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Overview

Lecture 1

* Building a statistical model

* Interval estimation

» Systematic uncertainties
Lecture 2

 Hypothesis tests for discovery

o Limit setting



Disclaimer

* |'m an LHC physicist mainly working on Higgs physics

 The examples | give will be biased

* [he concepts should however be generally applicable!



Building statistical models



Particle physics experiments: counting

o | | ' I
§ _ = bkg1 = bkg5
LI 80 W= bkg2 == bkg6 -
- B bkg3 XX Unc. MC
] ] bkg4 ¢ data
60 —

Data/MC

] ] ] ] ] ] | ] ] ] |
0.4 0.6 0.8 1.0

Some variable

"'Ndata = kag — Nsig

With the integrated luminosity and the
efficiency x acceptance of the event selection
—> can measure the cross section

* Reality is not that simple: uncertainties!



Particle physics experiments: counting

CMS 138 fb~! (13 TeV)

e HH

4 10° ¢ Data DY +Multiboson

f= Total Unc. Other
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- m Top
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DNN score x HME bin (a.u.)

* Not necessarily simple

e Can count all events in a
region, or in different
bins (selections)



Particle physics experiments: counting

_woCMS ,|1,3,7,f,bl'f (13 TeV) e Can also count without binning

8 - E_ H —yy, m, =125.38 GeV All ggH categories _E

PR oo 4« NB in the analysis example here, the data
2 — S+B fi E *were* binned

S 40~ s B component -

2 £10 . .

S w0 20 4+ Background and signal modelled with

Z b : continuous distributions
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Counting

* Usual situation: produce large number of events n, select only a small fraction
P.
* A binomial process, in principle
|
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Counting

* Usual situation: produce large number of events n, select only a small fraction

P.
. _ _ - n large, p small . SPIRTE
» A binomial process, in principle - Poisson distribution!
n! P(k ‘ /1) e_/lllk
' k —k —
P(k|p,n) = p (1 —p)" I
k'(n—k)! :
A~np
.12} o : .10 | | 9 _ POlSSOn
0.10 | - Binomial 0.08 | ' ' |
oo |l [ _ -
.04 | . . V.02

U 10 24U i 1) 50



From data to parameters

wCMS 13717 (13TeV)  Have the data, want to draw some
C H— yy, m = 125.38 GeV All ggH categories - COﬂClUSiOnS frOm |t

60 — S/(S+B) weighted

505 ¢ Data _:

— S4B i { e+ le: get the parameters of the model (e.qg.
----- B componen - " |
comporent. - mass of a new particle, cross section, ...)

Data +1o

S/(S+B) weighted events / GeV

: 20 from the data
oF * - Use the likelihood
oz' —
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Likelihoods for counting models

Y(a) x p(data| a)

The likelihood is not a probability, contains multiplicative factors, which we'll simply ignore for now
since the important point is that they do not depend on the data or the parameters

We have seen the p(datala) is a Poisson probability when we are counting.
If we are only counting one number, we have nhumber of observed events N and some number of
expected events, which we can construct as uyS+B

U IS a parameter that scales the reference number of signal events, it is our parameter of interest.
B could be seen as a nuisance parameter. We will encounter more nuisance parameters later

e~ rBuS + BN
N!

L xp(N|u,S,B) =
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Multiple bins

CMS 13|8 fb._l (|13 TeV)
s HH Extend our model to consider all bins, have observations
»n 10 ¢ Data DY +Multiboson 1 :
2 Total Unc. Other No....Nnbins, €xpected Signal and Backgrounds S1...Snbins
< 106} —— Radion 400 GeV Misid. lep. .
Top and BO....Bnbins
10% resolved = 1b resolved = 2b boosted
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102' ° e . | ® ® ® b o | ° @ B B L
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Extended unbinned likelihoods

* For some variable m distributed according to a pdf f(m), and nevts
observations, the likelihood would be

"evis

Zo || fim)
=1

e But nevis IS Itself Poisson-distributed! Need to extend the likelihood

13



Extended unbinned likelihoods

* For some variable m distributed according to a pdf f(m), and nevts
observations, the likelihood would be

"evts
Zo || fim)
i=1
e But nevts IS Itself Poisson-distributed! Need to extend the likelihood
"evts "evts e~uS+B)(uS + B)"evts

Nevts !

Z o || fim) - Poisngyts|uS+B) || fim) =
i=1 =1

"evis

=1

13



Extended unbinned likelihoods

* For some variable m distributed according to a pdf f(m), and nevts
observations, the likelihood would be

"evts
Zo || fim)
i=1
e But nevts IS Itself Poisson-distributed! Need to extend the likelihood
"evis "evts —(uS+B) navtg ' €Vis
. e~ (//tS 4+ B) eVvis
Z « || fumy) - Pois(ngyts|us+B) 1] fim) = — L1 Am
=1 i=1 evis: i—1

e—(uS+B) ‘evis e—(uS+B) evts ﬂSpsig(mz’) T prkg(mi)
= - || wS+Byim) = - [] ws+B)

Nevts: Nevts: S+ b

Remember f is a pdf so needs to be normalized 1



Binned and unbinned likelihoods

Counting type Observable Likelihood
| | Likelihood: single poisson probability
Single-bin N
counting e—(,uS+B)(IuS 4 B)N
N
Likelihood: product of poisson probabilities
N, .
—(uS+B.
Multiple-bin N;, for bins dINS Al l)(ﬂSi T Bi)i'v
counting I=1,...Nbins H ,
i=1 ;-
Extended unbinned likelihood
mi, for number N
Unbinned of events ¢~ (u5+B) evts
nbinne 1. Novts ' ] HSPsig(my) + Bppg(m)
Tevts:

14



Maximum-likelihood estimate

 We know how to define a likelihood for the experiments that we are doing =
we can use It to determine parameter estimates

() x p(data| @)
- Maximising the likelihood: find values of a for which we get maxz:Z'(a)

 Example: Simple counting model with n observed events, no bkg expectation

S=05

0.6
0.51 Observed

0.4f Value n=5

0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

..............................
Y24 6 8 10 12 14 16 18 20

L(S) max
@S=5
given n=5

L(S; n=5)

P(n; S)

0.3t
0.2f

|III||II|III|III|III|||I||II|II]I

0.1F




"Unphysical” MLE's

 The maximum-likelihood estimate gives the value(s) of the POls that are most
likely for the observed dataset

* Function of the data, not necessarily the "true" value

 MLE estimate of a cross section could come out negative if the data has
fluctuated below the background expectation

 Not wrong! MLE is not a statement on the true value

16



Systematic uncertainties



Uncertainties in a measurement

Consider a measurement of production cross sections = maximume-likelihood
estimate of the value, with a confidence interval

—
-
N

- ATLAS Run 2

—l
o

Two kinds of uncertainty

Cross section [pb]

2%
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ZZ
‘¢ Data (Total uncertainty)

Syst. uncertainty

|_
I/IIIII'

1) Statistical (~inherent
randomness of the
B SM prediction process, limited
| | | | number of events)
| o | 2) Systematic = possible
% ways in which the
z - model might be

I | | — —1 0 I I
ggF + bbH  VBF WH ZH ttH tH Wrong

Production process
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Incorporating systematic uncertainties

» Systematic uncertainty = what we don't know exactly about the model
 Add nuisance parameters to the model to describe them

 These parameters are generally not completely free

L(data|u) - F(data|u, §) = FMmeasurement yata | 4. 6)C(6)

/ \ |

Parameter of interest Nuisance parameters Constraint on NP
(e.g. number of signal

events, signal

strength,...)

19



Constrained nuisance parameters

 What is the form of C(0)?

 Must at least be a function of the "nominal” values of the parameters and
the "measured” values

C(O) = C(6,10)
 \Where does 6 come from?

* Auxiliary measurement, e.g. luminosity measurement by an independent
detector, or an efficiency measurement in a control region

 Can determine L=X + vy fb-1 = relative uncertainty y/X. Assuming y
represents a 10 uncertainty: Gaussian constraint makes sense

20



A simple likelihood model with nuisance parameters
Z(u,0) x p(data|u,0) - C(6,]0)

 Assume an analysis counts the number of events in pp collisions (with some
selections as we're looking for a particular process)

e Number of observed events: N

 Model for the number of expected events nexp depends on U, a reference
signhal cross section Osig, the background cross section owkg, the selection
efficiency (€) and detector acceptance (A), and the integrated luminosity Lint

 Assume the luminosity is subject to a 2.5% uncertainty

What will our statistical model look like?

21



A simple likelihood model with nuisance parameters

L (u,0) x p(data| u, 6)- C(6, )

Probability term in the likelihood:
Poisson probability

Int Int
nexp = HgigesigAsigl’ * CbkgfbkgAbkgl

22



A simple likelihood model with nuisance parameters

L (u,0) x p(data| u, 6)- C(6, )

Probability term in the likelihood:
Poisson probability

N__,~hexp
nexp¢ .
nexp = HOgjg€sigA L g bkgAbkngt

But wait, the luminosity has an uncertainty 7Nt _, Li”t(l + 0.025)

22



A simple likelihood model with nuisance parameters

L (u,0) x p(data| u, 6)- C(6, )

Probability term in the likelihood:
Poisson probability

N__,~hexp
nexp¢ .
nexp = HOgjg€sigA L g bkgAbkgLInt

But wait, the luminosity has an uncertainty 7Nt _, Li”t(l + 0.025)

_ int int
nexp = ”"sigesigAsigL 1.0257 + GbkgebkgAbkgL 1.025Y
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A simple likelihood model with nuisance parameters

Z(u,0) « p(data| u, ) | C(6, | 0)

We apply a Gaussian constraint on 6

C@,]0) = C(0]0) = e 2%

Note: even though the applied constraint is Gaussian, this is the constraint on ©
Our "quantity of interest” is 1.025°% => this is log-normally distributed

23



A simple likelihood model with nuisance parameters
Z(u,0) x p(data|u,0) - C(6,]0)

_ int int
nexp = /’tGSiQGSigASigL 1.025% + GbkgebkgAbkgL 1.025¢

We can extend this to multiple nuisance parameters - the constraint term becomes a product of
the constraint terms for each NP

24



Likelihood estimates with NPs

» When we're doing parameter estimates of our parameters of interest y, we
"don't care about the nuisance parameters”

 \We can profile over them

 Example likelihood for a model with one
NP and one POl

* Profiled likelihood is the value of the
likelihood function along the line 6(u)

L) = L(u, () = maxeZ(u, 0)

o 3

25



The profile likelihood ratio

 When estimating parameters, maximize the likelihood

* |n the presence of nuisance parameters, we maximize the profiled likelihood

* |n practice easier to minimize the negative log of the likelihood

« The value of -In L at the minimum is not relevant =
-> We can subtract it off

—~AlnZ = —1InZLu, On) — (—In L4, 0)))

L O(w))
Z (i, 0)

= — ]

We use twice this quantity as the profile likelihood
ratio test statistic, which you will see appear in many places!




Inspecting nuisance parameters

 Can check:

—— : —_— + :

» Effect of NP on the measurement (ie repeat the o E:: Eiﬂiiijlﬂi EZQB I +1 23 IEEZEI EZES?
minimization with the NP fixed at its +10 values > Baging efficiency (b ets)
and check how the POI value changes) b tagging efficiency (¢ jets, linear)
JES: Absolute (corr.)
e How NPs Change: Additional b jets in ttwW

Additional jets in ttW

Normalization ttZ

* Central value different from 0: something in

Matrix-element scale variations (tttt)

data is not as expected in the model b (i Cfeltney (© fo, auadtielis]
b tagging efficiency (light)
e Constraint less than 1? The data has more Normalization {tw

JES: Relative Sample (2018)

information about the parameter than our
auxiliary measurement

Additional b jets in ttH

MC stat. in bin 2 of SR-2¢ uu tttt (2017)
JES: Flavor QCD (bottom)

* Also useful to evaluate the pull: if the uncertainty is Final-state radiation scale
not very constrained, but the shift away from O is Matrix-element soale variations (ttW)
large, the pull will be large. ME stat. inbin 3 of SRS/ (2019

Initial-state radiation scale (tttt)
VN

Matrix-element scale variations (t?H)
H HO Initial-state radiation scale (ttW)




From now on, we'll ignore
systematic uncertainties again



Interval estimation



Overview

e \We have seen how to use maximum-likelihood estimates to find the most
likely value of some parameter of our model

 We also want to say something about the uncertainty in our estimate =
confidence interval

a 1025 =
= - ATLAS Run?2 °-
O = _
& 10 —
n — -
8 F = z
S =2 ) . . .
1= =2 - = Confidence interval, construct such that if we were to repeat the
-} Data (Total uncertainty) £ 1 experiment many times, 68% of the time the interval would contain
gl st uneertaly the true value (or 68.3% if this is 10)
E = SM prediction ?
= | B5F | | | | : _ ‘0
"g 1 % 28 — —:0
— - 1= % ]
D(:U 0.5 | | | = —4-10
ggF + bbH VBF WH ZH ttH tH

Production process



Gaussian confidence intervals

— N
:01]lllmllll'01llllw

Central value (u)

o
m |

—
LI I B

O
IIU1II

lloll

543—21012345

Observed data (n)

e Assume a Gaussian likelihood

L) = O

 Reported confidence interval at 68.3% CL.:

U=n=xo
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General case: Neyman construction

For each true value of the parameter, build the 68% interval of observed values
one would get (use a central interval in this case)

P(p; p*)

68% intervals for |
/.\ Observed value i

>

True value p*

32



General case: Neyman construction

Construct confidence belt from the intervals at the different true values

P(; n*)

//ﬁ Observed value

>

———————

True value p*

33



General case: Neyman construction

Invert from the confidence belt: for given observed value, get the confidence interval

i+ oup

68% confidence interval

True value p*

i = 0down

Observed value Observed value [

34



Confidence intervals from the profile-likelihood ratio
Z (1, 0(w))
L4, 0)
 From Wilks' theorem, have that profile likelihood ratio is x2-distributed with N
degrees of freedom

. We use the profile likelihood ratio (i) = — 2 In

* N is the difference in number of degrees of freedom between numerator
and denominator in PLR (1 in this case)

 Then 68.3% (10) interval given by set of points for which g(u) = 1, and 95.5%
(20) interval by set of points for which q(u) = 4

35



Confidence interval from the PLR

* This figure shows the profile likelihood ratio

120 without the factor 2, so the interval constructed
s [ at the crossing with 0.5 instead of 1

107_—

N « How accurate is this? We could calculate the

" coverage

61

o

2\ H

O_HI. A/ ||IIlIllIllllllIlllI|Illl|ll|l|lll

68.3% / 10 confidence interval
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Coverage tests

* Create many toy data sets for some value of y, and construct the 68%
confidence interval as on the previous slide

* |f our method covers, then the true value of p (used in the toy generation)
should be contained in the interval 68% of the time

 NB we can always calculate the coverage for a given method of constructing
the confidence interval

-AIn L(!l]

37



Coverage

—

0.5

0.4

0.3

0.2

Neyman
®From PLR

|IIII|IIII|IIII

Neyman construction vs PLR

 Example (for a relatively simple model)

e |n this case, we see the intervals from the PLR under-
cover somewhat

 The Neyman construction built as:

e pick values yt and generate toy datasets for this value,
evaluate the test statistic g for each toy to build up the
sampling distribution

e calculate the p-value for observing a value of g at least
as large as the observed value

e |f p<1-0.68, pris in the confidence interval, otherwise
Not

* Repeat for many values of ur

* No really general rule; Neyman construction should
always work best, but also computationally expensive
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Two-dimensional confidence intervals

1.5

1.0

0.5

0.0—

CMS
I | I I I | I I I | I I I | I I I | I
+ Discovery # LHC Run 1 < This paper |
— [—68%CL ---95%CL ¢ SM Higgs
| | ‘_| 1 ,1’/,|, | | | | |
0.6 0.8 1.0 1.2 1.4K

e \What we have discussed also works in N
dimensions

* |n practice 2D the only thing that is easy
to visualize

e (Careful: critical values for ANLL in 2D are
different than in 1D

. ~2.3,6 (x2 in 2D)

 Best not to think of this as "1¢" and
20" (these do not correspond to 68%
and 95% in 2D, so ambiguous)
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"Unphysical”

CMS

In

138 fb~! (13 TeV)

ZH(Z - leptons); p%Z> 150 GeV A
ZH(Z - leptons); p%Z <150 GeV A
WH(W - leptons); p¥ > 150 GeV -
WH(W - leptons); p¥ <150 GeV -
qgH; 60 <mj; <120 GeV -

qqH; mj> 350 GeV; pt >200 GeV -
qgH; m;; > 700 GeV; p <200 GeV -
; 350 <m;; <700 GeV; pY <200 GeV -
ggH; pY > 300 GeV A

ggH; 200 < pt <300 GeV -

ggH; =2J

ggH; 1J; 60 <pY <200 GeV -

ggH; 1); pt <60 GeV -

ggH; 0J -

I
|
©
=

R 3 | +
o
ol

0=0.10%3-33 pb

0=0.8%34 pb

y

<
\ I \ NI
~

|

o=0.06+394 pb

0=1.5%13 pb

\
\

_M]_ 0=0.17%31f pb

v. VVVVY. L/i;L/L/L/LL/L/L/L/ Y.

2 | 6=0.023+$91 pb
/ . 0=0.04+318 pb
|
‘ | / = - 21
!
! =0.22 b
\ | + P> Howw
L =1.5 b
:—-,—0-—— o= P 4 Total
g | 0=0.534 pb e Stat.
i o4 Theo. unc.
: 4= 0 =2.623¢ pb ggH
i ‘o B gqgH
41 0=42¢pb VH(V - leptons)
I —-—- Standard model
—4 -2 0 2 4 6 8 10
o(H->WW)/o(H > WW)gym

tervals

e The true value of o/osm can not be
negative

 But: what the maximume-likelihood
estimate and the confidence interval
provide are estimators of the true
parameter

* [hey can take unphysical values

* |n general: report the full interval,
even if you have unphysical values
unless it Is Impossible
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Counting type Observable Likelihood
S u m m a ry Of IeCtu re 1 Single-bin N Likelihood: single poisson probability
counting e—”S"'B(u S + B)N
N!
- - i Likelihood: product of poisson probabilities
* Particle physics = counting vt | N for bine ins ,-usi+B,5 1 ByY
counting i=1,...Noins H N1
. . =1 v
* But we can count in different ways m, forrumper | ended unbinned fikefhoot
of events —(uS+B)
. . . Unbinned ii1 ,...nivts en ' ,uSpSig(mi) + prkg(mi)
* \We can use likelihoods to infer evis” iz

g

something about a model from our data

* The likelihood can incorporate systematic uncertainties too (parameters that

describe the ways in which our model could be wrong)

* Using this we can estimate parameters and intervals on those parameters

41



Hypothesis tests for discovery



Overview

* \We have seen that high-energy physics
experiments boil down to counting events

o Statistical analysis needed to interpret the
meaning of some counted number of events

 For example, based on this bump, -

how can we say we have discovered a new
particle?

CMS (s=7TeV,L=51f"\s=8TeV,L=5.3fb"
> Tty rr oo
Q = T T
O 8 Unweighted
L0 i 10 1500F
:1500 - ~ '
B i)
@ 5 |
- > i
S (111000
>
Lgmoo - N T 130
© m,, (GeV)
C
o) i
D ¢ Data
= >00 . —— S+BFit
A~ | e B Fit Component
? : t1o
N i +2 0
t/ O ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ]
w 110 120 130 140 150

m,., (GeV)
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Simple case: a Gaussian measurement
n e Obs: 120

 (Gaussian measurement, B=100, and we observe
120 events

* Did we discover something?

* S= Nobs-B =20

« Uncertainty on B:; \@ = 10 = significance Z is

,,,,, Z =S/ \@ =20
0.04 | A~ —
0.03 / p_val?e o p_Va|ue: 2 39
0.0 // \\\ Po = 1 -®Z)=1- [ Gauss(0,1)
| P J/ - i oo

70 B0 90 100 110 120 130



Hypothesis testing

* Null hypothesis, e.g. no signal: Ho

e Want to test whether Ho is favoured or disfavoured

Data disfavours Ho Data favours Ho
(Discovery claim) No claim

Ho is false
(new physics)

There is new physics but we have

: _
Discovery of new physics! ot found it

No discovery, because there is no
new physics. But maybe we can
exclude some models (see later)

Hois true We have claimed to have found new
(no new physics) physics, but there isn't any




Hypothesis testing

* Null hypothesis, e.g. no signal: Ho

e Want to test whether Ho is favoured or disfavoured

Data disfavours Ho Data favours Ho
(Discovery claim) No claim

Ho is false
(new physics)

There is new physics but we have

not found it
Type-Il error

Discovery of new physics!

No discovery, because there is no
new physics. But maybe we can
exclude some models (see later)

Hois true We have claimed to have found new
(no new physics) physics, but there isn't any
Type-I error




Hypothesis testing

* Null hypothesis, e.g. no signal: Ho

e Want to test whether Ho is favoured or disfavoured

Data disfavours Ho Data favours Ho
(Discovery claim) No claim

Ho is false
(new physics)

There is new physics but we have

not found it
Type-Il error

Discovery of new physics!

No discovery, because there is no
new physics. But maybe we can
exclude some models (see later)

Hois true We have claimed to have found new
(no new physics) physics, but there isn't any
Type-I error




Likelihood ratios

* Neyman-Pearson Lemma : the optimal discriminator when comparing two
hypotheses Ho and Hs is the likelihood ratio

Z(data; H,)
Z(data; Hy)

* Ho: null hypothesis, no signal. H1: hypothesis including some signal (the
amount preferred by the data, \5)
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Test statistic for discovery

* |n practice we use twice the negative log-likelihood ratio (has some nice
properties), but this does not go against what we said on the previous slide
(still involves a ratio of likelihoods)

Z(H,) 51 Z(S =0)

- 40 V) Z(8)

. For S <0, we set qo to O (one-sided test statistic, negative signals are not
considered)
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P-value for discovery

5 ZBS =0
If value of § is large, gy = — 2 In —————— will
Z(3S)
also be large (large difference in likelihood values
forS=0and for $ = §

* We say Ho (S=0) is disfavoured compared with
H1(S>0)

» Calculate the sampling distribution of the test
statistic under the background-only hypothesis

(f(gp| S = 0))

» Calculate po: probability of observing a value of qo
at least as large as qo°bs, if Ho is true

0.5¢
0.45)
0.4f

0.35}
0.3f
0.25F
0.2}
0.15f
0.1
0.05f

v
IA
o

f(q,|S=0)

Observed
value q °*°

h
-
%(lll

1234561789
do

Integrate this
to get po
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Asymptotic approximation

* |f we are in the Gaussian regime, then we can
apply Wilks' theorem, and find that qo Is X2
(Npar)-distributed for S=0

. In our case we have npar=1, then 4 /g, is
Gaussian-distributed

* \We can calculate the p-value from the
Gaussian quantiles: py = 1 — ®(, /q,)

. Significance is then Z = , /q,

0.5¢
0.45( | S<0
: 2
0.4f (ndof )
0.35}
0.3f Observed
0. 25_“-" Value qoobs
0.2}
0.15 p-value
0.1
0.05} ‘ large S
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What p-value/Z-score constitues a discovery?

* p-value for significance of
30: ~0.001 = 1in 1000
chance

e "evidence’

* p-value for significance of
50: ~3107=>1in 3.5
million chance

* "observation’

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0/ 05000 05040] 05080 05120] 05160 05199 05239 05279 05319  0.5359
0.1] 05398 05438 05478 05517| 05557| 05596 05636 05675 05714, 0.5753
0.2 05793 05832] 05871 05910 05948 05987 0.6026| 0.6064] 0.6103] 0.6141
0.3] 06179] 06217 06255 06293] 06331] 06368 06406 06443 06480 0.6517
0.4 06554 06591 06628 06664] 06700 06736/ 06772 06808 06844  0.6879
0.5 06915 06950 0.6985 0.7019] 0.7054] 0.7088] 0.7123] 0.7157| 07190 0.7224
0.6 07257 0.7291| 0.7324] 0.7357| 07389 07422] 0.7454| 0.7486] 0.7517| 0.7549
0.7] 07580 0.7611| 0.7642] 0.7673| 0.7704] 07734 0.7764] 0.7794] 0.7823| 0.7852
0.8/ 07881 07910 0.7939] 0.7967| 07995 0.8023] 08051 0.8078 08106, 0.8133
0.9/ 08159 08186 08212 08238 08264] 08289 08315 0.8340| 08365  0.8389
1.0/ 08413] 08438 08461 0.8485 08508  0.8531| 0.8554| 0.8577| 0.8599| 0.8621
11| 08643] 08665 08686  0.8708] 08729 0.8749] 08770| 0.8790] 0.8810| 0.8830
12| 08849] 08869 08888  0.8907| 08925 0.8944] 0.8962| 0.8980] 0.8997| 0.9015
13|  09032] 09049 09066 0.9082] 09099 09115 09131 09147] 09162 0.9177
1.4  09192] 09207 09222 09236 09251 09265 09279] 09292] 09306/ 0.9319
15| 009332] 09345 09357 0.9370] 09382 0.9394 09406| 0.9418] 09429 0.9441
1.6| 009452] 0.9463] 009474 0.9484| 09495 0.9505| 09515 0.9525 09535  0.9545
1.7 09554] 09564 09573 0.9582| 09591 0.9599] 09608] 0.9616] 09625  0.9633
1.8 09641] 09649 09656  0.9664| 09671 0.9678] 09686 0.9693] 09699 0.9706
19| 09713] 09719 09726] 0.9732] 09738 0.9744] 09750| 0.9756] 09761 0.9767
2.0/ 09772 09778] 09783] 09788 09793 09798 009803] 09808 09812 0.9817
21| 09821 009826/ 0.9830] 09834 009838 09842 00846 09850] 09854 0.9857
22| 09861 009864 009868 09871 009875 09878 00881 09884 09887  0.9890
23] 09893 009896 0.9898] 09901 0.9904] 09906/ 09909 09911 09913 0.9916
24| 09918 009920/ 0.9922] 09925/ 0.9927] 09929 00931] 09932 09934 0.9936
25| 09938 09940 0.9941| 09943] 09945 09946| 009948 09949 09951 0.9952
2.6/ 09953 009955 0.9956| 09957| 0.9959] 09960 09961 0.9962| 09963  0.9964
271 09965 09966 0.9967] 09968] 0.9969] 09970 09971] 09972] 09973 0.9974
28] 09974 09975 0.9976] 09977 09977 09978 09979] 09979 09980  0.9981

9| ngos 0.9982| 00982] 09983 00984] 09984 09985 0.9985 09986 0.9986

0.9987| 0.9987| 0.9988 00988 00989] 09989 09989 0.9990| 0.9990
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So, at the beginning of the section, did we discover something?

CMS \s=7 eVL 51fb'\s=8TeV.L=5.31b" o 1CMS \s=7TeV, L= 51fb1 \s=8TeV,L=5.31fb"
> T T T L L A l 1 T T 1 T T 1 T T 1 | | I —— 10
o L E ‘-v FE,
O i & Unweighted g \7 A" 120
O I 01500 c-3_10'2 — —
:1500 R P . - _30
) i I= 8 : _
() [~ v
81 000 - 108 ' 156
c I — n —
% B 108 —| = Combined obs. .. —
; 500 --5xp. for SM H “... 60
=) [ e B Fit Component ol — H:YZYZ ’

i t1o i 10 " . —
o [ B - P _
t/ ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] ] ] | ] ] B s ‘\‘ ]
U) O 110 120 130 140 150 10'12—+| | |Ii_|| |b|b| T Y A |?.i T |+—7O

m,, (GeV) 110 115 120 125 130 135 140 145

Not by itself (using 50 criterion), but
combining with multiple channels, yes!

my, (GeV)
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Look-elsewhere effect (l)

Imagine | tell you | got heads 100 times in a row when flipping a coin, what is
your response 7

A Sure, | bet the coin is biased

B How many times did you flip the coin in total ?
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Look-elsewhere effect (l)

Imagine | tell you | got heads 100 times in a row when flipping a coin, what is
your response 7

A Sure, | bet the coin is biased
B How many times did you flip the coin in total ?

If | did only flip the coin 100 times, it's quite something to get 100 heads in a

row, but if | have been flipping that coin for a long time, at some point | expect
to get 100 in a row

The same is true in particle physics experiments: if | try to look for many signals

(e.g. scanning a mass parameter), I'm more likely to find a large excess than if |
only look at a fixed mass

52



Look-elsewhere effect (i)

o Stringent 50 requirement for observation partly to protect against LEE

e But this is not foolproof!

CMS Preliminary 132 fb~! (13 TeV)
;‘ IR BN LA LELELL L I I IR B (D) ] o .
C . - 3_O§ Largest local excess (ie at a specific mx, my value): 3.40
> = ] =
= =*I : 5 _ _
ol NS 1 W2»  Evidence for new physics?
1 2.0 . e . .
ool 1 ) No, global significance found to be 0.10 in this case
_ . : 1.5
90i— T
L 1.0
80| : - 505
1
.- e
7OL....|....|....|....|....|....|....|.+_ 100

300 400 500 600 700 800 900 1000
nb<K3eV]



Handling the LEE

 Want to calculate the global significance (probability for a fluctuation
anywhere in the range), as opposed to the local p-value (probability for a
fluctuation at a given location)

CMS Preliminary 132 fb~! (13 TeV)
;‘ (LANRE _ CLEN LI LI L L LI L LN BRI LA L IR 8 . o .
S, 120] * 1 @os The significance calculations that we have seen so far
é— : “CED . . "
| LI | B..5 give us the local significance.
110 7
o | B©  How can we calculate the global significance?
100 ]
_ . : 1.5
e[0]= e
’ 1 |10
o | ; {05
" I e
r — _
zolb e v U e ] 100

300 400 500 600 700 800 900 1000
My [GeV]



Global significance

Trials factor ~ "number of independent
experiments”

_ W L
Pglobal = I=d _Plocal)tria|3 ~ MirialsPlocal

Global p-value Local p-value

If trials factor N is number of independent searches, then we could expect this factor to be something like
the scan range divided by the peak width

If we slice the scanned range into Nindep INdependent regions, we miss possible peaks on edges between
regions => trials factor is actually larger

T
In asymptotic limit: Nyigis = 1 + \/:NindepZIoc
S

More details: https://arxiv.org/pdf/1005.1891
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https://arxiv.org/pdf/1005.1891

Global significance from toys

 Repeat the analysis in toy data
 (Generate pseudo-dataset
* Perform search scanning over same parameters as done for date
* Retain largest significance found
 Repeat many times

* Fraction of cases for which a significance at least as large as Zioc Is found is
the global p-value

* Very computationally intensive for small global p-values! (Need many toys)
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Simplifying significances

* Of course always best to evaluate full expected significance when optimizing
an analysis

* But can be costly! What are approximations we could use?

S

In the gaussian case: Z = —— , but our analyses are not gaussian
VB

* Approximate significance for the Poisson case?
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Approximate significance, Poisson case

P — e~ (5tB) (5 +5)
n'
Likelihood ratio is:
Z (S =0) e PB"
do = —ZIH—A — —ZIH% —
Z(S) e~+B)(§ + B)”

—2(In(eBB™) = In(e """ (n)")) = — 2(=B + In(B")) + (n) — In((n)")) =

_2(=B +nln(B)) + n — nln((n))) = 2(n ln(%) +B—n)



Approximate significance, Poisson case

Likelihood ratio is:

g0 = 2(n ln(%) +B—n)

Expected case: n = S+B, so that

S +
go, €XP = 2((S + B)In(

B)—S)
B

Using asymptotics:

We get
7 — / 2(( S + B)ln( S _II; B) _ S) Approximate median significance




AMS with uncertainties

 What we saw In the previous few slides somewhat of a simplification, should
Ideally also consider uncertainties in B

b2

e 2
(s +b)(b+ of) an [1 I 2
of b(b+ of)

b2 + (s + b)oj;

LA = [2 ((5 + b) In

e See G. Cowan's slides for details

* This function is implemented in many libraries, my advice: don't re-invent the
wheel, and use the existing implementations!
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https://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf

Limit setting



Scenario

* Our business (among others): searching for something new

 Most of the time we will not find anything. What can we report if we haven't
found anything?

35.9 fb™' (13 TeV)
T 1 T T_]

 Upper limit: number of signal events
(or cross section...) values above which
are excluded (disfavoured) at some
confidence level

—o— Observed

----- Expected ~
- 68% expected ;

Excluded 95% expected |
at 95% CL

e "Usual” confidence level depends on
field; at LHC typically 95%, DM experiments
often 90%

95% CL limit on o(bbg)-B(¢—tt)(pb)

= ! ! ! ! Lo ! !
100 200 300 1000 2000
m, (GeV)

62



Test statistic for setting upper limits

 Modify the profile likelihood test statistic

L6y
A —2111 N //t < O
L(u.0,) Loy
q,=—2In - q, = L(u,6,) X
A — <pg<
L(#, 0) 2In———" 0<jp<y

0 p> U

2-sided confidence intervals Modified for upper limits

 Motivations:
* Avoid unphysical negative signal strengths

 We want to construct a one-sided interval, so if we are testing a value
u < (i, we set the test statistic to 0
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Calculating the limit

L(u,0,)
—2In—— [ <0
L(0,0,)
= L(u,6)
T 2In—— 0<4<u
L(j1, 0)
0 H>p

For each value of u, can calculate a p-value equal to the
probability of observing a test statistic value at least as large

as q/?bs, under the hypothesis that the signal strength is p.

We call this probability p,

—

AN

\/ qpcl)bs

p, = Plg, > q™ | p) =

r 400

Y qﬁbs

p—value

flq,n.6,)dq,



Calculating the limit

/

.

AN

L(p.06,)
2ln—" 45<0
L(O,Qo)
q,u — L(//t,é"u) R
—21n — 0<a<
iy o r =k
0 a>p
O
oo
. (NS
or each “de o 0\
probablllt \N \ 3\| C value at least as large e
as CIM 006\' SIS that the signal strength is p. =P (qﬂ > q,u | 1) =

We call this p ~wability p,

»+00

Y qﬁbs

flq,u,0,)dq,



The CLs criterion

- We can evaluate limits based on p,, but using Just this we can exclude a
signal even if the background hypothesis is also disfavoured

e Solution often used in high-energy physics: use the CLs criterion

 CLs itself is not a confidence level, it is a ratio of p-values!
+00

CL, = O p, = P(q, > q;>° | sig + bkg) = J g, u.6,)
1 — pb Qﬁbs

+00
I — py = P(q, > " | bkg only) = J f(q,10,6y)
Qﬁbs
Using this criterion, at 95% confidence level a signal with strength p is excluded if CLs < 0.05

Note: you could equally well set upper limits at 95% confidence level using p, = need to specify
what criterion was used!
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Evaluating limits

e Jo set limits, we need

o q/ft’bs, the observed test statistic value for a given value of y = we know how
to calculate this based on the definition of the test statistic

» The sampling distribution of f(g, | u, 6’Aﬂ)

Distributions of test statistic values. How to get
these?

 The sampling distribution of f(qo | O,éo)

Answer: We need to generate many toy datasets under the signal+background hypothesis
for given values of p, and evaluate the test statistic for each toy data set, to get f(q, |u, 0,).

Similarly, we need to generate many toy datasets under the background-only hypothesis and
evaluate the test statistic for each toy data set, to get f(gy|0,6,)

66



Evaluating CLs and finding the upper limit

Start search from u = 20, CLsis ~ 0.005, so already excluded - start stepping towards smaller
values until we cross 0.05 between p=10 and p=12

1

expected for sig+bkg
C],,?bs expected for bkg-only
observed value

p. =0.0011

’&\ ﬁ& ﬂ ﬁ t | f |

Y AN
25
qp(p 20, m_ =120 GeV)

—
<

—
<
N

—
S
w

—
<
N

O [ 1T 11111 [T T T r ] IIIIJIIl

f(q'u ‘ ﬂ? éﬂ) f(q,u ‘ 090())



Evaluating CLs and finding the upper limit

Start search from u = 20, CLsis ~ 0.005, so already excluded - start stepping towards smaller
values until we cross 0.05 between p=10 and p=12

expected for sig+bkg
C],,?bs expected for bkg-only
observed value

10— P p. =0.0017
g N 1- pp = 0.2335
; . gl . huLah richustutch g, CLS — 00073

R N N
N TN Y
.............
] e ) o e o e e e o e e e e

o Eom ! e N ]
N o

N J
-----
------
-----

-------------
R T T T N

20 25
qu(k =18, m =120 GeV)

(g, 116, /14,1000
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Evaluating CLs and finding the upper limit

Start search from u = 20, CLsis ~ 0.005, so already excluded - start stepping towards smaller
values until we cross 0.05 between p=10 and p=12

expected for sig+bkg
C],,?bs expected for bkg-only
observed value

Ip. =0.0023
N 1- pp = 0.2340

a0 __CLS = 0.0098

=
“““““““

1071

I P.|I. IJIIl

= 25
o
R o

8 1 12 14 16 18 20 22

qp.(p = 16, mH =120 GeV)
f(q,u ‘ 099())




Evaluating CLs and finding the upper limit

Start search from u = 20, CLsis ~ 0.005, so already excluded - start stepping towards smaller
values until we cross 0.05 between p=10 and p=12

= expected for sig+bkg
- qﬁbs expected for bkg-only
i observed value
101 I p, =0.0050
- N 1- pb = 0.2342

: '.;;:_':'g;"":.r:-::;:;:gi_ s W o CLS = 0.0213

I S ) ' - N U
o 2R o o el e e AN N o
-2 FE SEE NEN
B o RN N
b o e o e o R DN N t
Fareh: Fugeel g
EEEETEEE
! ol e

---------

S N N
...........

N A
SN A N ]
---------

“““““““““““

el B N E NG 2 N

---------
i ' e SN =N o]
-----

14 16 18 20
qu(y = 14, m_ =120 GeV)

(g, |16, fig,10.00



Evaluating CLs and finding the upper limit

Start search from u = 20, CLsis ~ 0.005, so already excluded - start stepping towards smaller
values until we cross 0.05 between p=10 and p=12

expected for sig+bkg
C],,?bs expected for bkg-only
observed value

Ip. =0.0095
N\ 1- pp = 0.2366

1071

.
e o
AR N
2 8 2 et RN
- okt g NN o
1 O spepape g R N
ek o e b2 A N o
ot - NN
dEEEE 2
i s SE
e

=T
“““““““““
B ol NN

12 14 16
qu(p = 12, m. = 120 GeV)

(g, 1 0) £(q,,10.0)

67



Evaluating CLs and finding the upper limit

Start search from u = 20, CLsis ~ 0.005, so already excluded - start stepping towards smaller
values until we cross 0.05 between p=10 and p=12

expected for sig+bkg
C],,?bs expected for bkg-only
observed value

Ilp. =0.0166
N\ 1- pp = 0.2434

_ CLS = 0.0682

1071

1072

(e

e
ot
S M

6 8 10 12 14
qu(k =10, m =120 GeV)

f(q,u ‘//t, é ) f(q,u ‘ 09é0)




Limitations

* Joy-based methods always introduce some uncertainty
 Cannot generate an infinite number of toys = statistical uncertainty in Cls
* Limits only as accurate as the algorithm to find the crossing with CLs = 0.05

e Step size is finite

* EXxercise on setting limits in this afternoon's hands-on session = keep these
aspects in mind

68



95% CL limit on o(bb¢)-B(¢p—tt)(pb)

10

Tacking stock

35.9 fb' (13 TeV)

- CMS

—e— Observed

----- Expected
- 68% expected
95% expected

You know how to calculate these points

-

What do these bands mean and how to evaluate them?

200

300

L1 !
1000 2000

m, (GeV)

- expected limits
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Expected Iimits

e Why?

* Nothing stops us from setting an upper limit when
there Is an excess of events over the background-
only hypothesis = comparison with expectation is
useful

Expected limits using quantiles of sampling
distribution: median expected and the 68% and 95%
( not +1,20) central intervals

95% CL limit on o(pp — X — eu) [fb]

CMS 138 b (13 TeV)

9_IIII|IIII|IIII| IIIIIIIIIIIIIIII |IIII|IIII|IIII:

95% CL limits

:IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII:
10 115 120 125 130 135 140 145 150 155 160

m, [GeV]
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Expected Iimits

1E expected for sig+bkg
— expected for bkg-only
- observed value

1077 B, =00166 E.g. to find median expected limit follow
N\ {- p, =0.2434_—1 S@Me procedure as observed, but replacing

quePs with median of f(qﬂ 10,6).

e For 68% and 95% central intervals, similar,
o N but use 2.5,97.5, 16 and 84% gquantiles of

& S
5 :
= o)
: EE
e o e e =
- ! - - -
! o o o o o o o e o " - e A\
ok o o e = e N
RERE Ear PSRRI FE : R o o
SEETEEEREN LR R BURUESRS SLAPTE RNpUEE RR R )
e S ) s, o e e e e o S ) e e o e o = ] . .
e e e = bbb = . : \ //t
- - ] e N
= o] e ok o R O S T
- - 1] ! n !
b | e e BEEs of | | SEaGE
§ o o e R e o o e e e e e e -
= | e NG
: e i .
o e o .

CL,_=0.0682

---------

e 8 10 12 14
qu(“: 10, mH =120 GeV)

Depending on the model this can take a long time - and the more extreme the quantile, the more toys are needed
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The asymptotic approximation
* |n the limit of high event counts, profile likelihood: (Wald, 1943)

2 A() = L= Lo /VN
2l (k) = = + O(1/VN).
» ois the standard deviation of ji. If we assume this is gaussian distributed, this

yields an analytic expression for f(qﬂ | 1/, «9”,), which depends only on a
parameter A\

/2
( o — [ ) reduces to a chi-square distribution
A — 5 when u=p' [Wilks, 1938]

o

e Simplifies the calculation of p,: p,=1-® (@)

 Here, © is the cumulative distribution function of the standard gaussian

 No time to go through the full derivation today, details in [Cowan, Cranmer, Gross, Vitells 2013]
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The asymptotic approximation

* This gives us a simple expression for p,, but what about 1-pp ? 1-pp requires
the sampling distribution f(¢g, | 0,6,), so we need to use a more general

formula where y # u’

p—p
l_pbzl_q)(\/q,u > )

* |n our case p' = 0, but we still need to estimate 0. How?

= Asimov data set, a single representative dataset constructed from the
max. likelihood estimate at p’,

suppressing statistical fluctuations f5 e Asimov data (1) e 15
0 — Signal+Background

Example, for a multi-binned
analysis, with the Asimov for r=1

105—/' *
N B
e

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

0000000000000

zs— — Background
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The asymptotic approximation

, From Wald's theorem, we have L quA

qg ,=—2In
O A A

H

L(Asimov | u, 6’Aﬂ)

L(Asimov | 4, )

L(Data | u, éﬂ)

1 I N _ = 2]
I=p,=1 (D(\/CIM 0) =1 (D(\/‘Iu \/‘Iu,A) e " L(Data| 4.0)

 CLs now becomes
o (va)
=@ (/3 3 )

 To calculate the observed limit, need to find both q, and qu,a

CL, =

\)
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Expected limits in the asymptotic approximation

 We fix 1-pp by picking a quantile, and if we want CLs = 0.05, this also fixes p,

* | ook for the value of py such that

2
Gus = | @71 =py) + (1 - &7'(p,)]



When can the asymptotic approximation be used?

In the limit of large event counts, but what is large?
It depends - and is always worth checking. O(10) events can certainly be sufficient

For m, > 1.6 TeV, low event counts = derive results from toys

> 4 T T T T T T = 'E B I | | | | | I I |
o 10 ATLAS 3 =, B — Observed i
D (s =13 TeV, 36.1 fb 1 m . ATLAS - Y )
& 10 pu 4 x 10°g Vs=13TeV, 36.1 fb” xpecte =
@ 1 © - + 1 std. dev. =
£10? 1 g 99 XoH — iy :
() 5 @) B J _ O NWA T < S1d. aev. |
0 10 — E‘ 5 X ’ —— Observed from
1 5 107 ensemble tests 3
1 g s - Sl e Expected from
10-1 = = Data : Q. i ensemble tests
— Background fit : 3 10 =
1072 L O - =
s 5L . 18 i )
S 0 "-.“ru'-J"-"\lﬁjp'l‘.'\-'-“J . 3
T -2+ . 1E E
= -4 i s ; ! PR S | . — [ 1 ] ] ] 1 ] 1 I | -
@ 3x10° 10° 2x10° 2 3 3 3
m,. [GeV] 3x10 10 2x10° 3x10
Zy .

my [GeV]

Asimov results (in gray) give optimistic result compared to toys (in blue) 76



Cross Section [pb]
= =

—
<
w

—A
<
H

Toy-based Iimits -

peculiarities

b

b

I I

| I B D R A N D A A A A D A D D D A D D D D D D D I A R D D
I | I I I I I I |

95% CL Upper Limits

— QObserved Limit

sssssss Expected Limit

"""" NNLO+NNLL

o

1.2 14

Lower bounds of the 95% and 68%
interval can (almost) overlap. Why?

For very low event counts, test
statistic distribution can be discrete
-> quantiles can be the same and so
limit bands overlap

Plotting the built-up test statistic
distributions can help you
understand the behaviour of your
limits



95% CL limit on o(bbg)-B(¢p—>t)(pb)

Upper limits and exclusion contours

35.9fb' (13 TeV)
] ' ' ' ' T T T ' ]
! CMS —e— Observed _

102 Expected
: [ 68% expected -
95% expected |

10 Upper limits, calculated -
as discussed in previous slides

10_3 E | . . L .
100 200 300 1000 2000
m, (GeV)

My e scenario (h,H,A—tr) 138 tb™" (13 TeV)

CMS 95% CL excluded:

Observed [ 68% expected
---- Expected 95% expected

tanp

N V) ~ &) )] ~N 00 O o

NV A VY AV F VY VYA VYN VA YAV A A A XAV A
?b/////)?/////ﬂ///// i 1 1 I X

m,=2m,

——m e e o mm mm mm mm mm o = = =
=
S <
~

//
/

\ mh¢12513€|ev_:

A
T
/
/
/

I ! ! ! ! I !
500 1000
m, (GeV)
Exclusion contours: for each point in the parameter

space, check if corresponding amount of signal would

be excluded (e.g. using CLs criterion) -



Summary of lecture 2

 When we're searching for a new process, need to ensure that we don't claim
In error to have found new physics

* Joolkit: hypothesis tests to evaluate p-values; look-elsewhere effect

 Even if we don't find what we are looking for, we can place an upper limit on
some quantity

e A lot like a confidence interval

 You know how to compute these, and to be careful in the case of low event
counts
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