A. de Wit (inspired by lectures at previous schools, in particular N. Berger's lectures at SOS2022)

Interval estimation, limits, systematics, and beyond SOS 2024

Overview

Lecture 1

- Building a statistical model
- Interval estimation
- Systematic uncertainties

Lecture 2

- Hypothesis tests for discovery
- Limit setting

Disclaimer

• I'm an LHC physicist mainly working on Higgs physics

• The examples I give will be biased

• The concepts should however be generally applicable!

Building statistical models

Particle physics experiments: counting

- \sim Ndata Nbkg $=$ Nsig
- With the integrated luminosity and the efficiency x acceptance of the event selection ➔ can measure the cross section
	- Reality is not that simple: uncertainties!

Particle physics experiments: counting

- Not necessarily simple
- Can count all events in a region, or in different bins (selections)

Particle physics experiments: counting

- Can also count without binning
- NB in the analysis example here, the data *were* binned
- Background and signal modelled with continuous distributions

Counting

• Usual situation: produce large number of events n, select only a small fraction

- p.
- A binomial process, in principle

$$
P(k|p, n) = \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Counting

• Usual situation: produce large number of events n, select only a small fraction

- p.
- A binomial process, in principle

9

$$
P(k|p, n) = \frac{n!}{k!(n-k)!}p^{k}(1-p)^{n-k}
$$

n large, p small Poisson distribution!

$$
P(k | \lambda) = \frac{e^{-\lambda} \lambda^k}{k!}
$$

 $λ ~ n p$

From data to parameters

- Have the data, want to draw some conclusions from it
- ie: get the parameters of the model (e.g. mass of a new particle, cross section, ...) from the data
- ➔ Use the **likelihood**

11

Likelihoods for counting models $\mathscr{L}(\vec{\alpha}) \propto p(\text{data} | \vec{\alpha})$ \blacksquare $\ddot{}$

The likelihood is not a probability, contains multiplicative factors, which we'll simply ignore for now since the important point is that they do not depend on the data or the parameters

We have seen the p(data|a) is a Poisson probability when we are counting.

If we are only counting one number, we have number of observed events N and some number of expected events, which we can construct as μS+B μ is a parameter that scales the reference number of signal events, it is our **parameter of interest**. B could be seen as a **nuisance parameter**. We will encounter more nuisance parameters later

 $\mathscr{L} \propto p(N|\mu, S, B) =$

$$
e^{-(\mu S + B)} (\mu S + B)^N
$$

N!

Multiple bins

Extend our model to consider all bins, have observations N0....Nnbins, expected Signal and Backgrounds S1...Snbins and B0....Bnbins

$$
p(\overrightarrow{N}|\mu, \overrightarrow{S}, \overrightarrow{B}) =
$$

\n
$$
\sum_{i=1}^{n} e^{-(\mu S_i + B_i)} (\mu S_i + B_i)^N_i
$$

\n
$$
N_i!
$$

Extended unbinned likelihoods • For some variable *m* distributed according to a pdf f(*m*), and nevts observations, the likelihood would be

• But nevts is itself Poisson-distributed! Need to **extend** the likelihood

$$
\mathcal{L} \propto \prod_{i=1}^{n_{\text{euts}}} f(m_i)
$$

Extended unbinned likelihoods • For some variable *m* distributed according to a pdf f(*m*), and nevts observations, the likelihood would be

• But nevts is itself Poisson-distributed! Need to **extend** the likelihood

$$
\mathcal{L} \propto \prod_{i=1}^{n_{\text{euts}}} f(m_i)
$$

$$
\prod_{i=1}^{\text{evts}} f(m_i) = \frac{e^{-(\mu S + B)}(\mu S + B)^n \text{evts}}{n_{\text{evts}}} \prod_{i=1}^{\text{n}} f(m_i)
$$

Extended unbinned likelihoods • For some variable *m* distributed according to a pdf f(*m*), and nevts observations, the likelihood would be

• But nevts is itself Poisson-distributed! Need to **extend** the likelihood

$$
\mathcal{L} \propto \prod_{i=1}^{n_{\text{euts}}} f(m_i)
$$

$$
\mathcal{L} \propto \prod_{i=1}^{n_{\text{evts}}} f(m_i) \to \text{Pois}(n_{\text{evts}} | \mu S + B) \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)}(\mu S + B)^n \text{evts}}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(n_{\text{evts}} | \mu S + B)^n \text{evts}
$$
\n
$$
= \frac{e^{-(\mu S + B)}}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} (\mu S + B) f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} (\mu S + B) \left(\frac{\mu S p_{\text{sig}}(m_i) + B p_{\text{bkg}}(m_i)}{\mu S + B}\right)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1}^{n_{\text{evts}}} f(m_i)}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)} \prod_{i=1
$$

$$
\mathcal{L} \propto \prod_{i=1}^{n_{\text{evts}}} f(m_i) \to \text{Pois}(n_{\text{evts}} | \mu S + B) \prod_{i=1}^{n_{\text{evts}}} f(m_i) = \frac{e^{-(\mu S + B)}(\mu S + B)^n \text{evts}}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} f(m_i)
$$

$$
= \frac{e^{-(\mu S + B)}}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} (\mu S + B) f(m_i) = \frac{e^{-(\mu S + B)}}{n_{\text{evts}}} \prod_{i=1}^{n_{\text{evts}}} (\mu S + B) \left(\frac{\mu Sp_{\text{sig}}(m_i) + Bp_{\text{bkg}}(m_i)}{\mu S + B} \right)
$$

13 **Remember f is a pdf so needs to be normalized**

Binned and unbinned likelihoods

14

$$
\frac{e^{-(\mu S+B)}(\mu S+B)^N}{\cdot}
$$

N!

Likelihood: single poisson probability

Likelihood: product of poisson probabilities

$$
\frac{\mathbf{S}_{e} - (\mu S_i + B_i)}{P_i} (\mu S_i + B_i)^N
$$

Red unbinned likelihood

$$
\frac{\sum_{i=1}^{n} n_{\text{evts}}}{\prod_{i=1}^{n} \mu \text{Sp}_{\text{sig}}(m_i) + B p_{\text{bkg}}(m_i)}
$$

Maximum-likelihood estimate

we can use it to determine parameter estimates

$\mathscr{L}(\vec{\alpha}) \propto p(\text{data} | \vec{\alpha})$ $\ddot{}$ ∫
∴

- Maximising the likelihood: find values of **α** for which we get max_a²
-

• We know how to define a likelihood for the experiments that we are doing \rightarrow

• Example: Simple counting model with n observed events, no bkg expectation

α ℒ⃗ (*α*)

"Unphysical" MLE's

- likely **for the observed dataset**
- Function of the data, not necessarily the "true" value
- MLE estimate of a cross section could come out negative if the data has fluctuated below the background expectation
	- Not wrong! MLE is not a statement on the true value

• The maximum-likelihood estimate gives the value(s) of the POIs that are most

Systematic uncertainties

Uncertainties in a measurement

Consider a measurement of production cross sections = maximum-likelihood

estimate of the value, with a confidence interval

Incorporating systematic uncertainties

- Systematic uncertainty = what we don't know exactly about the model
- Add **nuisance parameters** to the model to describe them

• These parameters are generally not completely free \mathscr{L} (data | μ) $\rightarrow \mathscr{L}$ (data | μ , $\vec{\theta}$) = \mathscr{L} ^{measurement}(data | μ , $\vec{\theta}$) $C(\vec{\theta})$ ⃗ Parameter of interest (e.g. number of signal events, signal strength,...) Nuisance parameters Constraint on NP

 $\ddot{}$ ⃗

Constrained nuisance parameters

- What is the form of C(**θ**)?
	- the "measured" values

• Must at least be a function of the "nominal" values of the parameters and

• Auxiliary measurement, e.g. luminosity measurement by an independent

- Where does θ come from?
	- detector, or an efficiency measurement in a control region
	- Can determine L=X \pm y fb⁻¹ \rightarrow relative uncertainty y/X. Assuming y represents a 1σ uncertainty: Gaussian constraint makes sense

$$
C(\vec{\theta}) = C(\vec{\theta}_0 | \vec{\theta})
$$

• Assume an analysis counts the number of events in pp collisions (with some

• Model for the number of expected events n_{exp} depends on μ , a reference signal cross section σ_{sig}, the background cross section σ_{bkg}, the selection efficiency (ε) and detector acceptance (A) , and the integrated luminosity L^{int}

A simple likelihood model with nuisance parameters $\mathscr{L}(\mu, \theta) \propto p(\text{data}|\mu, \theta) \cdot C(\theta_0|\theta)$ $\ddot{}$ ⃗ ⃗

- selections as we're looking for a particular process)
- Number of observed events: N
-
- Assume the luminosity is subject to a 2.5% uncertainty

21

What will our statistical model look like?

A simple likelihood model with nuisance parameters $\mathscr{L}(\mu, \theta) \propto p(\texttt{data}|\mu, \theta) \cdot C(\theta_0 | \theta)$ $\ddot{}$ ⃗ ⃗

*ⁿ*exp ⁼ *μσ*sig*ϵ*sig*A*sig*L*int ⁺ *^σ*bkg*ϵ*bkg*A*bkg*L*int

Probability term in the likelihood: **Poisson probability**

$$
p(N | n_{exp}) = \frac{n_{exp}^N e^{-n exp}}{N!}
$$

\n
$$
n_{exp} = \mu \sigma_{sig} \epsilon_{sig} A_{sig} L^{int} + \sigma_{bkg} \epsilon_{bkg}
$$

A simple likelihood model with nuisance parameters $\left[\exp(\text{data}|\mu, \hat{\theta})\right] \cdot C(\theta_0|\hat{\theta})$ ⃗ ⃗

But wait, the luminosity has an uncertainty $L^{\text{int}} \rightarrow L^{\text{int}} (1 + 0.025)$

A simple likelihood mode

$$
\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data})
$$

Probability term in the likelihood: **Poisson probability**

θ

A simple likelihood model with nuisance parameters $\left[\exp(\text{data}|\mu, \hat{\theta})\right] \cdot C(\theta_0|\hat{\theta})$ ⃗ ⃗

$$
g^A bkg^{L^{\mathsf{int}}}
$$

A simple likelihood mode

$$
\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data})
$$

Probability term in the likelihood: **Poisson probability**

But wait, the luminosity has an uncertainty $L^{\text{int}} \rightarrow L^{\text{int}} (1 + 0.025)$ *θ* $n_{exp} = \mu \sigma_{sig} \epsilon_{sig} A_{sig} L^{init} 1.025^{\theta} + \sigma_{bkg} \epsilon_{bkg} A_{bkg} L^{init} 1.025^{\theta}$

$\mathscr{L}(\mu, \theta) \propto p(\text{data}|\mu, \theta) \cdot C(\theta_0 | \theta)$ $\ddot{}$

- We apply a Gaussian constraint on θ
	- $C(\theta_0 | \theta) = C(0 | \theta) = e^{-\frac{1}{2}\theta^2}$

Note: even though the applied constraint is Gaussian, this is the constraint on θ Our "quantity of interest" is 1.025 $\theta \rightarrow$ this is log-normally distributed

A simple likelihood model with nuisance parameters $\mathscr{L}(\mu, \theta) \propto p(\text{data}|\mu, \theta) \cdot C(\theta_0|\theta)$ $\ddot{}$ ⃗ ⃗

We can extend this to multiple nuisance parameters - the constraint term becomes a product of the constraint terms for each NP

Likelihood estimates with NPs

- "don't care about the nuisance parameters"
- We can **profile** over them
- Example likelihood for a model with one NP and one POI
- **• Profiled likelihood** is the value of the likelihood function along the line $\theta(\mu)$ ̂

 $\mathscr{L}(\mu) = \mathscr{L}(\mu, \hat{\theta}(\mu)) \equiv \max_{\theta} \mathscr{L}(\mu, \theta)$ **゙゙**

• When we're doing parameter estimates of our parameters of interest μ, we

The profile likelihood ratio

- When estimating parameters, maximize the likelihood
	- In the presence of nuisance parameters, we maximize the profiled likelihood
	- In practice easier to minimize the negative log of the likelihood
- The value of -ln L at the minimum is not relevant → We can subtract it off

We use twice this quantity as the profile likelihood ratio test statistic, which you will see appear in many places!

$$
-\Delta \ln \mathcal{L} = -\ln \mathcal{L}(\mu, \hat{\theta}(\mu)) - (-\ln \mathcal{L}(\hat{\mu}, \theta))
$$

$$
= -\ln \frac{\mathcal{L}(\mu, \hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})}
$$

Inspecting nuisance parameters

- Can check:
	- Effect of NP on the measurement (ie repeat the minimization with the NP fixed at its $\pm 1\sigma$ values and check how the POI value changes)
	- How NPs change:
		- Central value different from 0: something in data is not as expected in the model
		- Constraint less than 1? The data has more information about the parameter than our auxiliary measurement
- Also useful to evaluate the pull: if the uncertainty is not very constrained, but the shift away from 0 is large, the pull will be large.

$$
\frac{\hat{\theta} - \theta_0}{\sqrt{\sigma_0^2 - \sigma^2}}
$$

From now on, we'll ignore systematic uncertainties again

Interval estimation

Overview

• We have seen how to use maximum-likelihood estimates to find the most

- likely value of some parameter of our model
- We also want to say something about the uncertainty in our estimate \rightarrow confidence interval

Confidence interval, construct such that if we were to repeat the experiment many times, 68% of the time the interval would contain the true value (or 68.3% if this is 1σ)

Gaussian confidence intervals

• Assume a Gaussian likelihood

• Reported confidence interval at 68.3% CL:

 $\mu = n \pm \sigma$

$$
u) = e^{-0.5(\frac{n-\mu}{\sigma})^2}
$$

General case: Neyman construction

For each true value of the parameter, build the 68% interval of observed values one would get (use a central interval in this case)

Observed value $\hat{\mu}$
General case: Neyman construction

Construct confidence belt from the intervals at the different true values

Observed value $\hat{\mu}$

Observed value

Invert from the confidence belt: for given observed value, get the confidence interval

- From Wilks' theorem, have that profile likelihood ratio is χ2-distributed with N degrees of freedom
	- N is the difference in number of degrees of freedom between numerator and denominator in PLR (1 in this case)
- Then 68.3% (1 σ) interval given by set of points for which $q(\mu) = 1$, and 95.5% (2σ) interval by set of points for which $q(\mu) = 4$

Confidence intervals from the profile-likelihood ratio • We use the profile likelihood ratio $q(\mu) = -2 \ln \frac{q(\mu)}{n}$ $\mathscr{L}(\mu,\theta(\mu))$ $\mathscr{L}(\hat{\mu},\theta)$ ̂ ̂

35

Confidence interval from the PLR

- This figure shows the profile likelihood ratio without the factor 2, so the interval constructed at the crossing with 0.5 instead of 1
- How accurate is this? We could calculate the **coverage**

68.3% / 1σ confidence interval

Coverage tests

- Create many toy data sets for some value of μ, and construct the 68% confidence interval as on the previous slide
- If our method covers, then the true value of μ (used in the toy generation) should be contained in the interval 68% of the time
- NB we can always calculate the coverage for a given method of constructing the confidence interval

Neyman construction vs PLR

• Example (for a relatively simple model)

• In this case, we see the intervals from the PLR undercover somewhat

pick values μ and generate toy datasets for this value, evaluate the test statistic q for each toy to build up the sampling distribution

• The Neyman construction built as:

-
-

• calculate the p-value for observing a value of q at least as large as the observed value

• If p <1-0.68, μ ^T is in the confidence interval, otherwise

• Repeat for many values of μ _T

• No really general rule; Neyman construction should always work best, but also computationally expensive

Two-dimensional confidence intervals

- What we have discussed also works in N dimensions
	- In practice 2D the only thing that is easy to visualize
- Careful: critical values for ΔNLL in 2D are different than in 1D
	- \sim 2.3, 6 (χ2 in 2D)
	- Best not to think of this as "1σ" and "2σ" (these do not correspond to 68% and 95% in 2D, so ambiguous)

"Unphysical" intervals

- The true value of σ/σ_{SM} can not be negative
- But: what the maximum-likelihood estimate and the confidence interval provide are **estimators** of the true parameter
	- They can take unphysical values
- In general: report the full interval, even if you have unphysical values **unless it is impossible**

Summary of lecture 1

- **• Particle physics = counting**
	- But we can count in different way
- We can use likelihoods to infer something about a model from our data
- describe the ways in which our model could be wrong)
-

• The likelihood can incorporate **systematic uncertainties** too (parameters that

Using this we can estimate parameters and intervals on those parameters

41

Hypothesis tests for discovery

Overview

- We have seen that high-energy physics experiments boil down to counting events
- Statistical analysis needed to interpret the meaning of some counted number of events
- For example, based on this bump, how can we say we have discovered a new particle?

43

- Gaussian measurement, B=100, and we observe
- Did we discover something?
	-
- Uncertainty on B: $\sqrt{B} = 10 \rightarrow$ significance Z is
	-
	- $p_0 = 1 \Phi(Z) = 1 \int$ Gauss(0,1) f^Z −∞

Hypothesis testing

- Null hypothesis, e.g. no signal: H₀
- Want to test whether H₀ is favoured or disfavoured

Hypothesis testing

- Null hypothesis, e.g. no signal: H₀
- Want to test whether H₀ is favoured or disfavoured

Hypothesis testing

- Null hypothesis, e.g. no signal: H₀
- Want to test whether H₀ is favoured or disfavoured

Likelihood ratios

hypotheses H_0 and H_1 is the likelihood ratio

 \mathscr{L} (data; H_0)

 \mathscr{L} (data; H_1)

• Neyman-Pearson Lemma : the optimal discriminator when comparing two

• H₀: null hypothesis, no signal. H₁: hypothesis including some signal (the amount preferred by the data, \hat{S} ̂

Test statistic for discovery

• In practice we use twice the negative log-likelihood ratio (has some nice properties), but this does not go against what we said on the previous slide (still involves a ratio of likelihoods)

• For S <0, we set q_0 to 0 (one-sided test statistic, negative signals are not considered)

 $S = 0$) $\mathscr{L}(S)$ ̂

$$
q_0 = -2\ln\frac{\mathscr{L}(H_0)}{\mathscr{L}(H_1)} = -2\ln\frac{\mathscr{L}(H_0)}{2}
$$

P-value for discovery

- •
• If value of S is large, $q_0 = -2 \ln \frac{q_0}{\sqrt{2\pi}}$ will also be large (large difference in likelihood values for $S=0$ and for $S=S$
- We say H_0 (S=0) is disfavoured compared with $H_1(S>0)$
- Calculate the sampling distribution of the test statistic under the background-only hypothesis $(f(q_0 | S = 0))$
- Calculate p_0 : probability of observing a value of q_0 at least as large as q_0 ^{obs}, if H_0 is true

Asymptotic approximation

- If we are in the Gaussian regime, then we can apply Wilks' theorem, and find that q_0 is χ 2 (npar)-distributed for S=0
- In our case we have $n_{par}=1$, then $\sqrt{q_0}$ is Gaussian-distributed
- We can calculate the p-value from the Gaussian quantiles: $p_0 = 1 - \Phi(\sqrt{q_0})$
- Significance is then $Z = \sqrt{q_0}$

What p-value/Z-score constitues a discovery?

- p-value for significance of 3σ: ~0.001 ➔ 1 in 1000 chance
	- "**evidence**"
- p-value for significance of 5σ: ~3 10-7 ➔ 1 in 3.5 million chance
	- "**observation**"

So, at the beginning of the section, did we discover something?

Not by itself (using 5σ criterion), but combining with multiple channels, yes!

Look-elsewhere effect (I)

Imagine I tell you I got heads 100 times in a row when flipping a coin, what is

your response ?

A Sure, I bet the coin is biased

B How many times did you flip the coin in total ?

Look-elsewhere effect (I)

Imagine I tell you I got heads 100 times in a row when flipping a coin, what is your response ?

A Sure, I bet the coin is biased

B How many times did you flip the coin in total ?

If I did only flip the coin 100 times, it's quite something to get 100 heads in a row, but if I have been flipping that coin for a long time, at some point I expect to get 100 in a row

The same is true in particle physics experiments: if I try to look for many signals (e.g. scanning a mass parameter), I'm more likely to find a large excess than if I only look at a fixed mass

Look-elsewhere effect (II)

- Stringent 5σ requirement for observation partly to protect against LEE
	- But this is not foolproof!

Largest **local** excess (ie at a specific m_X, m_Y value): 3.4σ

Evidence for new physics?

No, **global** significance found to be 0.1σ in this case

Handling the LEE

• Want to calculate the **global** significance (probability for a fluctuation fluctuation at a given location)

anywhere in the range), as opposed to the local p-value (probability for a

The significance calculations that we have seen so far give us the local significance.

How can we calculate the global significance?

Global significance

N N trials $\approx N$ trials P local

Trials factor \sim "number of independent" experiments"

$p_{\footnotesize{\textcolor{blue}g\textcolor{blue}{\mid}}\textcolor{blue}{\mathsf{obal}}}=1-(1-p_{\footnotesize{\textcolor{blue}|\mathsf{ocal}}})$

Global p-value Local p-value

If trials factor N is number of independent searches, then we could expect this factor to be something like the scan range divided by the peak width

If we slice the scanned range into N_{indep} independent regions, we miss possible peaks on edges between regions \rightarrow trials factor is actually larger

In asymptotic limit: $N_{\mathsf{trials}} = 1 +$ *π s* N indep Z loc

More details: <https://arxiv.org/pdf/1005.1891>

Global significance from toys

- Repeat the analysis in toy data
	- Generate pseudo-dataset
	- Perform search scanning over same parameters as done for date
	- Retain largest significance found
	- Repeat many times
- the global p-value
-

• Fraction of cases for which a significance at least as large as Z_{loc} is found is

• Very computationally intensive for small global p-values! (Need many toys)

Simplifying significances

- Of course always best to evaluate full expected significance when optimizing an analysis
- But can be costly! What are approximations we could use?

In the gaussian case: $Z = \frac{Z}{\sqrt{R}}$, but our analyses are not gaussian *S B*

- Approximate significance for the Poisson case?
-

Approximate significance, Poisson case $L^{2} = e^{-(S+B)} \frac{(S+B)}{S}$ *n n*!

Likelihood ratio is:

$$
q_0 = -2 \ln \frac{\mathcal{L}(S=0)}{\mathcal{L}(\hat{S})} = -2 \ln \frac{e^{-B}B^n}{e^{-(\hat{S}+B)}(\hat{S}+B)^n} =
$$

-2(ln(e^{-B}B^n) - ln(e^{-(n)}(n)^n)) = -2(-B + ln(B^n)) + (n) - ln((n)^n)) =
-2(-B + n ln(B)) + n - n ln((n))) = 2(n ln($\frac{n}{B}$) + B - n)

$$
q_0 = -2 \ln \frac{\mathcal{L}(S=0)}{\mathcal{L}(\hat{S})} = -2 \ln \frac{e^{-B}B^n}{e^{-(\hat{S}+B)}(\hat{S}+B)^n} =
$$

-2(ln(e^{-B}B^n) - ln(e^{-(n)}(n)^n)) = -2(-B + ln(B^n)) + (n) - ln((n)^n)) =
-2(-B + n ln(B)) + n - n ln((n))) = 2(n ln($\frac{n}{D}$) + B - n)

$$
-2(-B + n\ln(B)) + n - n\ln((n))) = 2(n\ln(\frac{1}{2}))
$$

Approximate significance, Poisson case

Likelihood ratio is:
\n
$$
q_0 = 2(n \ln(\frac{n}{B}) + B - n)
$$

Expected case: $n = S+B$, so that

 q_0 , $exp = 2((S + B)ln($ *S* + *B* $\frac{1}{B}$) – *S*)

$$
Z=\sqrt{q_0}
$$

Using asymptotics:

We get $Z = \sqrt{2((S + B) \ln($ *S* + *B*

^B) [−] *^S*) **Approximate median significance**

AMS with uncertainties

• What we saw in the previous few slides somewhat of a simplification, should ideally also consider uncertainties in B

$$
Z_{\rm A} = \left[2\left((s+b)\ln\left[\frac{(s+b)(b+\sigma_b^2)}{b^2+(s+b)\sigma_b^2}\right] - \frac{b^2}{\sigma_b^2}\ln\left[1+\frac{\sigma_b^2s}{b(b+\sigma_b^2)}\right]\right)\right]^{1/2}
$$

- See [G. Cowan's slides](https://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf) for details
- This function is implemented in many libraries, my advice: **don't re-invent the wheel, and use the existing implementations!**

Limit setting

Scenario

- Our business (among others): searching for something new
	- Most of the time we will not find anything. What can we report if we haven't found anything?
- **• Upper limit:** number of signal events (or cross section...) values above which are excluded (disfavoured) at some confidence level
- **•** "Usual" confidence level depends on field; at LHC typically 95%, DM experiments often 90%

Test statistic for setting upper limits

• Modify the profile likelihood test statistic

• We want to construct a one-sided interval, so if we are testing a value

$$
q_{\mu} = -2 \ln \frac{L(\mu, \hat{\theta}_{\mu})}{L(\hat{\mu}, \hat{\theta})}
$$

2-sided confidence intervals Modified for upper limits

- Motivations:
	- Avoid unphysical negative signal strengths
	- $\mu < \hat{\mu}$, we set the test statistic to 0

Calculating the limit

For each value of μ, can calculate a p-value equal to the probability of observing a test statistic value at least as large as $q_\mu^{\sf obs}$, under the hypothesis that the signal strength is μ . We call this probability *pμ*

Calculating the limit

$$
p_{\mu} = P(q_{\mu} > q_{\mu}^{\text{obs}} | \mu) = \int_{q_{\mu}^{\text{obs}}}^{+\infty} f(q_{\mu} | \mu, \hat{\theta}_{\mu}) dq_{\mu}
$$
The CLs criterion

- We can evaluate limits based on $p_\mu^{}$, but using just this we can exclude a signal even if the background hypothesis is also disfavoured
- Solution often used in high-energy physics: use the CLs criterion
	- CLs itself is not a confidence level, it is a ratio of p-values!

 $1 - p_b = P(q_\mu > q_\mu^{\text{obs}} | \text{bkg only}) =$ $+\infty$ *q*obs *μ f*(*q^μ* |0, *θ*0) ̂

Using this criterion, at 95% confidence level a signal with strength μ is excluded if CLs ≤ 0.05 Note: you could equally well set upper limits at 95% confidence level using $p_{\mu} \rightarrow$ need to specify what criterion was used!

$$
CL_{s} = \frac{p_{\mu}}{1 - p_{b}} \qquad p_{\mu} = P(q_{\mu} > q_{\mu}^{\text{obs}} | \text{ sig} + \text{bkg}) = \int_{q_{\mu}^{\text{obs}}}^{+\infty} f(q_{\mu} | \mu, \hat{\theta}_{\mu})
$$

$$
1 - p_{\rm b} = P(q_{\mu} > \epsilon
$$

Evaluating limits

- To set limits, we need
	- to calculate this based on the definition of the test statistic *μ*
	- The sampling distribution of *f*(*q^μ* |*μ*,
	- The sampling distribution of *f*(*q*⁰ |0,

evaluate the test statistic for each toy data set, to get $\,f\!\left(q_0\right|0,\!\theta_0)$

• q_{μ}^{obs} , the observed test statistic value for a given value of $\mu \rightarrow \infty$ know how

$$
\left\{\begin{matrix}\mu, \hat{\theta}_{\mu}\end{matrix}\right\}
$$
\n
$$
\left\{\begin{matrix}\mu, \hat{\theta}_{\mu}\end{matrix}\right\}
$$
\n
$$
\left\{\begin{matrix}\text{Distribution} \\ \text{these?}\end{matrix}\right\}
$$

ns of test statistic values. How to get

Answer: We need to generate many toy datasets under the signal+background hypothesis for given values of µ, and evaluate the test statistic for each toy data set, to get $\,f(q_\mu\,|\,\mu,\theta_\mu).$ Similarly, we need to generate many toy datasets under the background-only hypothesis and ̂

Limitations

- Toy-based methods always introduce some uncertainty
	- Cannot generate an infinite number of toys \rightarrow statistical uncertainty in CL_s
- Limits only as accurate as the algorithm to find the crossing with $CL_s = 0.05$
	- Step size is finite

• Exercise on setting limits in this afternoon's hands-on session \rightarrow keep these aspects in mind

Tacking stock

What do these bands mean and how to evaluate them? → expected limits

You know how to calculate these points

Expected limits

- Why?
	- Nothing stops us from setting an upper limit when there is an excess of events over the backgroundonly hypothesis \rightarrow comparison with expectation is useful
- Expected limits using quantiles of sampling distribution: median expected and the 68% and 95% (**not** ±1,2σ) central intervals

Expected limits

E.g. to find median expected limit follow same procedure as observed, but replacing q_{μ} ^{obs} with median of $f(q_{\mu} \,|\, 0, \theta_{0}).$ ̂

For 68% and 95% central intervals, similar, but use 2.5,97.5, 16 and 84% quantiles of $f(q_\mu | 0, \theta_0)$ ̂

Depending on the model this can take a long time - and the more extreme the quantile, the more toys are needed

parameter Λ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ $r_{\text{parameter}}$ as sample standard deviation α is obtained from the covariance from where the non-central
includes a

• Here, Φ is the cumulative distribution function of the standard gaussian

The asymptotic approximation . In the limit of high event counts, profile likelihood: (Wald, 1943)
$$
-2\ln\lambda(\mu) = \frac{(\mu-\hat{\mu})^2}{\sigma^2} + \mathcal{O}(1/\sqrt{N})
$$
.

$$
\Lambda = \frac{(\mu - \mu')^2}{\sigma^2}
$$
 reduces to a chi-square distribution
when $\mu = \mu'$ [Wilks, 1938]

- \bullet Simplifies the calculation of p_{μ} : \bullet Simplifies the calc • Simplifies the calculation of ${\sf p}_{\mu}$: $p_{\mu}=1- \Phi\left(\sqrt{q_{\mu}}\right)$ *pμ*
- for one degree of freedom, a result shown earlier by Wilks [1].
	- No time to go through the full derivation today, details in [Cowan, Cranmer, Gross, Vitells 2013] $\frac{1}{2}$

ΙΟ
Ι , 1943)

• σ is the standard deviation of $\hat{\mu}$. If we assume this is gaussian distributed, this yields an analytic expression for $f(q_{\mu} \,|\, \mu', \hat{\theta}_{\mu'})$, which depends only on a

> ua uare
/ilks reduces to a chi-square distribution distribution
1938] en μ=μ' [Wilks, 1938]

• Simplifies the calculation of
$$
p_{\mu}
$$
: $p_{\mu} = 1 - \Phi\left(\sqrt{q_{\mu}}\right)$

The asymptotic approximation

• This gives us a simple expression for p_{μ} , but what about 1- $p_{\rm b}$? 1- $p_{\rm b}$ requires the sampling distribution $f(q_0 | 0, \theta_0)$, so we need to use a more general formula where $\mu \neq \mu'$ ̂

- In our case $\mu' = 0$, but we still need to estimate σ . How? **Asymptotics**
	- ➔ Asimov data set, a single representative dataset constructed from the max. likelihood estimate at μ', suppressing statistical fluctuations T for mula make use of the Asimov dataset (to estimate of the Asimov dataset (to estimate α constructed trom the matter is matter to maximum the matter α (and α is statistical fluctuations suppressed fluctuations suppressed for α Asimov data (r=1)

$$
1 - p_b = 1 - \Phi \left(\sqrt{q_\mu} - \frac{\mu - \mu'}{\sigma} \right)
$$

$$
\frac{\mu-\mu'}{\sigma}\Bigg)
$$

The asymptotic approximation

- From Wald's theorem, we have $\frac{1}{\sigma_A} = \sqrt{q_{\mu,A}}$: *μ σA* $1 - p_b = 1 - \Phi \left(\sqrt{q_\mu} - \frac{\mu}{\sigma} \right)$ $\left(\frac{\rho}{\sigma}\right) = 1 - \Phi\left(\sqrt{q_{\mu}} - \sqrt{q_{\mu,A}}\right)$
- CL_s now becomes

• To calculate the observed limit, need to find both q^μ and qμ,^Α

$$
CL_s = \frac{1 - \Phi\left(\sqrt{q_\mu}\right)}{1 - \Phi\left(\sqrt{q_\mu} - \sqrt{q_{\mu,A}}\right)}
$$

$$
= \sqrt{q_{\mu,A}}:
$$
\n
$$
q_{\mu,A} = -2 \ln \frac{L(\text{Asimov}|\mu, \hat{\theta}_{\mu})}{L(\text{Asimov}|\hat{\mu}, \hat{\theta})}
$$
\n
$$
\overline{q_{\mu}} - \sqrt{q_{\mu,A}} \qquad q_{\mu} = -2 \ln \frac{L(\text{Data}|\mu, \hat{\theta}_{\mu})}{L(\text{Data}|\hat{\mu}, \hat{\theta})}
$$

Expected limits in the asymptotic approximation

-
- Look for the value of μ such that

$(1 - p_b) + (1 - \Phi^{-1}(p_\mu))$ 2

$$
q_{\mu,A} = \left[\Phi^{-1}(1-p_b)\right]
$$

• We fix 1-p_b by picking a quantile, and if we want $CL_s = 0.05$, this also fixes p_{μ}

When can the asymptotic approximation be used?

76

In the limit of large event counts, but what is large?

It depends - and is always worth checking. O(10) events can certainly be sufficient

For m_{x} > 1.6 TeV, low event counts \Rightarrow derive results from toys

Toy-based limits - peculiarities

m

Lower bounds of the 95% and 68% interval can (almost) overlap. Why?

For very low event counts, test statistic distribution can be discrete ➔ quantiles can be the same and so limit bands overlap

Plotting the built-up test statistic distributions can help you understand the behaviour of your limits

Upper limits and exclusion contours

Exclusion contours: for each point in the parameter space, check if corresponding amount of signal would be excluded (e.g. using CLs criterion)

Summary of lecture 2

- When we're searching for a new process, need to ensure that we don't claim in error to have found new physics
	- Toolkit: hypothesis tests to evaluate p-values; look-elsewhere effect
- Even if we don't find what we are looking for, we can place an upper limit on some quantity
	- A lot like a confidence interval
	- You know how to compute these, and to be careful in the case of low event counts

