IN2P3 School of Statistics

15th of May, 2024

Leïla Haegel IP2I Lyon / C<u>NRS</u>

Bayesian inference with Markov Chains for particle & astro physics

• Markov chains

- Definition and properties
- The Metropolis-Hastings algorithm
- Other algorithms

• Bayesian inference

- Reminder of Bayesian statistics
- Application of Markov chains
- Marginalisation, etc

Introduction to Markov chains

Markov chains: a primer

• Markov Chain Monte-Carlo (MCMC)

- Markov chains are a semi-random sequence of events, or states $\overrightarrow{Z} = \{Z_i\}$
- Stochastic process: each state Z_i is reached randomly
- Sequential process: the probability of reaching a state Z_i only depends on the state Z_{i-1} reached before
- Memory-less process: the chain does not remember states before Z_{i-1}

Markov chains: a primer

• Markov Chain Monte-Carlo (MCMC)

- Markov chains are a semi-random sequence of events, or states $\overrightarrow{Z} = \{Z_i\}$
- Stochastic process: each state Z_i is reached randomly
- Sequential process: the probability of reaching a state Z_i only depends on the state Z_{i-1} reached before
- Memory-less process: the chain does not remember states before Z_{i-1}

• Many applications

- Modelling stochastic processes
- Random number generation

• Irreducibility

• A Markov chain is *irreducible* if any state in \overrightarrow{Z} can be reached in a finite number of steps: $P(X_{t+\tau} = Z_i \mid X_t = Z_j) > 0$

• (A)periodicity

- A state Z_i is *periodic* if it is visited every fixed number of step Δ (or a multiple $N\Delta$)
- The period d_i is given by the greatest commun denominator (gcd): $d_i = gcd\{t : P(X_t = Z_i \mid X_0 = Z_i) > 0\}$
- If $d_i = 1$, the state is aperiodic, and so is the Markov chain

• Recurrence

- A state Z_i is recurrent if there is a non-0 probability that the Markov chain returns to Z_i , and positive recurrent if the number of steps to return to Z_i is finite
- The number of steps to return to Z_i is: $\tau_{ii} = min\{t > 0 : P(X_t = Z_i \mid X_0 = Z_i) > 0\}$
- Recurrence is defined that $P(\tau_{ii} < \infty) = 1$ Positive recurrence is defined by the expectation is $E(\tau_{ii}) < \infty$

• Ergodicity

- A Markov chain is *ergodic* if it is possible to reach any state Z_i from any initial state Z_0
- A chain is ergodic if it is *aperiodic*, *irreducible* and *positive recurrent*

A good reference on the topic: <u>Gregory Gundersen article</u>

• Stationarity

- The probability to go from a state to another is: $P_{ij} = P(X_{t+1} = Z_i | X_t = Z_j)$
- The matrix of transition probabilities *P* give the probability to reach any state when in another
- A distribution Z is stationary if Z = ZP: the distribution of states is invariant under the transition probability and remains unchanged as the chain progress
- The chain goes to each state Z_i proportionally to the distribution Z: $\sum_i Z_i P_{ij} = Z_j$ for any $Z_i, Z_j \in S$ where S in the state space

• Uniqueness

• A chain that is irreducible and aperiodic has a *unique* stationary distribution Z

• Convergence

• A chain that is irreducible and aperiodic will always *converge* to the unique stationary distribution *Z*:

 $P(X_t = Z_i \mid X_0 = Z_0) \rightarrow Z(t)$ when $t \rightarrow \infty$

• Sampling a distribution with a Markov chain

- If we create a Markov chain that is:
 - irreducible (can reach any state in the state space)
 - aperiodic (is not stuck between a subset of the space)
 - positive recurrent (can visit all the steps)
- then the chain is:
 - defined by a unique stationary distribution (for the chain steps transition)
 - ergodic (it can reach any state wherever it starts)
 - therefore convergent to the stationary distribution

If we can create a Markov chain with those properties, the steps of the chain will be proportional to a distribution \rightarrow the chain steps are samples from the distribution

Metropolis-Hastings algorithm

• Metropolis-Hastings (MH) algorithm

- Algorithm defining a Markov chain with the properties mentioned beforehand
- Can sample any probability distribution $Z(\vec{x})$ if we know a function $f(\vec{x}) \propto Z(\vec{x})$
- The sampled probability distribution is often referred to as the *target distribution*
- Notably, the MH algorithm can sample:
 - multidimensional distributions
 - distributions with local minima
 - non-continuous functions
 - non-differentiable functions

- **Demonstration for target distribution = Gaussian distribution** G(x)
 - First step i = 1: start with a random choice of hypothetical value x_i

- First step i = 1: start with a random choice of hypothetical value x_i
- Propose a new step i + 1: using the jump function $J(x_i + 1 | x_i)$

• **Demonstration for target distribution = Gaussian distribution** G(x)

- First step i = 1: start with a random choice of hypothetical value x_i
- Propose a new step i + 1: using the jump function $J(x_i + 1 | x_i)$

• Compute the Metropolis-Hastings ratio r_{MH} : $r_{MH} = \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)}$

- First step i = 1: start with a random choice of hypothetical value x_i
- Propose a new step i + 1: using the jump function $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio r_{MH} : $r_{MH} = \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)}$
- Apply the acceptance function $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$

- First step i = 1: start with a random choice of hypothetical value x_i
- Propose a new step i + 1: using the jump function $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio r_{MH} : $r_{MH} = \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)}$
- Apply the acceptance function $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$ Equivalent to:
 - $r_{MH} \ge 1 \rightarrow \text{accept step } i+1$

- First step i = 1: start with a random choice of hypothetical value x_i
- Propose a new step i + 1: using the jump function $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio r_{MH} : $r_{MH} = \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)}$
- Apply the acceptance function $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$ Equivalent to:

- First step i = 1: start with a random choice of hypothetical value x_i
- Propose a new step i + 1: using the jump function $J(x_i + 1 | x_i)$
- Compute the Metropolis-Hastings ratio r_{MH} : $r_{MH} = \frac{G(x_{i+1}) J(x_i | x_{i+1})}{G(x_i) J(x_{i+1} | x_i)}$
- Apply the acceptance function $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$ Equivalent to:

• Case with local minima

- Acceptance function : $A(x_{i+1}, x_i) = min\{1, r_{MH}\}$
- Can accept steps where $r_{MH} < 1$: can sample minima

• The detailed balance equation ensure that the steps follow the target distribution

• The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$

$$r \ge 1 \rightarrow A(x_{i+1}, x_i) = 1$$
$$r < 1 \rightarrow A(x_{i+1}, x_i) = r$$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$

• The detailed balance equation ensure that the steps follow the target distribution

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

 $G(x_i) T(x_{i+1} | x_i) = G(x_i) J(x_{i+1} | x_i) A(x_{i+1}, x_i)$

• The detailed balance equation ensure that the steps follow the target distribution

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

 $G(x_i) \ T(x_{i+1} | x_i) = G(x_i) \ J(x_{i+1} | x_i) \ A(x_{i+1}, x_i)$ $= G(x_i) \ J(x_{i+1} | x_i) \ min(1, r)$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$G(x_i) \ T(x_{i+1} | x_i) = G(x_i) \ J(x_{i+1} | x_i) \ A(x_{i+1}, x_i)$$

= $G(x_i) \ J(x_{i+1} | x_i) \ min(1, r)$
= $G(x_i) \ J(x_{i+1} | x_i) \ min(1, \frac{G(x_{i+1}) \ J(x_i | x_{i+1})}{G(x_i) \ J(x_{i+1} | x_i)})$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$G(x_i) \ T(x_{i+1} | x_i) = G(x_i) \ J(x_{i+1} | x_i) \ A(x_{i+1}, x_i)$$

= $G(x_i) \ J(x_{i+1} | x_i) \ min(1, r)$
= $G(x_i) \ J(x_{i+1} | x_i) \ min(1, \frac{G(x_{i+1}) \ J(x_i | x_{i+1})}{G(x_i) \ J(x_{i+1} | x_i)})$
= $min(G(x_i) \ J(x_{i+1} | x_i), \ G(x_{i+1}) \ J(x_i | x_{i+1}))$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$G(x_i) \ T(x_{i+1} | x_i) = G(x_i) \ J(x_{i+1} | x_i) \ A(x_{i+1}, x_i)$$

= $G(x_i) \ J(x_{i+1} | x_i) \ min(1, r)$
= $G(x_i) \ J(x_{i+1} | x_i) \ min(1, \frac{G(x_{i+1}) \ J(x_i | x_{i+1})}{G(x_i) \ J(x_{i+1} | x_i)})$
= $min(G(x_i) \ J(x_{i+1} | x_i), \ G(x_{i+1}) \ J(x_i | x_{i+1}))$
= $G(x_{i+1}) \ J(x_i | x_{i+1}) \ A(x_i, x_{i+1})$

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

$$G(x_i) \ T(x_{i+1} | x_i) = G(x_i) \ J(x_{i+1} | x_i) \ A(x_{i+1}, x_i)$$

$$= G(x_i) \ J(x_{i+1} | x_i) \ min(1, r)$$

$$= G(x_i) \ J(x_{i+1} | x_i) \ min(1, \frac{G(x_{i+1}) \ J(x_i | x_{i+1})}{G(x_i) \ J(x_{i+1} | x_i)})$$

$$= \min(G(x_i) \ J(x_{i+1} | x_i), \ G(x_{i+1}) \ J(x_i | x_{i+1}))$$

$$= G(x_{i+1}) \ J(x_i | x_{i+1}) \ A(x_i, x_{i+1})$$

$$= G(x_{i+1}) \ T(x_i | x_{i+1})$$

• The detailed balance equation ensure that the steps follow the target distribution

- The acceptance function is: $A(x_{i+1}, x_i) = min(1, r)$
- Defining the probability to transition to the step x_{i+1} , i.e. the transition probability: $T(x_{i+1} | x_i) = J(x_{i+1} | x_i) A(x_{i+1}, x_i)$
- We can derive the detailed balance equation:

 $G(x_i) T(x_{i+1} | x_i) = G(x_{i+1}) T(x_i | x_{i+1})$

• Interpretation: if we propose a step with $G(x_{i+1}) > G(x_i)$

The acceptance function is: $A(x_{i+1}, x_i) = 1$

The transition probability is: $T(x_i | x_{i+1}) = \frac{G(x_{i+1})}{G(x_i)}$

→ The probability to jump back on the previous step is proportional to the ratio of G(x) value

Other algorithms.

• There exist many algorithms fulfilling the sampling conditions

- *Hamiltonian MCMC*: introduce gradient of sampled probability to propose more accepted steps. Can make the chain converge faster, at the expense of the time to compute the derivative of the target distribution.
- *Gibbs sampling*: for multidimensional distributions hard to sample, sample 1dimension conditional posterior probability

Diagram from Florian Ruppin

Other algorithms.

• There exist many algorithms fulfilling the sampling conditions

- *Hamiltonian MCMC*: introduce gradient of sampled probability to propose more accepted steps. Can make the chain converge faster, at the expense of the time to compute the derivative of the target distribution.
- *Gibbs sampling*: for multidimensional distributions hard to sample, sample 1dimension conditional posterior probability
- Nested sampling: map the multidimensional distribution into a 1-dimensional case with a set of live points scanning the distribution to sample

Diagram by Will Handley

Application for Bayesian inference

A reminder of Bayes theorem

• Derivation from conditional probabilities

Probability to observe A and B:
 P(A = P)
 P(A)
 P(D)
 P(D)

 $P(A \cap B) = P(A) P(B|A) = P(B) P(A|B)$

$$\Rightarrow P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

• Physical interpretation

• To perform Bayesian inference, we interpret *A* as the hypothesis *H*, and *B* as the data *D*:

A reminder of Bayes theorem

• Bayesian inference is the process of updating the probability on a statement

- Evaluation of the posterior probability on H according the data D
- Bayes theorem reweighs the prior probability according to the likelihood
- Also referred to as "updating belief on H "

• Physical interpretation

• To perform Bayesian inference, we interpret *A* as the hypothesis *H*, and *B* as the data *D*:

• Example from neutrino physics

• We create a beam of ν_{μ} with a known spectrum shape

• Example from neutrino physics

- We create a beam of ν_{μ} with a known spectrum shape
- We observe the u_{μ} spectrum after a certain time and realise that some u_{μ} are missing
 - $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}

• Example from neutrino physics

- We create a beam of ν_{μ} with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}
- The oscillation probability depends on the parameters heta and Δm^2
- We simulate the expected spectrum with several values of $\{ heta_i\}$ and $\{\Delta m_i^2\}$

• Example from neutrino physics

- We create a beam of ν_{μ} with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}
- The oscillation probability depends on the parameters heta and Δm^2
- We simulate the expected spectrum with several values of $\{\theta_i\}$ and $\{\Delta m_i^2\}$
- We compute the posterior probability for all the parameter values
- The measured value correspond to the highest posterior probability

• Example from neutrino physics

- We create a beam of ν_{μ} with a known spectrum shape
- We observe the ν_{μ} spectrum after a certain time and realise that some ν_{μ} are missing $\rightarrow \nu_{\mu}$ have oscillated into ν_{e} or ν_{τ}
- The oscillation probability depends on the parameters heta and Δm^2
- We simulate the expected spectrum with several values of $\{\theta_i\}$ and $\{\Delta m_i^2\}$
- We compute the posterior probability for all the parameter values
- The measured value correspond to the highest posterior probability

Alternative option: a gradient descent towards the negative likelihood between the simulated spectrum and the data, and choosing the measured value as the minimal value

How to sample the space?

• The grid option

- 2 parameters: we define a grid along the possible value and estimate $P(\theta, \Delta m^2 | D)$
- Issue: incorporating the systematical uncertainties $\vec{\zeta}$ (due to our limited knowledge on the flux, the interaction process, the detector response...)
 - → need to be evaluated for each possible value of $\{\theta_i\}$ and $\{\Delta m_i^2\}$
 - → the posterior we need is actually $P(\theta, \Delta m^2, \vec{\zeta} \mid D)$
- Grid searches become computationally expensive

How to sample the space?

• The grid option

- 2 parameters: we define a grid along the possible value and estimate $P(\theta, \Delta m^2 | D)$
- Issue: incorporating the systematical uncertainties $\vec{\zeta}$ (due to our limited knowledge on the flux, the interaction process, the detector response...)
 - → need to be evaluated for each possible value of $\{\theta_i\}$ and $\{\Delta m_i^2\}$
 - → the posterior we need is actually $P(\theta, \Delta m^2, \vec{\zeta} \mid D)$
- Grid searches become computationally expensive

• Markov Chain Monte Carlo (MCMC) option

- Grid searches spend the same time on all points of the posterior distribution
- If we define the posterior distribution as the target function for a Markov chain, the chain will visit each point of the distribution with a frequency proportional to its probability
- More suitable for high-dimensional distributions
- Many packages exist in python (emcee, pymc)

MCMC applied to particle physics

An exemple of MCMC to sample neutrino oscillation parameters posterior probabilities

- The target distribution is the posterior probability on the oscillation parameters $\overline{\vartheta}$ and systematics parameters $\vec{\zeta}$: $P(\vartheta, \vec{\zeta} | D)$
- All parameters are treated the same by the Markov chain: a state *i* is defined by a value of $\overrightarrow{\vartheta(i)}$ and $\overrightarrow{\varsigma(i)}$
- The parameters can have different prior probabilities:
 - → uniform is often chosen if no a priori knowledge
 - → Gaussian if the parameter has been previously estimated
 - → other option exist (Jeffrey priors, etc)

MCMC applied to particle physics

° 3- ν oscillation case:

- 4 oscillation parameters to estimate
- $\mathcal{O}(100)$ systematics parameters
- Results using T2K data

L.Haegel. Measurement of neutrino oscillation parameters using neutrino and antineutrino data of the T2K experiment. PhD thesis.

MCMC applied to particle physics

- ° 3- ν oscillation case:
 - 4 oscillation parameters to estimate
 - $\mathcal{O}(100)$ systematics parameters
 - Results using T2K data
- Where are the systematics?
 - We marginalise over them!

L.Haegel. Measurement of neutrino oscillation parameters using neutrino and antineutrino data of the T2K experiment. PhD thesis.

Marginalisation

• Marginal posterior probability:

 When lowering the dimension of the sampled posterior, integrate the probability of the marginalised parameters

$$P(\vartheta | D) = \int P(\vartheta | \varsigma) P(\varsigma | D) d\varsigma$$

Convergence & burn-in

- The crucial point: did the chain converge to the stationary distribution before being stopped?
 - The chain can start far from the target distribution
 - A ergodic chain will reach the target distribution... eventually
 - How to ensure that you are in the stationary stage?

• Look at the Markov chain trace

- Trace = value of the target distribution as a function of the step iteration
- Sample around similar values at convergence
- Steps before convergence must be discarded: called *burn-in*

Convergence tests

• Ergodicity

- Are the chains spanning the entire value of parameter space?
- Test: comparison of independent chains

Convergence tests

• Ergodicity

- Are the chains spanning the entire value of parameter space?
- Test: comparison of independent chains

• Geweke diagnostic

- Compare the beginning and the end of a Markov chain
- Select 5% of the chain from its beginning and increment of 5% e.g. [0-5%], [5-10%], ..., [45-50%] and compare with remaining 50% of the chain: [50-100%]
- Useful to determine burn-in value and spot issues

$$G = \frac{\bar{x}_{ini} - \bar{x}_{fin}}{\sqrt{\sigma(x)_{ini}^2 + \sigma(x)_{fin}^2}}$$

Note: 5% is not a hard rule, other binning can be chosen

Step size

• Jump function parameter

• The jump function can be symmetrical \rightarrow Metropolis algorithm

or asymmetrical \rightarrow Hastings addition

- The jump function has a width parameter:
 - \rightarrow this is referred to as the step size
 - → its value is heuristic, although literature exist about its optimisation
 - → strongly impacts the convergence rate of the chain

51

Autocorrelation

• The steps are correlated between them

- Independent samples can be selected by subsampling the chain
- Value of subsampling order can be determined from the autocorrelation function

$$\mathscr{A}(k) = \frac{\varrho(k)}{\varrho(0)}$$

where:

$$\varrho(k) = \mathbb{E}(x_i - \bar{x}) \mathbb{E}(x_{i+k} - \bar{x})$$
$$= \frac{1}{N-k} \sum_{i=1}^{N-k} (x_i - \bar{x})(x_{i+k} - \bar{x})$$

E = expectation value

(b) Δm_{32}^2

Changing the prior

• The posterior probability can be evaluated for a different definition of the prior

- Equivalent to a variable change of the distribution: prior in $x \rightarrow \text{prior}$ in y = f(x)
- Need to evaluate the Jacobian of the transformation:

$$P(H(x)) \rightarrow P(H(y)) = P(H(x)) |J(y)|$$
$$= P(H(x)) |\frac{\partial x}{\partial y}|$$

• Can be extended to multi-variable cases

Changing the prior

• The posterior probability can be evaluated for a different definition of the prior

- Equivalent to a variable change of the distribution: prior in $x \rightarrow \text{prior}$ in y = f(x)
- Need to evaluate the Jacobian of the transformation:

$$P(H(x)) \rightarrow P(H(y)) = P(H(x)) |J(y)|$$
$$= P(H(x)) |\frac{\partial x}{\partial y}|$$

• Can be extended to multi-variable cases

• A useful way to:

• Check the robustness of the prior

Changing the prior

• The posterior probability can be evaluated for a different definition of the prior

- Equivalent to a variable change of the distribution: prior in $x \rightarrow \text{prior}$ in y = f(x)
- Need to evaluate the Jacobian of the transformation:

$$P(H(x)) \rightarrow P(H(y)) = P(H(x)) |J(y)|$$
$$= P(H(x)) |\frac{\partial x}{\partial y}|$$

• Can be extended to multi-variable cases

• A useful way to:

- Check the robustness of the prior
- Answer a different question e.g. what is the probability of CP-violation (instead of what is the δ_{CP} value)

Bayes factor

• Comparison of 2 hypotheses

• If we have 2 hypotheses H_1 and H_2 , we can compare them with the Bayes factor, i.e. the ratio of marginalised likelihood

• Bayes factor:
$$B_F = \frac{P(D \mid H_1)}{P(D \mid H_2)}$$

- If the prior probabilities are the same, this is equivalent to the ratio of posterior probabilities
- Example: the Bayes factor for normal ordering is $B_F = 3.72$ on this plot

Conclusion

• Bayesian inference consist in computing a posterior probability density

- Update the probability of a hypothesis according to the information on the data
- Markov Chain Monte-Carlo is a useful tool to sample high dimensional cases
- Can infer any shape of posterior probabilities

• The process requires careful tuning

- Asymptotically, MCMC properties ensure that it will converge to the target distribution
- We do not have infinite time, neither an infinite number of processors
- Ensuring convergence is key to the process
 - \rightarrow convincing ourselves that the output is the needed one is not easy!
- Extensive literature about it, but no « one-solution-fit-all »
- Does not mean it should no be used! But not blindly

Hands-on

• Exercise 1:

- Simple Markov chain sampling example
- Exercise, solution on Google Colab

• Exercise 2:

- Bayesian inference with Markov chain example
- <u>Exercise</u>, <u>solution</u> on Google Colab
- Going further: reproduce with <u>emcee</u> or <u>pyMC</u> packages