x_i)$ $T(x_{i+1} | x_i) = G(x_i)$ $J(x_{i+1} | x_i)$ $A(x_{i+1}, x_i)$ $= G(x_i)$ $J(x_{i+1} | x_i)$ $min(1, r)$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$
G(x_i) T(x_{i+1} | x_i) = G(x_i) J(x_{i+1} | x_i) A(x_{i+1}, x_i)
$$

= $G(x_i) J(x_{i+1} | x_i) min(1, r)$
= $G(x_i) J(x_{i+1} | x_i) min(1, \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)})$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$
G(x_i) T(x_{i+1} | x_i) = G(x_i) J(x_{i+1} | x_i) A(x_{i+1}, x_i)
$$

= $G(x_i) J(x_{i+1} | x_i) min(1, r)$
= $G(x_i) J(x_{i+1} | x_i) min(1, \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)})$
= $min(G(x_i) J(x_{i+1} | x_i), G(x_{i+1}) J(x_i | x_{i+1}))$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$
G(x_i) T(x_{i+1} | x_i) = G(x_i) J(x_{i+1} | x_i) A(x_{i+1}, x_i)
$$

\n
$$
= G(x_i) J(x_{i+1} | x_i) min(1, r)
$$

\n
$$
= G(x_i) J(x_{i+1} | x_i) min(1, \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)})
$$

\n
$$
= min(G(x_i) J(x_{i+1} | x_i), G(x_{i+1}) J(x_i | x_{i+1}))
$$

\n
$$
= G(x_{i+1}) J(x_i | x_{i+1}) A(x_i, x_{i+1})
$$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$
G(x_i) T(x_{i+1} | x_i) = G(x_i) J(x_{i+1} | x_i) A(x_{i+1}, x_i)
$$

\n
$$
= G(x_i) J(x_{i+1} | x_i) min(1, r)
$$

\n
$$
= G(x_i) J(x_{i+1} | x_i) min(1, \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)})
$$

\n
$$
= min(G(x_i) J(x_{i+1} | x_i), G(x_{i+1}) J(x_i | x_{i+1}))
$$

\n
$$
= G(x_{i+1}) J(x_i | x_{i+1}) A(x_i, x_{i+1})
$$

\n
$$
= G(x_{i+1}) T(x_i | x_{i+1})
$$

The *detailed balance equation* **ensure that the steps follow the target distribution** \circ

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the *transition probability*: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

 $G(x_i)$ $T(x_{i+1} | x_i) = G(x_{i+1}) T(x_i | x_{i+1})$

• Interpretation: if we propose a step with $G(x_{i+1}) > G(x_i)$

The acceptance function is: $A(x_{i+1}, x_i) = 1$

The transition probability is: $T(x_i | x_{i+1}) =$ $G(x_{i+1})$ $G(x_i)$

 \rightarrow The probability to jump back on the previous step is proportional to the ratio of $G(x)$ value

Other algorithms,

There exist many algorithms fulfilling the sampling conditions \circ

- *Hamiltonian MCMC*: introduce gradient of sampled probability to propose more accepted steps. Can make the chain converge faster, at the expense of the time to compute the derivative of the target distribution.
- *Gibbs sampling*: for multidimensional distributions hard to sample, sample 1 dimension conditional posterior probability

Diagram from Florian Ruppin

Other algorithms

There exist many algorithms fulfilling the sampling conditions \circ

- *Hamiltonian MCMC*: introduce gradient of sampled probability to propose more accepted steps. Can make the chain converge faster, at the expense of the time to compute the derivative of the target distribution.
- *Gibbs sampling*: for multidimensional distributions hard to sample, sample 1 dimension conditional posterior probability
- *Nested sampling*: map the multidimensional distribution into a 1-dimensional case with a set of live points scanning the distribution to sample

[Diagram by Will Handley](https://indico.ph.tum.de/event/7314/contributions/7425/attachments/5190/6706/Handley_Slides.pdf)

Application for Bayesian inference

reminder of Bayes theorem

Derivation from conditional probabilities $\mathsf O$

• Probability to observe A and B:

 $P(A \cap B) = P(A) P(B|A) = P(B) P(A|B)$

$$
\Rightarrow P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}
$$

Physical interpretation $\mathsf O$

• To perform Bayesian inference, we interpret *A* as the hypothesis *H,* and *B* as the data *D:*

A reminder of Bayes theorem

Bayesian inference is the process of updating the probability on a statement $\mathbf O$

- Evaluation of the posterior probability on H according $\:$ the data D
- Bayes theorem reweighs the prior probability according to the likelihood
- Also referred to as "updating belief on H "

Physical interpretation \circ

• To perform Bayesian inference, we interpret *A* as the hypothesis *H,* and *B* as the data *D:*

Bayesian inference: example

Example from neutrino physics \circ

• We create a beam of ν_{μ} with a known spectrum shape

Bayesian inference: example

Example from neutrino physics $\mathsf O$

- We create a beam of ν_μ with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing
	- $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}

Bayesian inference: example

Example from neutrino physics $\mathsf O$

- We create a beam of ν_μ with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}
- The oscillation probability depends on the parameters θ and Δm^2
- We simulate the expected spectrum with several values of $\{\theta_i\}$ and $\{\Delta m^2_i\}$

esian inference: example

Example from neutrino physics $\mathsf O$

- We create a beam of ν_μ with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}
- The oscillation probability depends on the parameters θ and Δm^2
- We simulate the expected spectrum with several values of $\{\theta_i\}$ and $\{\Delta m^2_i\}$
- We compute the posterior probability for all the parameter values
- The measured value correspond to the highest posterior probability

lesian inference: example

Example from neutrino physics \circ

- We create a beam of ν_μ with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}
- The oscillation probability depends on the parameters θ and Δm^2
- We simulate the expected spectrum with several values of $\{\theta_i\}$ and $\{\Delta m^2_i\}$
- We compute the posterior probability for all the parameter values
- The measured value correspond to the highest posterior probability

Alternative option: a gradient descent towards the negative likelihood between the simulated spectrum and the data, and choosing the measured value as the minimal value

How to sample the space?

The grid option $\mathsf O$

- 2 parameters: we define a grid along the possible value and estimate $P(\theta, \Delta m^2 \,|\, D)$
- Issue: incorporating the systematical uncertainties $\vec{\zeta}$ (due to our limited knowledge on the flux, the interaction process, the detector response…)
	- \rightarrow need to be evaluated for each possible value of $\{\theta_i\}$ and $\{\Delta m_i^2\}$
	- \rightarrow the posterior we need is actually $P(\theta, \Delta m^2, \vec{\zeta} | D)$
- Grid searches become computationally expensive

How to sample the space?

The grid option \circ

- 2 parameters: we define a grid along the possible value and estimate $P(\theta, \Delta m^2 \,|\, D)$
- Issue: incorporating the systematical uncertainties $\vec{\zeta}$ (due to our limited knowledge on the flux, the interaction process, the detector response…)
	- \rightarrow need to be evaluated for each possible value of $\{\theta_i\}$ and $\{\Delta m_i^2\}$
	- \rightarrow the posterior we need is actually $P(\theta, \Delta m^2, \vec{\zeta} | D)$
- Grid searches become computationally expensive

Markov Chain Monte Carlo (MCMC) option \circ

- Grid searches spend the same time on all points of the posterior distribution
- If we define the posterior distribution as the target function for a Markov chain, *the chain will visit each point of the distribution with a frequency proportional to its probability*
- More suitable for high-dimensional distributions
- Many packages exist in python (emcee, pymc)

MCMC applied to particle physi

An exemple of MCMC to sample neutrino oscillation parameters posterior \circ **probabilities**

- The target distribution is the posterior probability on the oscillation parameters ϑ and systematics parameters $\vec{\varsigma}: P(\vartheta, \vec{\varsigma} \,|\, D)$
- All parameters are treated the same by the Markov chain: a state i is defined by a value of $\vartheta(i)$ and $\varsigma(i)$
- The parameters can have different prior probabilities:
	- \rightarrow uniform is often chosen if no a priori knowledge
	- \rightarrow Gaussian if the parameter has been previously estimated
	- \rightarrow other option exist (Jeffrey priors, etc)

MCMC applied to particle physics

3- ν oscillation case: \circ

- 4 oscillation parameters to estimate
- $\mathcal{O}(100)$ systematics parameters
- Results using T2K data

[L.Haegel. Measurement of neutrino oscillation parameters using neutrino and](https://archive-ouverte.unige.ch/unige:103796) [antineutrino data of the T2K experiment. PhD thesis.](https://archive-ouverte.unige.ch/unige:103796)

MCMC applied to particle physics

3- ν oscillation case: \circ

- 4 oscillation parameters to estimate
- $\mathcal{O}(100)$ systematics parameters
- Results using T2K data
- **Where are the systematics?**
	- We marginalise over them!

[L.Haegel. Measurement of neutrino oscillation parameters using neutrino and](https://archive-ouverte.unige.ch/unige:103796) [antineutrino data of the T2K experiment. PhD thesis.](https://archive-ouverte.unige.ch/unige:103796)

Marginalisation

Marginal posterior probability: \circ

• When lowering the dimension of the sampled posterior, integrate the probability of the marginalised parameters

$$
P(\vartheta | D) = \int P(\vartheta | \varsigma) P(\varsigma | D) d\varsigma
$$

Convergence & burn-in

- **The crucial point: did the chain converge to the stationary distribution before being** $\mathsf O$ **stopped?**
	- The chain can start far from the target distribution
	- A ergodic chain will reach the target distribution… eventually
	- How to ensure that you are in the stationary stage?

Look at the Markov chain trace \circ

- Trace = value of the target distribution as a function of the step iteration
- Sample around similar values at convergence
- Steps before convergence must be discarded: called *burn-in*

Convergence tests

Ergodicity $\mathbf O$

- Are the chains spanning the entire value of parameter space?
- Test: comparison of independent chains

onvergence tests

Ergodicity $\mathsf O$

- Are the chains spanning the entire value of parameter space?
- Test: comparison of independent chains

Geweke diagnostic \circ

- Compare the beginning and the end of a Markov chain
- Select 5% of the chain from its beginning and increment of 5% e.g. [0-5%], [5-10%], …, [45-50%] and compare with remaining 50% of the chain: [50-100%]
- Useful to determine burn-in value and spot issues

$$
G = \frac{\bar{x}_{ini} - \bar{x}_{fin}}{\sqrt{\sigma(x)_{ini}^2 + \sigma(x)_{fin}^2}}
$$

Note: 5% is not a hard rule, other binning can be chosen

$)$ $\overline{S1}$ \overline{C}

Jump function parameter \circ

• The jump function can be symmetrical \rightarrow Metropolis algorithm

or asymmetrical → Hastings addition

- The jump function has a width parameter:
	- → this is referred to as the *step size*
	- \rightarrow its value is heuristic, although literature exist about its optimisation
	- \rightarrow strongly impacts the convergence rate of the chain

Autocorrelation

The steps are correlated between them

- Independent samples can be selected by subsampling the chain
- Value of subsampling order can be determined from the autocorrelation function

$$
\mathcal{A}(k) = \frac{\varrho(k)}{\varrho(0)}
$$
\nwhere:
\n
$$
\varrho(k) = \mathbb{E}(x_i - \bar{x}) \mathbb{E}(x_{i+k} - \bar{x})
$$
\n
$$
= \frac{1}{N-k} \sum_{i}^{N-k} (x_i - \bar{x})(x_{i+k} - \bar{x})
$$
\n
$$
\mathbb{E} = \text{expectation}
$$
\nvalue
\n
$$
\mathbf{b} = \frac{1}{N-2}
$$
\n
$$
\mathbb{E} = \mathbf{b} = \mathbf{c} = \mathbf{d}
$$
\n
$$
\mathbf{c} = \mathbf{d}
$$
\n
$$
\mathbf{b} = \mathbf{b}
$$
\n
$$
\mathbf{c} = \mathbf{b}
$$
\n
$$
\mathbf{c} = \mathbf{b}
$$
\n
$$
\mathbf{c} = \mathbf{b}
$$
\n
$$
\mathbf{b} = \mathbf{b}
$$
\n
$$
\mathbf{c} = \mathbf{b}
$$
\n
$$
\mathbf{c
$$

Changing the prior

The posterior probability can be evaluated for a different definition of the prior

- Equivalent to a variable change of the distribution: prior in $x \to$ prior in $y = f(x)$
- Need to evaluate the Jacobian of the transformation:

$$
P(H(x)) \rightarrow P(H(y)) = P(H(x)) |J(y)|
$$

=
$$
P(H(x)) |\frac{\partial x}{\partial y}|
$$

• Can be extended to multi-variable cases

Changing the prior

The posterior probability can be evaluated for a different definition of the prior \circ

- Equivalent to a variable change of the distribution: prior in $x \to$ prior in $y = f(x)$
- Need to evaluate the Jacobian of the transformation:

$$
P(H(x)) \rightarrow P(H(y)) = P(H(x)) |J(y)|
$$

=
$$
P(H(x)) |\frac{\partial x}{\partial y}|
$$

• Can be extended to multi-variable cases

A useful way to:

• Check the robustness of the prior

Changing the prior

The posterior probability can be evaluated for a different definition of the prior $\mathsf O$

- Equivalent to a variable change of the distribution: prior in $x \to$ prior in $y = f(x)$
- Need to evaluate the Jacobian of the transformation:

$$
P(H(x)) \rightarrow P(H(y)) = P(H(x)) |J(y)|
$$

=
$$
P(H(x)) |\frac{\partial x}{\partial y}|
$$

• Can be extended to multi-variable cases

- Check the robustness of the prior
- Answer a different question e.g. what is the probability of CP-violation (instead of what is the δ_{CP} value)

es factor

Comparison of 2 hypotheses \circ

• If we have 2 hypotheses H_1 and H_2 , we can compare them with the *Bayes factor*, i.e. the ratio of marginalised likelihood

• Bayes factor:
$$
B_F = \frac{P(D|H_1)}{P(D|H_2)}
$$

- If the prior probabilities are the same, this is equivalent to the ratio of posterior probabilities
- Example: the Bayes factor for normal ordering is $B_F~=~\,3.72$ on this plot

Conclusion

Bayesian inference consist in computing a posterior probability density \circ

- Update the probability of a hypothesis according to the information on the data
- Markov Chain Monte-Carlo is a useful tool to sample high dimensional cases
- Can infer any shape of posterior probabilities

The process requires careful tuning \circ

- Asymptotically, MCMC properties ensure that it will converge to the target distribution
- We do not have infinite time, neither an infinite number of processors
- Ensuring convergence is key to the process
	- \rightarrow convincing ourselves that the output is the needed one is not easy!
- Extensive literature about it, but no « one-solution-fit-all »
- Does not mean it should no be used! But not blindly

Hands-on

Exercise 1: \circ

- Simple Markov chain sampling example
- [Exercise,](https://drive.google.com/file/d/13Fspe08o42hs9Zrt33LE1CXE-nIZfTcb/view?usp=drive_link) [solution](https://drive.google.com/file/d/1pwcJ4xJzxkYjmKsSV63c2ulhCjUon_CQ/view?usp=drive_link) on Google Colab

Exercise 2: \circ

- Bayesian inference with Markov chain example
- [Exercise,](https://drive.google.com/file/d/1-BkkrMx7Y8pXXFUbkyu5xr1YP-8Nk4mY/view?usp=drive_link) [solution](https://drive.google.com/file/d/12l_1xafxm5dV3hoxFbBQfhMYdqS_hovE/view?usp=drive_link) on Google Colab
- Going further: reproduce with **emcee** or [pyMC](https://www.pymc.io) packages