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Overview
Lecture 1 

• Building a statistical model


• Interval estimation


• Systematic uncertainties


Lecture 2 

• Hypothesis tests for discovery


• Limit setting
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Disclaimer

• I'm an LHC physicist mainly working on Higgs physics


• The examples I give will be biased


• The concepts should however be generally applicable!
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Building statistical models
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Particle physics experiments: counting
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Some variable

bkg1
bkg2
bkg3
bkg4

bkg5
bkg6

• ~Ndata - Nbkg = Nsig 


• With the integrated luminosity and the 
efficiency x acceptance of the event selection 
➔ can measure the cross section


• Reality is not that simple: uncertainties!



Particle physics experiments: counting

6

• Not necessarily simple


• Can count all events in a 
region, or in different 
bins (selections)



Particle physics experiments: counting

7

• Can also count without binning


• NB in the analysis example here, the data 
*were* binned


• Background and signal modelled with 
continuous distributions
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Counting

• Usual situation: produce large number of events n, select only a small fraction 
p.


• A binomial process, in principle
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P(k |p, n) =
n!

k!(n − k)!
pk(1 − p)n−k



Counting

• Usual situation: produce large number of events n, select only a small fraction 
p.


• A binomial process, in principle
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P(k |p, n) =
n!

k!(n − k)!
pk(1 − p)n−k

Binomial
Poisson

n large, p small Poisson distribution!

P(k |λ) =
e−λλk

k!
λ ~ np



From data to parameters

• Have the data, want to draw some 
conclusions from it


• ie: get the parameters of the model (e.g. 
mass of a new particle, cross section, ...) 
from the data


• ➔ Use the likelihood
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Likelihoods for counting models
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ℒ( ⃗α ) ∝ p(data | ⃗α )
The likelihood is not a probability, contains multiplicative factors, which we'll simply ignore for now 
since the important point is that they do not depend on the data or the parameters


We have seen the p(data|α) is a Poisson probability when we are counting.


If we are only counting one number, we have number of observed events N and some number of 
expected events, which we can construct as μS+B

μ is a parameter that scales the reference number of signal events, it is our parameter of interest. 
B could be seen as a nuisance parameter. We will encounter more nuisance parameters later

ℒ ∝ p(N |μ, S, B) =
e−(μS+B)(μS + B)N

N!



Multiple bins
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Extend our model to consider all bins, have observations 

N0....Nnbins, expected Signal and Backgrounds S1...Snbins 
and B0....Bnbins

ℒ ∝ p( ⃗N |μ, ⃗S, ⃗B ) =
nbins

∏
i=0

e−(μSi+Bi)(μSi + Bi)N
i

Ni!



Extended unbinned likelihoods
• For some variable m distributed according to a pdf f(m), and nevts 

observations, the likelihood would be


• But nevts is itself Poisson-distributed! Need to extend the likelihood

13

ℒ ∝
nevts
∏
i=1

f(mi)



Extended unbinned likelihoods
• For some variable m distributed according to a pdf f(m), and nevts 

observations, the likelihood would be


• But nevts is itself Poisson-distributed! Need to extend the likelihood

13

ℒ ∝
nevts
∏
i=1

f(mi)

ℒ ∝
nevts
∏
i=1

f(mi) → Pois(nevts |μS + B)
nevts
∏
i=1

f(mi) =
e−(μS+B)(μS + B)nevts

nevts!

nevts
∏
i=1

f(mi)



Extended unbinned likelihoods
• For some variable m distributed according to a pdf f(m), and nevts 

observations, the likelihood would be


• But nevts is itself Poisson-distributed! Need to extend the likelihood
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ℒ ∝
nevts
∏
i=1

f(mi)

ℒ ∝
nevts
∏
i=1

f(mi) → Pois(nevts |μS + B)
nevts
∏
i=1

f(mi) =
e−(μS+B)(μS + B)nevts

nevts!

nevts
∏
i=1

f(mi)

=
e−(μS+B)

nevts!

nevts
∏
i=1

(μS + B)f(mi) =
e−(μS+B)

nevts!

nevts
∏
i=1

(μS + B)(
μSpsig(mi) + Bpbkg(mi)

μS + B )
Remember f is a pdf so needs to be normalized



Binned and unbinned likelihoods
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Single-bin 
counting

Multiple-bin 
counting

Unbinned

N

Ni, for bins 
i=1,...nbins

mi, for number 
of events

 i=1,...nevts

e−(μS+B)(μS + B)N

N!

Likelihood: single poisson probability

Likelihood: product of poisson probabilities
nbins

∏
i=1

e−(μSi+Bi)(μSi + Bi)N
i

Ni!
Extended unbinned likelihood

e−(μS+B)

nevts!

nevts
∏
i=1

μSpsig(mi) + Bpbkg(mi)

Counting type Observable Likelihood



Maximum-likelihood estimate
• We know how to define a likelihood for the experiments that we are doing ➔ 

we can use it to determine parameter estimates


• Maximising the likelihood: find values of α for which we get 


• Example: Simple counting model with n observed events, no bkg expectation

max ̂ ⃗αℒ(α)

15

ℒ( ⃗α ) ∝ p(data | ⃗α )



"Unphysical" MLE's

• The maximum-likelihood estimate gives the value(s) of the POIs that are most 
likely for the observed dataset


• Function of the data, not necessarily the "true" value


• MLE estimate of a cross section could come out negative if the data has 
fluctuated below the background expectation


• Not wrong! MLE is not a statement on the true value

16



Systematic uncertainties

17



Uncertainties in a measurement
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Consider a measurement of production cross sections = maximum-likelihood 
estimate of the value, with a confidence interval

Two kinds of uncertainty 

1) Statistical (~inherent 
randomness of the 
process, limited 
number of events)


2) Systematic ➔ possible 
ways in which the 
model might be 
"wrong"



Incorporating systematic uncertainties

• Systematic uncertainty = what we don't know exactly about the model


• Add nuisance parameters to the model to describe them


• These parameters are generally not completely free

19

ℒ(data |μ) → ℒ(data |μ, ⃗θ) = ℒmeasurement(data |μ, ⃗θ)C( ⃗θ)

Parameter of interest 
(e.g. number of signal 
events, signal 
strength,...)

Nuisance parameters Constraint on NP



Constrained nuisance parameters

• What is the form of C(θ)?


• Must at least be a function of the "nominal" values of the parameters and 
the "measured" values


• Where does θ come from?


• Auxiliary measurement, e.g. luminosity measurement by an independent 
detector, or an efficiency measurement in a control region


• Can determine L=X ± y fb-1 ➔ relative uncertainty y/X. Assuming y 
represents a 1σ uncertainty: Gaussian constraint makes sense

20

C( ⃗θ) = C( ⃗θ0 | ⃗θ)



A simple likelihood model with nuisance parameters

• Assume an analysis counts the number of events in pp collisions (with some 
selections as we're looking for a particular process)


• Number of observed events: N


• Model for the number of expected events nexp depends on μ, a reference 
signal cross section σsig, the background cross section σbkg, the selection 
efficiency (ε) and detector acceptance (A), and the integrated luminosity Lint


• Assume the luminosity is subject to a 2.5% uncertainty

21

ℒ(μ, ⃗θ) ∝ p(data |μ, ⃗θ) ⋅ C( ⃗θ0 | ⃗θ)

What will our statistical model look like?



A simple likelihood model with nuisance parameters
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ℒ(μ, ⃗θ) ∝ p(data |μ, ⃗θ) ⋅ C( ⃗θ0 | ⃗θ)

nexp = μσsigϵsigAsigLint + σbkgϵbkgAbkgLint

Probability term in the likelihood: 

Poisson probability

p(N |nexp) =
nNexpe−nexp

N!
,with



A simple likelihood model with nuisance parameters
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ℒ(μ, ⃗θ) ∝ p(data |μ, ⃗θ) ⋅ C( ⃗θ0 | ⃗θ)

nexp = μσsigϵsigAsigLint + σbkgϵbkgAbkgLint

Probability term in the likelihood: 

Poisson probability

p(N |nexp) =
nNexpe−nexp

N!
,with

But wait, the luminosity has an uncertainty Lint → Lint(1 + 0.025)θ



A simple likelihood model with nuisance parameters

22

ℒ(μ, ⃗θ) ∝ p(data |μ, ⃗θ) ⋅ C( ⃗θ0 | ⃗θ)

nexp = μσsigϵsigAsigLint + σbkgϵbkgAbkgLint

Probability term in the likelihood: 

Poisson probability

p(N |nexp) =
nNexpe−nexp

N!
,with

But wait, the luminosity has an uncertainty Lint → Lint(1 + 0.025)θ

nexp = μσsigϵsigAsigLint1.025θ + σbkgϵbkgAbkgLint1.025θ



A simple likelihood model with nuisance parameters
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ℒ(μ, ⃗θ) ∝ p(data |μ, ⃗θ) ⋅ C( ⃗θ0 | ⃗θ)
We apply a Gaussian constraint on θ


Note: even though the applied constraint is Gaussian, this is the constraint on θ 

Our "quantity of interest" is 1.025θ  ➔ this is log-normally distributed


C(θ0 |θ) = C(0 |θ) = e− 1
2 θ2



A simple likelihood model with nuisance parameters
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ℒ(μ, ⃗θ) ∝ p(data |μ, ⃗θ) ⋅ C( ⃗θ0 | ⃗θ)

ℒ(μ, θ) ∝
nNexpe−nexp

N!
e− 1

2 θ2

nexp = μσsigϵsigAsigLint1.025θ + σbkgϵbkgAbkgLint1.025θ

with

We can extend this to multiple nuisance parameters - the constraint term becomes a product of 

the constraint terms for each NP



Likelihood estimates with NPs

• When we're doing parameter estimates of our parameters of interest μ, we 
"don't care about the nuisance parameters"


• We can profile over them


• Example likelihood for a model with one 
NP and one POI


• Profiled likelihood is the value of the  
likelihood function along the line ̂θ(μ)

25

ℒ(μ) = ℒ(μ, ̂θ(μ)) ≡ maxθℒ(μ, θ)



The profile likelihood ratio

• When estimating parameters, maximize the likelihood


• In the presence of nuisance parameters, we maximize the profiled likelihood


• In practice easier to minimize the negative log of the likelihood


• The value of -ln L at the minimum is not relevant 
➔ We can subtract it off

26

−Δ ln ℒ = − ln ℒ(μ, ̂θ(μ)) − (−ln ℒ( ̂μ, ̂θ)))

= − ln
ℒ(μ, ̂θ(μ))

ℒ( ̂μ, ̂θ)

We use twice this quantity as the profile likelihood

ratio test statistic, which you will see appear in many places!



Inspecting nuisance parameters
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• Can check:


• Effect of NP on the measurement (ie repeat the 
minimization with the NP fixed at its ±1σ values 
and check how the POI value changes)


• How NPs change:


• Central value different from 0: something in 
data is not as expected in the model


• Constraint less than 1? The data has more 
information about the parameter than our 
auxiliary measurement


• Also useful to evaluate the pull: if the uncertainty is 
not very constrained, but the shift away from 0 is 
large, the pull will be large.

̂θ − θ0

σ2
0 − σ2



From now on, we'll ignore 
systematic uncertainties again

28



Interval estimation

29



Overview

• We have seen how to use maximum-likelihood estimates to find the most 
likely value of some parameter of our model


• We also want to say something about the uncertainty in our estimate ➔ 
confidence interval 
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Confidence interval, construct such that if we were to repeat the 

experiment many times, 68% of the time the interval would contain

the true value (or 68.3% if this is 1σ)



Gaussian confidence intervals

31

• Assume a Gaussian likelihood


• Reported confidence interval at 68.3% CL:

ℒ(μ) = e−0.5( n − μ
σ )2

μ = n ± σ



General case: Neyman construction

32

For each true value of the parameter, build the 68% interval of observed values

one would get (use a central interval in this case)



General case: Neyman construction

33

Construct confidence belt from the intervals at the different true values



General case: Neyman construction

34

Observed value

Invert from the confidence belt: for given observed value, get the confidence interval

68% confidence interval

̂μ + σup

̂μ − σdown



Confidence intervals from the profile-likelihood ratio

• We use the profile likelihood ratio 


• From Wilks' theorem, have that profile likelihood ratio is χ2-distributed with N 
degrees of freedom


• N is the difference in number of degrees of freedom between numerator 
and denominator in PLR (1 in this case)


• Then 68.3% (1σ) interval given by set of points for which q(μ) = 1, and 95.5% 
(2σ) interval by set of points for which q(μ) = 4

q(μ) = − 2 ln
ℒ(μ, ̂θ(μ))

ℒ( ̂μ, ̂θ)

35



Confidence interval from the PLR

36

• This figure shows the profile likelihood ratio 
without the factor 2, so the interval constructed 
at the crossing with 0.5 instead of 1


• How accurate is this? We could calculate the 
coverage

68.3% / 1σ confidence interval



Coverage tests

37

• Create many toy data sets for some value of μ, and construct the 68% 
confidence interval as on the previous slide


• If our method covers, then the true value of μ (used in the toy generation) 
should be contained in the interval 68% of the time


• NB we can always calculate the coverage for a given method of constructing 
the confidence interval



Neyman construction vs PLR

38

From PLR

• Example (for a relatively simple model)


• In this case, we see the intervals from the PLR under-
cover somewhat


• The Neyman construction built as: 


• pick values μT and generate toy datasets for this value, 
evaluate the test statistic q for each toy to build up the 
sampling distribution


• calculate the p-value for observing a value of q at least 
as large as the observed value


• If p<1-0.68, μT is in the confidence interval, otherwise 
not


• Repeat for many values of μT


• No really general rule; Neyman construction should 
always work best, but also computationally expensive



Two-dimensional confidence intervals

• What we have discussed also works in N 
dimensions


• In practice 2D the only thing that is easy 
to visualize


• Careful: critical values for ΔNLL in 2D are 
different than in 1D 


• ~2.3, 6 (χ2 in 2D)


• Best not to think of this as "1σ" and 
"2σ" (these do not correspond to 68% 
and 95% in 2D, so ambiguous)
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"Unphysical" intervals

• The true value of σ/σSM can not be 
negative


• But: what the maximum-likelihood 
estimate and the confidence interval 
provide are estimators of the true 
parameter


• They can take unphysical values


• In general: report the full interval, 
even if you have unphysical values 
unless it is impossible

40



Summary of lecture 1

• Particle physics = counting 

• But we can count in different ways


• We can use likelihoods to infer 
something about a model from our data


• The likelihood can incorporate systematic uncertainties too (parameters that 
describe the ways in which our model could be wrong)


• Using this we can estimate parameters and intervals on those parameters

41



Hypothesis tests for discovery

42



Overview

• We have seen that high-energy physics 
experiments boil down to counting events


• Statistical analysis needed to interpret the 
meaning of some counted number of events


• For example, based on this bump, 
how can we say we have discovered a new 
particle? 
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Simple case: a Gaussian measurement

44

• Gaussian measurement, B=100, and we observe 
120 events


• Did we discover something?


• S= Nobs-B = 20


• Uncertainty on B:  ➔ significance Z is 



• p-value: 2.3% 

B = 10
Z = S/ B = 2σ

p-value

p0 = 1 − Φ(Z) = 1 − ∫
Z

−∞
Gauss(0,1)



Hypothesis testing

• Null hypothesis, e.g. no signal: H0 


• Want to test whether H0 is favoured or disfavoured 

45

Data disfavours H0 

(Discovery claim)

Data favours H0 

No claim

H0 is false 

(new physics) Discovery of new physics! There is new physics but we have 

not found it

H0 is true 

(no new physics)

We have claimed to have found new 
physics, but there isn't any

No discovery, because there is no 
new physics. But maybe we can 
exclude some models (see later)
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Likelihood ratios

• Neyman-Pearson Lemma : the optimal discriminator when comparing two 
hypotheses H0 and H1 is the likelihood ratio


• H0: null hypothesis, no signal. H1: hypothesis including some signal (the 
amount preferred by the data, )̂S

46

ℒ(data; H0)
ℒ(data; H1)



Test statistic for discovery

• In practice we use twice the negative log-likelihood ratio (has some nice 
properties), but this does not go against what we said on the previous slide 
(still involves a ratio of likelihoods)


• 


• For  <0, we set q0 to 0 (one-sided test statistic, negative signals are not 
considered)

q0 = − 2 ln
ℒ(H0)
ℒ(H1)

= − 2 ln
ℒ(S = 0)

ℒ( ̂S)

̂S

47



P-value for discovery

48

• If value of  is large,  will 

also be large (large difference in likelihood values 
for S=0 and for 


• We say H0 (S=0) is disfavoured compared with 
H1(S>0)


• Calculate the sampling distribution of the test 
statistic under the background-only hypothesis 
( )


• Calculate p0: probability of observing a value of q0 
at least as large as q0obs, if H0 is true

̂S q0 = − 2 ln
ℒ(S = 0)

ℒ( ̂S)

S = ̂S

f(q0 |S = 0)
q0

Integrate this

to get p0



Asymptotic approximation

• If we are in the Gaussian regime, then we can 
apply Wilks' theorem, and find that q0 is χ2 
(npar)-distributed for S=0


• In our case we have npar=1, then  is 
Gaussian-distributed


• We can calculate the p-value from the 
Gaussian quantiles: 


• Significance is then 

q0

p0 = 1 − Φ( q0)

Z = q0

49



What p-value/Z-score constitues a discovery?

50

• p-value for significance of 
3σ: ~0.001 ➔ 1 in 1000 
chance


• "evidence"


• p-value for significance of 
5σ: ~3 10-7 ➔ 1 in 3.5 
million chance


• "observation"



So, at the beginning of the section, did we discover something?
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combining with multiple channels, yes!



Look-elsewhere effect (I)

52

Imagine I tell you I got heads 100 times in a row when flipping a coin, what is 
your response ? 


A Sure, I bet the coin is biased


B How many times did you flip the coin in total ?



Look-elsewhere effect (I)

52

Imagine I tell you I got heads 100 times in a row when flipping a coin, what is 
your response ? 


A Sure, I bet the coin is biased


B How many times did you flip the coin in total ?

If I did only flip the coin 100 times, it's quite something to get 100 heads in a 
row, but if I have been flipping that coin for a long time, at some point I expect 
to get 100 in a row


The same is true in particle physics experiments: if I try to look for many signals 
(e.g. scanning a mass parameter), I'm more likely to find a large excess than if I 
only look at a fixed mass



Look-elsewhere effect (II)

• Stringent 5σ requirement for observation partly to protect against LEE


• But this is not foolproof!

53

300 000 100 200 300 400 500 1000
iT [GaVY

30

40

50

100

110

1.0

i
Y 
[G
aV

Y 13. bb−1 (13 TaV)?IOPnaleienany

0.0

0.1

1.0

1.1

..0

..1

3.0

Se
cn

ebe
c]
nc
a

Largest local excess (ie at a specific mX, mY value): 3.4σ


Evidence for new physics?


No, global significance found to be 0.1σ in this case



Handling the LEE

• Want to calculate the global significance (probability for a fluctuation 
anywhere in the range), as opposed to the local p-value (probability for a 
fluctuation at a given location)
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The significance calculations that we have seen so far 
give us the local significance.


How can we calculate the global significance?



Global significance
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pglobal = 1 − (1 − plocal)
N
trials ≈ Ntrialsplocal

Global p-value Local p-value

Trials factor ~ "number of independent 
experiments"

If trials factor N is number of independent searches,  then we could expect this factor to be something like 
the scan range divided by the peak width


If we slice the scanned range into Nindep independent regions, we miss possible peaks on edges between 
regions ➔ trials factor is actually larger


In asymptotic limit: Ntrials = 1 +
π
s

NindepZloc

More details: https://arxiv.org/pdf/1005.1891 

https://arxiv.org/pdf/1005.1891


Global significance from toys

• Repeat the analysis in toy data


• Generate pseudo-dataset


• Perform search scanning over same parameters as done for date


• Retain largest significance found


• Repeat many times


• Fraction of cases for which a significance at least as large as Zloc is found is 
the global p-value


• Very computationally intensive for small global p-values! (Need many toys)
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Simplifying significances

• Of course always best to evaluate full expected significance when optimizing 
an analysis


• But can be costly! What are approximations we could use?


• In the gaussian case:  , but our analyses are not gaussian


• Approximate significance for the Poisson case?

Z =
S

B

57



Approximate significance, Poisson case
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ℒ = e−(S+B) (S + B)n

n!
Likelihood ratio is:

q0 = − 2 ln
ℒ(S = 0)

ℒ( ̂S)
= − 2 ln

e−BBn

e−( ̂S+B)( ̂S + B)n
=

−2(ln(e−BBn) − ln(e−(n)(n)n)) = − 2(−B + ln(Bn)) + (n) − ln((n)n)) =

−2(−B + n ln(B)) + n − n ln((n))) = 2(n ln(
n
B

) + B − n)



Approximate significance, Poisson case
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Likelihood ratio is: 

Expected case: n = S+B, so that


q0 = 2(n ln(
n
B

) + B − n)

q0, exp = 2((S + B)ln(
S + B

B
) − S)

Z = q0

Using asymptotics: 

We get 

Z = 2((S + B)ln(
S + B

B
) − S) Approximate median significance



AMS with uncertainties

• What we saw in the previous few slides somewhat of a simplification, should 
ideally also consider uncertainties in B


• See G. Cowan's slides for details


• This function is implemented in many libraries, my advice: don't re-invent the 
wheel, and use the existing implementations!
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https://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf


Limit setting
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Scenario

• Our business (among others): searching for something new


• Most of the time we will not find anything. What can we report if we haven't 
found anything?


• Upper limit: number of signal events 
(or cross section...) values above which 
are excluded (disfavoured) at some  
confidence level


• "Usual" confidence level depends on 
field; at LHC typically 95%, DM experiments 
often 90% 
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Test statistic for setting upper limits

• Modify the profile likelihood test statistic


• Motivations:


• Avoid unphysical negative signal strengths


• We want to construct a one-sided interval, so if we are testing a value 
, we set the test statistic to 0μ < ̂μ
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qμ = − 2 ln
L(μ, ̂θμ)

L( ̂μ, ̂θ)
qμ =

−2 ln
L(μ, ̂θμ)

L(0, ̂θ0)
̂μ < 0

−2 ln
L(μ, ̂θμ)

L( ̂μ, ̂θ)
0 ≤ ̂μ ≤ μ

0 ̂μ > μ

2-sided confidence intervals Modified for upper limits



Calculating the limit 
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qμ =

−2 ln
L(μ, ̂θμ)

L(0, ̂θ0)
̂μ < 0

−2 ln
L(μ, ̂θμ)

L( ̂μ, ̂θ)
0 ≤ ̂μ ≤ μ

0 ̂μ > μ
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Figure 1: (a) Illustration of the relation between the p-value obtained from an observed value of
the test statistic tµ. (b) The standard normal distribution ϕ(x) = (1/

√
2π) exp(−x2/2) showing the

relation between the significance Z and the p-value.

For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0,

L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 .

(10)

Here ˆ̂
θ(0) and ˆ̂

θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−2 ln L(µ,ˆ̂θ(µ))

L(0,ˆ̂θ(0))
µ̂ < 0 ,

−2 ln L(µ,ˆ̂θ(µ))

L(µ̂,θ̂)
µ̂ ≥ 0 .

(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). For this one needs
the distribution of t̃µ, an approximation of which is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

6

f(qμ |μ)

qobs
μ

qμ

pμ = P(qμ > qobs
μ |μ) = ∫

+∞

qobs
μ

f(qμ |μ, ̂θμ) dqμ

For each value of μ, can calculate a p-value equal to the 
probability of observing a test statistic value at least as large 
as , under the hypothesis that the signal strength is μ. 
We call this probability  

qobs
μ

pμ



Calculating the limit 
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For a model where µ ≥ 0, if one finds data such that µ̂ < 0, then the best level of
agreement between the data and any physical value of µ occurs for µ = 0. We therefore
define

λ̃(µ) =
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Here ˆ̂
θ(0) and ˆ̂

θ(µ) refer to the conditional ML estimators of θ given a strength parameter
of 0 or µ, respectively.

The variable λ̃(µ) can be used instead of λ(µ) in Eq. (8) to obtain the corresponding test
statistic, which we denote t̃µ. That is,

t̃µ = −2 ln λ̃(µ) =
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L(µ̂,θ̂)
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(11)

As was done with the statistic tµ, one can quantify the level of disagreement between the
data and the hypothesized value of µ with the p-value, just as in Eq. (9). For this one needs
the distribution of t̃µ, an approximation of which is given in Sec. 3.4.

Also similar to the case of tµ, values of µ both above and below µ̂ may be excluded by a
given data set, i.e., one may obtain either a one-sided or two-sided confidence interval for µ.
For the case of no nuisance parameters, the test variable t̃µ is equivalent to what is used in
constructing confidence intervals according to the procedure of Feldman and Cousins [8].

2.3 Test statistic q0 for discovery of a positive signal

An important special case of the statistic t̃µ described above is used to test µ = 0 in a class
of model where we assume µ ≥ 0. Rejecting the µ = 0 hypothesis effectively leads to the
discovery of a new signal. For this important case we use the special notation q0 = t̃0. Using
the definition (11) with µ = 0 one finds

6

f(qμ |μ)

qobs
μ

qμ

pμ = P(qμ > qobs
μ |μ) = ∫

+∞

qobs
μ

f(qμ |μ, ̂θμ) dqμ

For each value of μ, can calculate a p-value equal to the 
probability of observing a test statistic value at least as large 
as , under the hypothesis that the signal strength is μ. 
We call this probability  

qobs
μ

pμ

Wondering how to build 
 ?


Good! I have not told you yet, but will come back to this

f(qμ|μ)



The CLs criterion

• We can evaluate limits based on , but using just this we can exclude a 
signal even if the background hypothesis is also disfavoured


• Solution often used in high-energy physics: use the CLs criterion


• CLs itself is not a confidence level, it is a ratio of p-values!

pμ
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CLs =
pμ

1 − pb

pμ = P(qμ > qobs
μ |sig + bkg) = ∫

+∞

qobs
μ

f(qμ |μ, ̂θμ)

1 − pb = P(qμ > qobs
μ |bkg only) = ∫

+∞

qobs
μ

f(qμ |0, ̂θ0)

Using this criterion, at 95% confidence level a signal with strength μ is excluded if CLs ≤ 0.05 
Note: you could equally well set upper limits at 95% confidence level using pμ ➔ need to specify

what criterion was used!



Evaluating limits

• To set limits, we need 


• , the observed test statistic value for a given value of μ ➔ we know how 
to calculate this based on the definition of the test statistic


• The sampling distribution of  


• The sampling distribution of  

qobs
μ

f(qμ |μ, ̂θμ)

f(q0 |0, ̂θ0)
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Distributions of test statistic values. How to get 
these?

Answer: We need to generate many toy datasets under the signal+background hypothesis

for given values of μ, and evaluate the test statistic for each toy data set, to get  .

Similarly, we need to generate many toy datasets under the background-only hypothesis and 

evaluate the test statistic for each toy data set, to get  

f(qμ |μ, ̂θμ)

f(q0 |0, ̂θ0)
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Limitations

• Toy-based methods always introduce some uncertainty


• Cannot generate an infinite number of toys ➔ statistical uncertainty in CLs


• Limits only as accurate as the algorithm to find the crossing with CLs = 0.05


• Step size is finite


• Exercise on setting limits in this afternoon's hands-on session ➔ keep these 
aspects in mind
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Tacking stock
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You know how to calculate these points

What do these bands mean and how to evaluate them?

➔ expected limits



Expected limits

• Why?


• Nothing stops us from setting an upper limit when 
there is an excess of events over the background-
only hypothesis ➔ comparison with expectation is 
useful


• Expected limits using quantiles of sampling 
distribution: median expected and the 68% and 95% 
( not ±1,2σ) central intervals
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Expected limits

71

0 2 4 6 8 10 12 14
 = 120 GeV)

H
(r = 10, m

r
q

3−10

2−10

1−10

1 expected for sig+bkg
expected for bkg-only
observed value

 = 0.0166s+bCL
   = 0.2434bCL
   = 0.0682sCL

E.g. to find median expected limit follow 
same procedure as observed, but replacing 
qμobs with median of  . 
For 68% and 95% central intervals, similar, 
but use 2.5,97.5, 16 and 84% quantiles of 

f(qμ |0, ̂θ0)

f(qμ |0, ̂θ0)

qμ(μ

pμ        

1- pb 

Depending on the model this can take a long time - and the more extreme the quantile, the more toys are needed



The asymptotic approximation
• In the limit of high event counts, profile likelihood: (Wald, 1943)


• σ is the standard deviation of . If we assume this is gaussian distributed, this 
yields an analytic expression for , which depends only on a 
parameter Λ


• Simplifies the calculation of pμ :


• Here, Φ is the cumulative distribution function of the standard gaussian

• No time to go through the full derivation today, details in [Cowan, Cranmer, Gross, Vitells 2013]

̂μ
f(qμ |μ′ , ̂θμ′ 

)
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median discovery significance. When considering upper limits, one would usually quote the
value of µ for which the median p-value is equal to 0.05, as this gives the median upper limit
on µ at 95% confidence level. In this case one would need f(qµ|0) (or alternatively f(q̃µ|0)).

In Sec. 3.1 we present an approximation for the profile likelihood ratio, valid in the large
sample limit. This allows one to obtain approximations for all of the required distributions,
which are given in Sections 3.3 through 3.6 The approximations become exact in the large
sample limit and are in fact found to provide accurate results even for fairly small sample sizes.
For very small data samples one always has the possibility of using Monte Carlo methods to
determine the required distributions.

3.1 Approximate distribution of the profile likelihood ratio

Consider a test of the strength parameter µ, which here can either be zero (for discovery) or
nonzero (for an upper limit), and suppose the data are distributed according to a strength
parameter µ′. The desired distribution f(qµ|µ′) can be found using a result due to Wald [2],
who showed that for the case of a single parameter of interest,

− 2 lnλ(µ) =
(µ− µ̂)2

σ2
+O(1/

√
N) . (17)

Here µ̂ follows a Gaussian distribution with a mean µ′ and standard deviation σ, and N
represents the data sample size. The standard deviation σ of µ̂ is obtained from the covariance
matrix of the estimators for all the parameters, Vij = cov[θ̂i, θ̂j], where here the θi represent
both µ as well as the nuisance parameters (e.g., take θ0 = µ, so σ2 = V00). In the large-
sample limit, the bias of ML estimators in general tend to zero, in which case we can write
the inverse of the covariance matrix as

V −1
ij = −E

[

∂2 lnL

∂θi∂θj

]

, (18)

where the expectation value assumes a strength parameter µ′. The approximations presented
here are valid to the extent that the O(1/

√
N) term can be neglected, and the value of σ can

be estimated, e.g., using Eq. (18). In Sec. 3.2 we present an alternative way to estimate σ
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For the special case µ′ = µ one has Λ = 0 and −2 lnλ(µ) approaches a chi-square distribution
for one degree of freedom, a result shown earlier by Wilks [1].
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reduces to a chi-square distribution 
when μ=μ' [Wilks, 1938]

pμ = 1 − Φ ( qμ)



The asymptotic approximation

• This gives us a simple expression for pμ, but what about 1-pb ? 1-pb requires 
the sampling distribution , so we need to use a more general 
formula where 


• In our case μ' = 0, but we still need to estimate σ. How? 


• ➔ Asimov data set, a single representative dataset constructed from the 
max. likelihood estimate at μ', 
suppressing statistical fluctuations

f(q0 |0, ̂θ0)
μ ≠ μ′ 
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1 − pb = 1 − Φ ( qμ −
μ − μ′ 

σ )

36

Asymptotics

The formula make use of the Asimov dataset (to estimate σ/μ), a dataset 
constructed from the maximum likelihood estimates (^ values) of the POIs 
(and nuisances), with statistical fluctuations suppressed 

Asimov data (r=1) 
Signal+Background 
Background

Example, for a multi-binned 
analysis, with the Asimov for r=1



The asymptotic approximation

• From Wald's theorem, we have :


• CLs now becomes


• To calculate the observed limit, need to find both qμ and qμ,Α

μ
σA

= qμ,A
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1 − pb = 1 − Φ ( qμ −
μ
σ ) = 1 − Φ ( qμ − qμ,A)

CLs =
1 − Φ ( qμ)

1 − Φ ( qμ − qμ,A)

qμ,A = − 2 ln
L(Asimov |μ, ̂θμ)

L(Asimov | ̂μ, ̂θ)

qμ = − 2 ln
L(Data |μ, ̂θμ)

L(Data | ̂μ, ̂θ)



Expected limits in the asymptotic approximation

• We fix 1-pb by picking a quantile, and if we want CLs = 0.05, this also fixes pμ 


• Look for the value of μ such that
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1 − pb = 1 − Φ ( qμ − qμ,A) → Φ−1(pb) = qμ − qμ,A → qμ,A = qμ − Φ−1(pb)
pμ = 1 − Φ ( qμ) → Φ−1 (1 − pμ) = qμqμ,A = Φ−1 (1 − pμ) − Φ−1 (pb)

qμ,A = [Φ−1(1 − pb) + (1 − Φ−1(pμ))]
2



When can the asymptotic approximation be used?
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In the limit of large event counts, but what is large?

It depends - and is always worth checking. O(10) events can certainly be sufficient



Toy-based limits - peculiarities
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m

Lower bounds of the 95% and 68% 
interval can (almost) overlap. Why?


For very low event counts, test 
statistic distribution can be discrete 
➔ quantiles can be the same and so 
limit bands overlap


Plotting the built-up test statistic 
distributions can help you 
understand the behaviour of your 
limits



Upper limits and exclusion contours
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95% CL excluded:
Observed 68% expected
Expected 95% expected

CMS
 (13 TeV)-1138 fb
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Upper limits, calculated

as discussed in previous slides

Exclusion contours: for each point in the parameter 
space, check if corresponding amount of signal would 
be excluded (e.g. using CLs criterion)



Summary of lecture 2

• When we're searching for a new process, need to ensure that we don't claim 
in error to have found new physics


• Toolkit: hypothesis tests to evaluate p-values; look-elsewhere effect


• Even if we don't find what we are looking for, we can place an upper limit on 
some quantity


• A lot like a confidence interval


• You know how to compute these, and to be careful in the case of low event 
counts
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