

### Interval estimation, limits, systematics, and beyond **SOS 2024**

**A. de Wit** (inspired by lectures at previous schools, in particular N. Berger's lectures at SOS2022)



### Overview

### Lecture 1

- Building a statistical model
- Interval estimation
- Systematic uncertainties

### Lecture 2

- Hypothesis tests for discovery
- Limit setting



### Disclaimer

I'm an LHC physicist mainly working on Higgs physics

• The examples I give will be biased

The concepts should however be generally applicable!



# Building statistical models



### Particle physics experiments: counting



- $\sim N_{data} N_{bkg} = N_{sig}$
- With the integrated luminosity and the efficiency x acceptance of the event selection
  → can measure the cross section
  - Reality is not that simple: uncertainties!





### Particle physics experiments: counting



- Not necessarily simple
- Can count all events in a region, or in different bins (selections)





### Particle physics experiments: counting



- Can also count without binning
- NB in the analysis example here, the data \*were\* binned
- Background and signal modelled with continuous distributions



### Counting

- Usual situation: produce large num p.
- A binomial process, in principle

$$P(k|p,n) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$



• Usual situation: produce large number of events n, select only a small fraction



### Counting

- Usual situation: produce large numl p.
- A binomial process, in principle

$$P(k|p,n) = \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k}$$



#### Usual situation: produce large number of events n, select only a small fraction

n large, p small

Poisson distribution!

$$P(k \,|\, \lambda) = \frac{e^{-\lambda} \lambda^k}{k!}$$

λ~np





### From data to parameters



- Have the data, want to draw some conclusions from it
- ie: get the parameters of the model (e.g. mass of a new particle, cross section, ...) from the data
- → Use the likelihood



# Likelihoods for counting models $\mathscr{L}(\overrightarrow{\alpha}) \propto p(\text{data} \mid \overrightarrow{\alpha})$

The likelihood is not a probability, contains multiplicative factors, which we'll simply ignore for now since the important point is that they do not depend on the data or the parameters

We have seen the p(data|a) is a Poisson probability when we are counting.

If we are only counting one number, we have number of observed events N and some number of expected events, which we can construct as  $\mu$ S+B  $\mu$  is a parameter that scales the reference number of signal events, it is our **parameter of interest**. B could be seen as a **nuisance parameter**. We will encounter more nuisance parameters later

 $\mathscr{L} \propto p(N | \mu, S, B) = -$ 

$$^{-(\mu S+B)}(\mu S+B)^{N}$$

N!

### Multiple bins



Extend our model to consider all bins, have observations  $N_0...N_{nbins}$ , expected Signal and Backgrounds  $S_1...S_{nbins}$  and  $B_0...B_{nbins}$ 

$$P(\vec{N} | \mu, \vec{S}, \vec{B}) = \sum_{i=1}^{N} \frac{e^{-(\mu S_i + B_i)}(\mu S_i + B_i)_i^N}{N_i!}$$

### **Extended unbinned likelihoods** • For some variable *m* distributed according to a pdf f(*m*), and n<sub>evts</sub> observations, the likelihood would be

$$\mathscr{L} \propto \prod_{i=1}^{n} f(m_i)$$

But n<sub>evts</sub> is itself Poisson-distributed! Need to extend the likelihood



### **Extended unbinned likelihoods** • For some variable *m* distributed according to a pdf f(*m*), and n<sub>evts</sub> observations, the likelihood would be

$$\mathscr{L} \propto \prod_{i=1}^{n} f(m_i)$$

But n<sub>evts</sub> is itself Poisson-distributed! Need to extend the likelihood



$$\prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}(\mu S + B)^n \text{evts}}{n \text{evts}!} \prod_{i=1}^{n} f(\mu S + B)^n \text{evts}$$





### **Extended unbinned likelihoods** • For some variable *m* distributed according to a pdf f(*m*), and n<sub>evts</sub> observations, the likelihood would be

$$\mathscr{L} \propto \prod_{i=1}^{n} f(m_i)$$

But n<sub>evts</sub> is itself Poisson-distributed! Need to extend the likelihood

$$\mathscr{L} \propto \prod_{i=1}^{n} f(m_i) \rightarrow \operatorname{Pois}(n_{\mathsf{evts}} | \mu S + B) \prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}(\mu S + B)^n \operatorname{evts}}{n_{\mathsf{evts}}!} \prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}}{n_{\mathsf{evts}}!} \prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}}{n_{\mathsf{evts}}!} \prod_{i=1}^{n} (\mu S + B) \left(\frac{\mu Sp_{\mathsf{sig}}(m_i) + Bp_{\mathsf{bkg}}(m_i)}{\mu S + B}\right)$$

$$\mathscr{L} \propto \prod_{i=1}^{n} f(m_i) \to \operatorname{Pois}(n_{\mathsf{evts}} | \mu S + B) \prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}(\mu S + B)^n \operatorname{evts}}{n_{\mathsf{evts}}!} \prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}}{n_{\mathsf{evts}}!} \prod_{i=1}^{n} f(m_i) = \frac{e^{-(\mu S + B)}}{n_{\mathsf{evts}}!} \prod_{i=1}^{n} (\mu S + B) \left(\frac{\mu Sp_{\mathsf{sig}}(m_i) + Bp_{\mathsf{bkg}}(m_i)}{\mu S + B}\right)$$

**Remember f is a pdf so needs to be normalized** <sup>13</sup>









### Binned and unbinned likelihoods

| Counting type            | Observable                                                        | Likeliho                              |
|--------------------------|-------------------------------------------------------------------|---------------------------------------|
| Single-bin<br>counting   | N                                                                 | Likelih<br>e                          |
| Multiple-bin<br>counting | $N_i$ , for bins<br>$i=1,n_{bins}$                                | $Likelihon \\ n_{bin} \\ II \\ i=1$   |
| Unbinned                 | m <sub>i</sub> , for number<br>of events<br>i=1,n <sub>evts</sub> | Extend<br>$e^{-(\mu S)}$<br>$n_{evt}$ |

#### boc

#### nood: single poisson probability

$$^{(\mu S+B)}(\mu S+B)^N$$

N!

ood: product of poisson probabilities

$$S e^{-(\mu S_i + B_i)} (\mu S_i + B_i)_i^N$$
$$N_i!$$

#### led unbinned likelihood

$$\frac{1}{4} = \frac{1}{1} \prod_{i=1}^{n} \mu Sp_{sig}(m_i) + Bp_{bkg}(m_i)$$

### **Maximum-likelihood estimate**

we can use it to determine parameter estimates

### $\mathscr{L}(\overrightarrow{\alpha}) \propto p(\text{data} | \overrightarrow{\alpha})$

- Maximising the likelihood: find values of **a** for which we get  $\max_{\hat{\sigma}} \mathscr{L}(\alpha)$



• We know how to define a likelihood for the experiments that we are doing  $\rightarrow$ 

Example: Simple counting model with n observed events, no bkg expectation



### "Unphysical" MLE's

- The maximum-likelihood estimate gas likely for the observed dataset
- Function of the data, not necessarily the "true" value
- MLE estimate of a cross section could come out negative if the data has fluctuated below the background expectation
  - Not wrong! MLE is not a statement on the true value

• The maximum-likelihood estimate gives the value(s) of the POIs that are most

Systematic uncertainties



### **Uncertainties in a measurement**

#### **Consider a measurement of production cross sections = maximum-likelihood**

estimate of the value, with a confidence interval





### **Incorporating systematic uncertainties**

- Systematic uncertainty = what we don't know exactly about the model
- Add **nuisance parameters** to the model to describe them

• These parameters are generally not completely free  $\mathscr{L}(\text{data}|\mu) \to \mathscr{L}(\text{data}|\mu,\vec{\theta}) = \mathscr{L}^{\text{measurement}}(\text{data}|\mu,\vec{\theta})C(\vec{\theta})$ Parameter of interest Nuisance parameters (e.g. number of signal events, signal strength,...)

Constraint on NP



### **Constrained nuisance parameters**

- What is the form of C(**θ**)?
  - the "measured" values

$$C(\vec{\theta}) = C(\vec{\theta}_0 | \vec{\theta})$$

- Where does  $\theta$  come from?
  - detector, or an efficiency measurement in a control region
  - Can determine  $L=X \pm y$  fb<sup>-1</sup>  $\rightarrow$  relative uncertainty y/X. Assuming y represents a  $1\sigma$  uncertainty: Gaussian constraint makes sense

#### Must at least be a function of the "nominal" values of the parameters and

### • Auxiliary measurement, e.g. luminosity measurement by an independent



### A simple likelihood model with nuisance parameters $\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data} \mid \mu, \vec{\theta}) \cdot C(\vec{\theta}_0 \mid \vec{\theta})$

- selections as we're looking for a particular process)
- Number of observed events: N
- Assume the luminosity is subject to a 2.5% uncertainty

What will our statistical model look like?

Assume an analysis counts the number of events in pp collisions (with some

• Model for the number of expected events  $n_{exp}$  depends on  $\mu$ , a reference signal cross section  $\sigma_{sig}$ , the background cross section  $\sigma_{bkg}$ , the selection efficiency (c) and detector acceptance (A), and the integrated luminosity L<sup>int</sup>



## A simple likelihood model with nuisance parameters $\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data} \mid \mu, \vec{\theta}) \cdot C(\vec{\theta}_0 \mid \vec{\theta})$

Probability term in the likelihood: **Poisson probability** 

$$p(N|n_{exp}) = \frac{n_{exp}^{N}e^{-n_{exp}}}{N!},^{\text{with}}$$
$$n_{exp} = \mu\sigma_{sig}\epsilon_{sig}A_{sig}L^{int} + \sigma_{bkg}\epsilon_{bkg}$$

 $g^A$ bk $g^L$ int





A simple likelihood mode 
$$\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data})$$

Probability term in the likelihood: **Poisson probability** 



But wait, the luminosity has an uncertainty  $L^{\text{int}} \rightarrow L^{\text{int}}(1+0.025)^{\theta}$ 

## el with nuisance parameters $|\mu, \vec{\theta}\rangle \cdot C(\vec{\theta_0} | \vec{\theta})$





A simple likelihood mode 
$$\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data})$$

Probability term in the likelihood: **Poisson probability** 

$$p(N|n_{exp}) = \frac{n_{exp}^{N}e^{-n_{exp}}}{N!},$$
<sup>with</sup>  
$$n_{exp} = \mu\sigma_{sig}\epsilon_{sig}A_{sig}L^{int} + \sigma_{bkg}\epsilon_{bkg}A_{bkg}L^{int}$$

But wait, the luminosity has an uncertainty  $L^{\text{int}} \rightarrow L^{\text{int}}(1+0.025)^{\theta}$ 

$$n \exp = \mu \sigma \operatorname{sig}^{\epsilon} \operatorname{sig}^{A} \operatorname{sig}^{L^{\operatorname{int}} 1.025^{\theta}} + \sigma \operatorname{bk}^{I}$$

## el with nuisance parameters $|\mu, \vec{\theta}| \cdot C(\vec{\theta}_0 | \vec{\theta})$

Y  $L^{\text{int}} \rightarrow L^{\text{int}}(1 + 0.025)^{\theta}$ ⟨g<sup>€</sup>bkg<sup>A</sup>bkg<sup>L</sup><sup>int</sup>1.025<sup>θ</sup>





# $\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data} \mid \mu, \vec{\theta}) \cdot C(\vec{\theta}_0 \mid \vec{\theta})$

- We apply a Gaussian constraint on  $\theta$ 
  - $C(\theta_0 \mid \theta) = C(0 \mid \theta) = e^{-\frac{1}{2}\theta^2}$

Note: even though the applied constraint is Gaussian, this is the constraint on  $\theta$ Our "quantity of interest" is  $1.025^{\theta} \rightarrow$  this is log-normally distributed





### A simple likelihood model with nuisance parameters $\mathscr{L}(\mu, \vec{\theta}) \propto p(\text{data} \mid \mu, \vec{\theta}) \cdot C(\vec{\theta}_0 \mid \vec{\theta})$



We can extend this to multiple nuisance parameters - the constraint term becomes a product of the constraint terms for each NP





### Likelihood estimates with NPs

- "don't care about the nuisance parameters"
- We can **profile** over them
- Example likelihood for a model with one NP and one POI
- **Profiled likelihood** is the value of the likelihood function along the line  $\hat{\theta}(\mu)$

 $\mathscr{L}(\mu) = \mathscr{L}(\mu, \hat{\theta}(\mu)) \equiv \max_{\theta} \mathscr{L}(\mu, \theta)$ 

### • When we're doing parameter estimates of our parameters of interest $\mu$ , we





### The profile likelihood ratio

- When estimating parameters, maximize the likelihood
  - In the presence of nuisance parameters, we maximize the profiled likelihood
  - In practice easier to minimize the negative log of the likelihood
- The value of -In L at the minimum is not relevant → We can subtract it off

$$-\Delta \ln \mathscr{L} = -\ln \mathscr{L}(\mu, \hat{\theta}(\mu)) - (-\ln \mathscr{L}(\hat{\mu}, \theta))$$
$$= -\ln \frac{\mathscr{L}(\mu, \hat{\theta}(\mu))}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$$

We use twice this quantity as the profile likelihood ratio test statistic, which you will see appear in many places!





### Inspecting nuisance parameters

- Can check:
  - Effect of NP on the measurement (ie repeat the minimization with the NP fixed at its  $\pm 1\sigma$  values and check how the POI value changes)
  - How NPs change:
    - Central value different from 0: something in data is not as expected in the model
    - Constraint less than 1? The data has more information about the parameter than our auxiliary measurement
- Also useful to evaluate the pull: if the uncertainty is not very constrained, but the shift away from 0 is large, the pull will be large.

$$\frac{\hat{\theta} - \theta_0}{\sqrt{\sigma_0^2 - \sigma^2}}$$





# From now on, we'll ignore systematic uncertainties again



# Interval estimation



### Overview

- likely value of some parameter of our model
- We also want to say something about the uncertainty in our estimate  $\rightarrow$ confidence interval



### We have seen how to use maximum-likelihood estimates to find the most

Confidence interval, construct such that if we were to repeat the experiment many times, 68% of the time the interval would contain the true value (or 68.3% if this is  $1\sigma$ )



### Gaussian confidence intervals



Assume a Gaussian likelihood

$$u) = e^{-0.5(\frac{n-\mu}{\sigma})^2}$$

• Reported confidence interval at 68.3% CL:

 $\mu = n \pm \sigma$ 



### **General case: Neyman construction**

For each true value of the parameter, build the 68% interval of observed values one would get (use a central interval in this case)



**Observed value**  $\hat{\mu}$ 


### **General case: Neyman construction**



Construct confidence belt from the intervals at the different true values

**Observed value**  $\hat{\mu}$ 





Invert from the confidence belt: for given observed value, get the confidence interval



**Observed value** 





# **Confidence intervals from the profile-likelihood ratio** We use the profile likelihood ratio $q(\mu) = -2 \ln \frac{\mathscr{L}(\mu, \hat{\theta}(\mu))}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$

- From Wilks' theorem, have that profile likelihood ratio is x2-distributed with N degrees of freedom
  - N is the difference in number of degrees of freedom between numerator and denominator in PLR (1 in this case)
- Then 68.3% (1 $\sigma$ ) interval given by set of points for which q( $\mu$ ) = 1, and 95.5% (2 $\sigma$ ) interval by set of points for which  $q(\mu) = 4$



35

## **Confidence interval from the PLR**



68.3% /  $1\sigma$  confidence interval

- This figure shows the profile likelihood ratio without the factor 2, so the interval constructed at the crossing with 0.5 instead of 1
- How accurate is this? We could calculate the coverage



36

### **Coverage tests**

- Create many toy data sets for some value of  $\mu,$  and construct the 68% confidence interval as on the previous slide
- If our method covers, then the true value of  $\mu$  (used in the toy generation) should be contained in the interval 68% of the time
- NB we can always calculate the coverage for a given method of constructing the confidence interval





# **Neyman construction vs PLR**



• Example (for a relatively simple model)

In this case, we see the intervals from the PLR undercover somewhat

The Neyman construction built as:

pick values  $\mu_T$  and generate toy datasets for this value, evaluate the test statistic q for each toy to build up the sampling distribution

• calculate the p-value for observing a value of q at least as large as the observed value

• If p < 1-0.68,  $\mu_T$  is in the confidence interval, otherwise

Repeat for many values of  $\mu_T$ 

 No really general rule; Neyman construction should always work best, but also computationally expensive





38

### **Two-dimensional confidence intervals**



- What we have discussed also works in N dimensions
  - In practice 2D the only thing that is easy to visualize
- Careful: critical values for ΔNLL in 2D are different than in 1D
  - ~2.3, 6 (x2 in 2D)
  - Best not to think of this as " $1\sigma$ " and " $2\sigma$ " (these do not correspond to 68% and 95% in 2D, so ambiguous)



### "Unphysical" intervals



- The true value of  $\sigma/\sigma_{SM}$  can not be negative
- But: what the maximum-likelihood estimate and the confidence interval provide are estimators of the true parameter
  - They can take unphysical values
- In general: report the full interval, even if you have unphysical values unless it is impossible



## Summary of lecture 1

- Particle physics = counting
  - But we can count in different way
- We can use likelihoods to infer something about a model from our data
- describe the ways in which our model could be wrong)

|   | Counting type            | Observable                                                        | Likelihood                                                                                                                                              |  |  |  |  |
|---|--------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|   | Single-bin<br>counting   | Ν                                                                 | Likelihood: single poisson probability<br>$\frac{e^{-\mu S+B}(\mu S+B)^{N}}{N!}$                                                                        |  |  |  |  |
| - | Multiple-bin<br>counting | N <sub>i</sub> , for bins<br>i=1,n <sub>bins</sub>                | Likelihood: product of poisson probabilities<br>$\prod_{i=1}^{n} \frac{e^{-\mu S_i + B_i} (\mu S_i + B_i)_i^N}{N_i!}$                                   |  |  |  |  |
|   | Unbinned                 | m <sub>i</sub> , for number<br>of events<br>i=1,n <sub>evts</sub> | Extended unbinned likelihood<br>$\frac{e^{-(\mu S+B)}}{n_{\text{evts}}!} \prod_{i=1}^{n_{\text{evts}}} \mu Sp_{\text{sig}}(m_i) + Bp_{\text{bkg}}(m_i)$ |  |  |  |  |

The likelihood can incorporate systematic uncertainties too (parameters that

Using this we can estimate parameters and intervals on those parameters



41

Hypothesis tests for discovery



### Overview

- We have seen that high-energy physics experiments boil down to counting events
- Statistical analysis needed to interpret the meaning of some counted number of events
- For example, based on this bump, \_\_\_\_\_\_ how can we say we have discovered a new particle?







- Gaussian measurement, B=100, and we observe
- Did we discover something?
- Uncertainty on B:  $\sqrt{B} = 10 \rightarrow$  significance Z is

  - ٢Z  $p_0 = 1 - \Phi(Z) = 1 -$  Gauss(0,1)



## Hypothesis testing

- Null hypothesis, e.g. no signal: H<sub>0</sub>
- Want to test whether  $H_0$  is favoured or disfavoured



| disfavours H <sub>0</sub><br>overy claim)  | Data favours H <sub>0</sub><br>No claim                                                               |  |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| of new physics!                            | There is new physics but we have<br>not found it                                                      |  |  |  |  |
| ed to have found new<br>ut there isn't any | No discovery, because there is no<br>new physics. But maybe we can<br>exclude some models (see later) |  |  |  |  |



## Hypothesis testing

- Null hypothesis, e.g. no signal: H<sub>0</sub>
- Want to test whether  $H_0$  is favoured or disfavoured



| disfavours H <sub>0</sub> | Data favours H <sub>0</sub>                                       |  |  |  |  |
|---------------------------|-------------------------------------------------------------------|--|--|--|--|
| overy claim)              | No claim                                                          |  |  |  |  |
| of new physics!           | There is new physics but we have<br>not found it<br>Type-II error |  |  |  |  |
| ed to have found new      | No discovery, because there is no                                 |  |  |  |  |
| ut there isn't any        | new physics. But maybe we can                                     |  |  |  |  |
| error                     | exclude some models (see later)                                   |  |  |  |  |



## Hypothesis testing

- Null hypothesis, e.g. no signal: H<sub>0</sub>
- Want to test whether  $H_0$  is favoured or disfavoured



| disfavours H <sub>0</sub> | Data favours H <sub>0</sub>                                       |
|---------------------------|-------------------------------------------------------------------|
| overy claim)              | No claim                                                          |
| of new physics!           | There is new physics but we have<br>not found it<br>Type-II error |
| ed to have found new      | No discovery, because there is no                                 |
| ut there isn't any        | new physics. But maybe we can                                     |
| error                     | exclude some models (see later)                                   |



### Likelihood ratios

hypotheses H<sub>0</sub> and H<sub>1</sub> is the likelihood ratio

 $\mathscr{L}(\text{data}; H_0)$ 

 $\mathscr{L}(\mathsf{data}; H_1)$ 

•  $H_0$ : null hypothesis, no signal.  $H_1$ : hypothesis including some signal (the amount preferred by the data,  $\hat{S}$ )

## Neyman-Pearson Lemma : the optimal discriminator when comparing two



### Test statistic for discovery

 In practice we use twice the negative log-likelihood ratio (has some nice properties), but this does not go against what we said on the previous slide (still involves a ratio of likelihoods)

$$q_0 = -2\ln\frac{\mathscr{L}(H_0)}{\mathscr{L}(H_1)} = -2\ln\frac{\mathscr{L}(X_0)}{\mathscr{L}(H_1)}$$

- For  $\hat{S}$  <0, we set q\_0 to 0 (one-sided test statistic, negative signals are not considered)

 $\frac{S=0)}{\mathscr{E}(\hat{S})}$ 



### **P-value for discovery**

- If value of  $\hat{S}$  is large,  $q_0 = -2 \ln \frac{\mathscr{L}(S=0)}{\mathscr{L}(\hat{S})}$  will also be large (large difference in likelihood values for S=0 and for  $S = \hat{S}$
- We say  $H_0$  (S=0) is disfavoured compared with  $H_1$ (S>0)
- Calculate the sampling distribution of the test statistic under the background-only hypothesis ( $f(q_0 \mid S = 0)$ )
- Calculate p<sub>0</sub>: probability of observing a value of q<sub>0</sub> at least as large as q<sub>0</sub><sup>obs</sup>, if H<sub>0</sub> is true







## **Asymptotic approximation**

- If we are in the Gaussian regime, then we can apply Wilks' theorem, and find that  $q_0$  is  $\chi^2$ (n<sub>par</sub>)-distributed for S=0
- In our case we have  $n_{par}=1$ , then  $\sqrt{q_0}$  is Gaussian-distributed
- We can calculate the p-value from the Gaussian quantiles:  $p_0 = 1 - \Phi(\sqrt{q_0})$
- Significance is then  $Z = \sqrt{q_0}$





### What p-value/Z-score constitues a discovery?

- p-value for significance of  $3\sigma$ : ~0.001  $\rightarrow$  1 in 1000 chance
  - "evidence"
- p-value for significance of 5σ: ~3 10<sup>-7</sup> → 1 in 3.5 million chance
  - "observation"

| Z   | 0.00   | 0.01   | 0.02   | 0.03   | 0.04   | 0.05   | 0.06   | 0.07   | 0.08   |   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|
| 0.0 | 0.5000 | 0.5040 | 0.5080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0 |
| 0.2 | 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0 |
| 0.3 | 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0 |
| 0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0 |
| 0.5 | 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0 |
| 0.6 | 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0 |
| 0.7 | 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7704 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0 |
| 0.8 | 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0 |
| 0.9 | 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0 |
| 1.1 | 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0 |
| 1.2 | 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0 |
| 1.3 | 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0 |
| 1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0 |
| 1.5 | 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0 |
| 1.6 | 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0 |
| 1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0 |
| 1.8 | 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0 |
| 1.9 | 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0 |
| 2.0 | 0.9772 | 0.9778 | 0.9783 | 0.9788 | 0.9793 | 0.9798 | 0.9803 | 0.9808 | 0.9812 | 0 |
| 2.1 | 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0 |
| 2.2 | 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0 |
| 2.3 | 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0 |
| 2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0 |
| 2.5 | 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0 |
| 2.6 | 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0 |
| 2.7 | 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0 |
| 2.8 | 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0 |
| 29  | 0 9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0 |
| 3.0 | 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0 |
|     |        |        | 1      | ,      | -      |        |        |        |        |   |







### So, at the beginning of the section, did we discover something?



Not by itself (using  $5\sigma$  criterion), but combining with multiple channels, yes!





## Look-elsewhere effect (I)

your response?

A Sure, I bet the coin is biased

B How many times did you flip the coin in total?

### Imagine I tell you I got heads 100 times in a row when flipping a coin, what is



## Look-elsewhere effect (I)

Imagine I tell you I got heads 100 times in a row when flipping a coin, what is your response ?

A Sure, I bet the coin is biased

B How many times did you flip the coin in total ?

If I did only flip the coin 100 times, it's quite something to get 100 heads in a row, but if I have been flipping that coin for a long time, at some point I expect to get 100 in a row

The same is true in particle physics experiments: if I try to look for many signals (e.g. scanning a mass parameter), I'm more likely to find a large excess than if I only look at a fixed mass



## Look-elsewhere effect (II)

- Stringent 5o requirement for observation partly to protect against LEE
  - But this is not foolproof!



Largest **local** excess (ie at a specific  $m_X$ ,  $m_Y$  value): 3.4 $\sigma$ 

Evidence for new physics?

No, **global** significance found to be  $0.1\sigma$  in this case



## Handling the LEE

 Want to calculate the global significance (probability for a fluctuation) fluctuation at a given location)



## anywhere in the range), as opposed to the local p-value (probability for a

The significance calculations that we have seen so far give us the local significance.

How can we calculate the global significance?



## **Global significance**

Trials factor ~ "number of independent" experiments"

Global p-value

If trials factor N is number of independent searches, then we could expect this factor to be something like the scan range divided by the peak width

If we slice the scanned range into N<sub>indep</sub> independent regions, we miss possible peaks on edges between regions  $\rightarrow$  trials factor is actually larger

In asymptotic limit:  $N_{\text{trials}} = 1 + \sqrt{\frac{\pi}{2}} N_{\text{indep}} Z_{\text{loc}}$ S

More details: <u>https://arxiv.org/pdf/1005.1891</u>

 $p_{\text{global}} = 1 - (1 - p_{\text{local}})^{N}_{\text{trials}} \approx N_{\text{trials}}^{P}_{\text{local}}$ 

Local p-value



## **Global significance from toys**

- Repeat the analysis in toy data
  - Generate pseudo-dataset
  - Perform search scanning over same parameters as done for date
  - Retain largest significance found
  - Repeat many times
- the global p-value

### • Fraction of cases for which a significance at least as large as $Z_{loc}$ is found is

Very computationally intensive for small global p-values! (Need many toys)



## Simplifying significances

- Of course always best to evaluate full expected significance when optimizing an analysis
- But can be costly! What are approximations we could use?

In the gaussian case:  $Z = \frac{S}{\sqrt{B}}$  , but our analyses are not gaussian

- Approximate significance for the Poisson case?



# **Approximate significance, Poisson case** $\mathscr{L} = e^{-(S+B)} \frac{(S+B)^n}{n!}$ Likelihood ratio is:

$$q_0 = -2\ln\frac{\mathscr{L}(S=0)}{\mathscr{L}(\hat{S})} = -2\ln\frac{e^{-B}B^n}{e^{-(\hat{S}+B)}(\hat{S}+B)^n} = -2(\ln(e^{-B}B^n) - \ln(e^{-(n)}(n)^n)) = -2(-B + \ln(B^n)) + (n) - \ln((n)^n)) = -2(-B + n\ln(B)) + n - n\ln((n))) = 2(n\ln(\frac{n}{R}) + B - n)$$

$$q_0 = -2\ln\frac{\mathscr{L}(S=0)}{\mathscr{L}(\hat{S})} = -2\ln\frac{e^{-B}B^n}{e^{-(\hat{S}+B)}(\hat{S}+B)^n} = -2(\ln(e^{-B}B^n) - \ln(e^{-(n)}(n)^n)) = -2(-B + \ln(B^n)) + (n) - \ln((n)^n)) = -2(-B + n\ln(B)) + n - n\ln((n))) = 2(n\ln(\frac{n}{D}) + B - n)$$

В



## **Approximate significance, Poisson case**

Likelihood ratio is:  

$$q_0 = 2(n \ln(\frac{n}{B}) + B - n)$$

Expected case: n = S+B, so that

 $q_0, \exp = 2((S+B)\ln(\frac{S+B}{R}) - S)$ 

Using asymptotics:

$$Z = \sqrt{q_0}$$

We get  $Z = \sqrt{2((S+B)\ln(\frac{S+B}{B}) - S)}$ 



**Approximate median significance** 



### **AMS** with uncertainties

 What we saw in the previous few slides somewhat of a simplification, should ideally also consider uncertainties in B

$$Z_{\rm A} = \left[ 2 \left( (s+b) \ln \left[ \frac{(s+b)(b+\sigma_b^2)}{b^2 + (s+b)\sigma_b^2} \right] - \frac{b^2}{\sigma_b^2} \ln \left[ 1 + \frac{\sigma_b^2 s}{b(b+\sigma_b^2)} \right] \right) \right]^{1/2}$$

- See <u>G. Cowan's slides</u> for details
- This function is implemented in many libraries, my advice: don't re-invent the wheel, and use the existing implementations!



# Limit setting



### Scenario

- Our business (among others): searching for something new
  - Most of the time we will not find anything. What can we report if we haven't found anything?
- **Upper limit:** number of signal events (or cross section...) values above which are excluded (disfavoured) at some confidence level
- "Usual" confidence level depends on field; at LHC typically 95%, DM experiments often 90%





## Test statistic for setting upper limits

Modify the profile likelihood test statistic

$$q_{\mu} = -2\ln\frac{L(\mu, \hat{\theta}_{\mu})}{L(\hat{\mu}, \hat{\theta})}$$

### 2-sided confidence intervals

- Motivations:
  - Avoid unphysical negative signal strengths
  - $\mu < \hat{\mu}$ , we set the test statistic to 0



### **Modified for upper limits**

• We want to construct a one-sided interval, so if we are testing a value



### Calculating the limit



For each value of  $\mu$ , can calculate a p-value equal to the probability of observing a test statistic value at least as large as  $q_{\mu}^{\text{obs}}$ , under the hypothesis that the signal strength is  $\mu$ . We call this probability  $p_{\mu}$ 







## **Calculating the limit**



$$p_{\mu} = P(q_{\mu} > q_{\mu}^{\text{obs}} | \mu) = \int_{q_{\mu}^{\text{obs}}}^{+\infty} f(q_{\mu} | \mu, \hat{\theta}_{\mu}) dq_{\mu}$$




#### The CLs criterion

- signal even if the background hypothesis is also disfavoured
- Solution often used in high-energy physics: use the CLs criterion
  - CLs itself is not a confidence level, it is a ratio of p-values!

$$CL_{s} = \frac{p_{\mu}}{1 - p_{b}} \qquad p_{\mu} = P(q_{\mu} > q_{\mu}^{obs} | sig + bkg) = \int_{q_{\mu}^{obs}}^{+\infty} f(q_{\mu} | \mu, \hat{\theta}_{\mu})$$

$$1 - p_{\rm b} = P(q_{\mu} > q_{\mu})$$

Using this criterion, at 95% confidence level a signal with strength  $\mu$  is excluded if CL<sub>s</sub>  $\leq$  0.05 Note: you could equally well set upper limits at 95% confidence level using  $p_{\mu} \rightarrow$  need to specify what criterion was used!

• We can evaluate limits based on  $p_{\mu}$ , but using just this we can exclude a

 $q_{\mu}^{\text{obs}} | \text{bkg only} \rangle = \int_{\alpha}^{+\infty} f(q_{\mu} | 0, \hat{\theta}_{0})$ 





#### **Evaluating limits**

- To set limits, we need
  - to calculate this based on the definition of the test statistic
  - The sampling distribution of f(
  - The sampling distribution of f(

evaluate the test statistic for each toy data set, to get  $f(q_0 | 0, \theta_0)$ 

# • $q_u^{obs}$ , the observed test statistic value for a given value of $\mu \rightarrow$ we know how

$$\left\{ \begin{array}{c} (q_{\mu} \mid \mu, \hat{\theta}_{\mu}) \\ (q_{0} \mid 0, \hat{\theta}_{0}) \end{array} \right\}$$
 Distributions of test statistic values. How to get these?

**Answer:** We need to generate many toy datasets under the signal+background hypothesis for given values of  $\mu$ , and evaluate the test statistic for each toy data set, to get  $f(q_{\mu} | \mu, \hat{\theta}_{\mu})$ . Similarly, we need to generate many toy datasets under the background-only hypothesis and



























#### Limitations

- Toy-based methods always introduce some uncertainty
  - Cannot generate an infinite number of toys → statistical uncertainty in CL<sub>s</sub>
- Limits only as accurate as the algorithm to find the crossing with  $CL_s = 0.05$ 
  - Step size is finite

Exercise on setting limits in this afternoon's hands-on session → keep these aspects in mind



#### **Tacking stock**



#### You know how to calculate these points

What do these bands mean and how to evaluate them? → expected limits





#### **Expected limits**

- Why?
  - Nothing stops us from setting an upper limit when there is an excess of events over the backgroundonly hypothesis  $\rightarrow$  comparison with expectation is useful
- Expected limits using quantiles of sampling distribution: median expected and the 68% and 95% (**not**  $\pm 1,2\sigma$ ) central intervals







#### **Expected limits**



Depending on the model this can take a long time - and the more extreme the quantile, the more toys are needed

E.g. to find median expected limit follow same procedure as observed, but replacing  $q_{\mu}^{obs}$  with median of  $f(q_{\mu} | 0, \hat{\theta}_0)$ .

For 68% and 95% central intervals, similar, but use 2.5,97.5, 16 and 84% quantiles of  $f(q_{\mu} | 0, \hat{\theta}_0)$ 





The asymptotic approximation  
• In the limit of high event counts, profile likelihood:  

$$-2\ln\lambda(\mu) = \frac{(\mu - \hat{\mu})^2}{\sigma^2} + O(1/\sqrt{N})$$

parameter  $\Lambda$  $\cap$ 

$$\Lambda = \frac{(\mu - \mu')^2}{\sigma^2} \qquad \begin{array}{c} \operatorname{reduces t} \\ \operatorname{whe} \\ \end{array}$$

- Simplifies the calculation of  $p_{\mu}$ :  $p_{\iota}$
- No time to go through the full derivation today, details in [Cowan, Cranmer, Gross, Vitells 2013]

#### )n (Wald, 1943)

•  $\sigma$  is the standard deviation of  $\hat{\mu}$ . If we assume this is gaussian distributed, this yields an analytic expression for  $f(q_{\mu} | \mu', \hat{\theta}_{\mu'})$ , which depends only on a

> to a chi-square distribution en μ=μ' [Wilks, 1938]

$$_{\mu} = 1 - \Phi\left(\sqrt{q_{\mu}}\right)$$

• Here,  $\Phi$  is the cumulative distribution function of the standard gaussian



#### The asymptotic approximation

• This gives us a simple expression for  $p_{\mu}$ , but what about  $1-p_{b}$ ?  $1-p_{b}$  requires the sampling distribution  $f(q_{0} | 0, \hat{\theta}_{0})$ , so we need to use a more general formula where  $\mu \neq \mu'$ 

$$1 - p_b = 1 - \Phi\left(\sqrt{q_\mu} - \frac{1}{2}\right)$$

- In our case  $\mu' = 0$ , but we still need to estimate  $\sigma$ . How?
  - → Asimov data set, a single representative dataset constructed from the max. likelihood estimate at μ', suppressing statistical fluctuations

$$\left( \frac{\mu - \mu'}{\sigma} \right)$$





#### The asymptotic approximation

- From Wald's theorem, we have  $\stackrel{\mu}{--}$  $\sigma_A$  $1 - p_b = 1 - \Phi\left(\sqrt{q_\mu} - \frac{\mu}{\sigma}\right) = 1 - \Phi\left(\sqrt{q}\right)$
- CL<sub>s</sub> now becomes

$$CL_{s} = \frac{1 - \Phi\left(\sqrt{q_{\mu}}\right)}{1 - \Phi\left(\sqrt{q_{\mu}} - \sqrt{q_{\mu,A}}\right)}$$

• To calculate the observed limit, need to find both  $q_{\mu}$  and  $q_{\mu,A}$ 

$$= \sqrt{q_{\mu,A}}: \qquad q_{\mu,A} = -2\ln\frac{L(\operatorname{Asimov}|\mu, \hat{\theta}_{\mu})}{L(\operatorname{Asimov}|\hat{\mu}, \hat{\theta})}$$
$$\overline{q_{\mu}} = -2\ln\frac{L(\operatorname{Data}|\mu, \hat{\theta}_{\mu})}{L(\operatorname{Data}|\hat{\mu}, \hat{\theta})}$$



#### **Expected limits in the asymptotic approximation**

- Look for the value of µ such that

$$q_{\mu,A} = \left[ \Phi^{-1}(1 - p_b) - \Phi^{-1}(1 - p_b) \right]$$

• We fix 1-p<sub>b</sub> by picking a quantile, and if we want  $CL_s = 0.05$ , this also fixes  $p_{\mu}$ 

# + $(1 - \Phi^{-1}(p_{\mu})) \Big]^{2}$



#### When can the asymptotic approximation be used?

In the limit of large event counts, but what is large?

It depends - and is always worth checking. O(10) events can certainly be sufficient

For  $m_x > 1.6$  TeV, low event counts  $\Rightarrow$  derive results from toys



Asimov results (in gray) give optimistic result compared to toys (in blue)



76

#### **Toy-based limits - peculiarities**



m

Lower bounds of the 95% and 68% interval can (almost) overlap. Why?

For very low event counts, test statistic distribution can be discrete → quantiles can be the same and so limit bands overlap

Plotting the built-up test statistic distributions can help you understand the behaviour of your limits



#### **Upper limits and exclusion contours**





**Exclusion contours:** for each point in the parameter space, check if corresponding amount of signal would be excluded (e.g. using CLs criterion)



## Summary of lecture 2

- When we're searching for a new process, need to ensure that we don't claim in error to have found new physics
  - Toolkit: hypothesis tests to evaluate p-values; look-elsewhere effect
- Even if we don't find what we are looking for, we can place an upper limit on some quantity
  - A lot like a confidence interval
  - You know how to compute these, and to be careful in the case of low event counts

