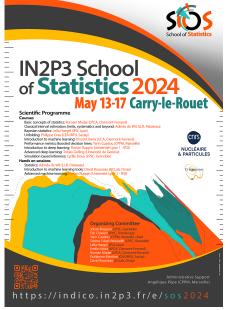
Boosted decision trees

Yann Coadou

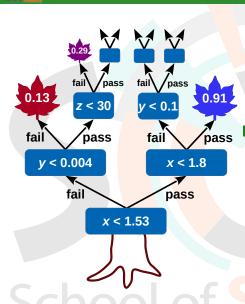
CPPM Marseille

SOS2024 Carry-le-Rouet, 15 May 2024

School of Statistics



- **Decision trees**
- 2 Limitations
- Boosted decision trees
- 4 Software
 - Conclusion
- 6 References



Decision trees

- Algorithm
- Tree hyperparameters
- Splitting a node
- Variable selection

Decision tree origin

- Machine-learning technique, widely used in social sciences. Originally data mining/pattern recognition, then medical diagnosis, insurance/loan screening, etc.
- L. Breiman et al., "Classification and Regression Trees" (1984)

Basic principle

- Extend cut-based selection
 - many (most?) events do not have all characteristics of signal or background
 - try not to rule out events failing a particular criterion
- Keep events rejected by one criterion and see whether other criteria could help classify them properly

Binary trees

- Trees can be built with branches splitting into many sub-branches
- In this lecture: mostly binary trees

STree building algorithm

Start with all events (signal and background) = first (root) node

- sort all events by each variable
- for each variable, find splitting value with best separation between two children
 - mostly signal in one child
 - mostly background in the other
- select variable and splitting value with best separation, produce two branches (nodes)
 - events failing criterion on one side
 - events passing it on the other

Keep splitting

- Now have two new nodes. Repeat algorithm recursively on each node
- Can reuse the same variable
- Iterate until stopping criterion is reached (min leaf size, max tree depth, insufficient improvement, perfect classification, etc.)
- Splitting stops: terminal node = leaf

Consider signal (s_i) and background (b_j) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event H_T

- \blacksquare Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event Ηт
 - sort all events by each variable:

$$H_{T}^{b_5} \leq H_{T}^{b_3} \leq \cdots \leq H_{T}^{s_{67}} \leq H_{T}^{s_{43}}$$

$$M_t^{b_6} \le M_t^{s_8} \le \dots \le M_t^{s_{12}} \le M_t^{b_9}$$

- \blacksquare Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event Ηт
 - sort all events by each variable:

$$\mathbf{p}_{\mathsf{T}}^{s_1} \leq p_{\mathsf{T}}^{b_{34}} \leq \cdots \leq p_{\mathsf{T}}^{b_2} \leq p_{\mathsf{T}}^{s_{12}}$$

$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105 \text{ GeV}$, separation = 0.7

- \blacksquare Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event Ηт
 - sort all events by each variable:

$$p_{\mathsf{T}}^{s_1} \leq p_{\mathsf{T}}^{b_{34}} \leq \cdots \leq p_{\mathsf{T}}^{b_2} \leq p_{\mathsf{T}}^{s_{12}}$$

$$\blacksquare \ \ H_{\mathsf{T}}^{b_5} \le H_{\mathsf{T}}^{b_3} \le \dots \le H_{\mathsf{T}}^{s_{67}} \le H_{\mathsf{T}}^{s_{43}}$$

$$M_t^{b_6} \le M_t^{s_8} \le \cdots \le M_t^{s_{12}} \le M_t^{b_9}$$

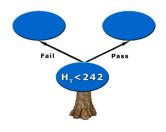
- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - \blacksquare H_T < 242 GeV, separation = 5
 - $M_t < 105 \text{ GeV}$, separation = 0.7

- \blacksquare Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event Ηт
 - sort all events by each variable:

$$p_{\mathsf{T}}^{s_1} \leq p_{\mathsf{T}}^{b_{34}} \leq \cdots \leq p_{\mathsf{T}}^{b_2} \leq p_{\mathsf{T}}^{s_{12}}$$

$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105 \text{ GeV}$, separation = 0.7
- split events in two branches: pass or fail $H_T < 242 \text{ GeV}$



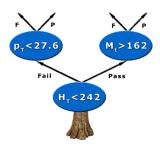
- \blacksquare Consider signal (s_i) and background (b_i) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event Ηт
 - sort all events by each variable:

$$\mathbf{p}_{\mathsf{T}}^{s_1} \leq p_{\mathsf{T}}^{b_{34}} \leq \cdots \leq p_{\mathsf{T}}^{b_2} \leq p_{\mathsf{T}}^{s_{12}}$$

$$\blacksquare \ \ H_{\mathsf{T}}^{b_5} \leq H_{\mathsf{T}}^{b_3} \leq \dots \leq H_{\mathsf{T}}^{s_{67}} \leq H_{\mathsf{T}}^{s_{43}}$$

$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105 \text{ GeV}$, separation = 0.7
- split events in two branches: pass or fail $H_T < 242 \text{ GeV}$
- Repeat recursively on each node



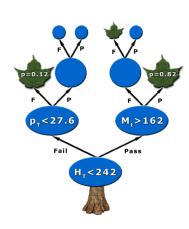
- Consider signal (s_i) and background (b_j) events described by 3 variables: p_T of leading jet, top mass M_t and scalar sum of p_T 's of all objects in the event H_T
 - sort all events by each variable:

$$p_{\mathsf{T}}^{s_1} \leq p_{\mathsf{T}}^{b_{34}} \leq \cdots \leq p_{\mathsf{T}}^{b_2} \leq p_{\mathsf{T}}^{s_{12}}$$

$$H_{T}^{b_5} \leq H_{T}^{b_3} \leq \cdots \leq H_{T}^{s_{67}} \leq H_{T}^{s_{43}}$$

$$M_t^{b_6} \leq M_t^{s_8} \leq \cdots \leq M_t^{s_{12}} \leq M_t^{b_9}$$

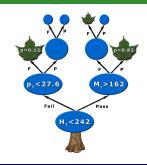
- best split (arbitrary unit):
 - $p_T < 56$ GeV, separation = 3
 - H_T < 242 GeV, separation = 5
 - $M_t < 105$ GeV, separation = 0.7
- split events in two branches: pass or fail $H_T < 242 \text{ GeV}$
- Repeat recursively on each node
- Splitting stops: e.g. events with $H_{\rm T} <$ 242 GeV and $M_t >$ 162 GeV are signal like (p=0.82)



SDecision tree output

Run event through tree

- Start from root node
- Apply first best cut
- Go to left or right child node
- Apply best cut for this node
- ...Keep going until...
- Event ends up in leaf



DT Output

- Purity $\left(\frac{s}{s+h}\right)$, with weighted events of leaf, close to 1 for signal and 0 for background
- \blacksquare or binary answer (discriminant function +1 for signal, -1 or 0 for background) based on purity above/below specified value (e.g. $\frac{1}{2}$) in leaf
- E.g. events with H_T < 242 GeV and M_t > 162 GeV have a DT output of 0.82 or +1

5Tree construction parameters

Normalization of signal and background before training

■ Balanced classes: same total weight for signal and background events (p = 0.5, maximal mixing)

Selection of splits

- list of questions ($variable_i < cut_i$?, "Is jet b-tagged?")
- goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

- minimum leaf size (for statistical significance, e.g. 100 events)
- insufficient improvement from further splitting
- perfect classification (all events in leaf belong to same class)
- maximal tree depth (like-size trees choice or computing concerns)

Assignment of terminal node to a class

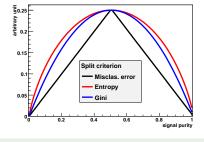
■ signal leaf if purity > 0.5, background otherwise

Optimal split: figure of merit

- Decrease of impurity for split s of node t into children t_P and t_F (goodness of split): $\Delta i(s,t) = i(t) p_P \cdot i(t_P) p_F \cdot i(t_F)$
- lacksquare Aim: find split s^* such that $\Delta i(s^*,t) = \max_{s \in \{ ext{splits}\}} \Delta i(s,t)$
- Maximising $\Delta i(s,t)$ ≡ minimising overall tree impurity

Common impurity functions

- misclassification error = 1 max(p, 1 p)
- (cross) entropy $= -\sum_{i=s,b} p_i \log p_i$
- Gini index



■ Also cross section $\left(-\frac{s^2}{s+b}\right)$ and excess significance $\left(-\frac{s^2}{b}\right)$

Reminder

■ Need model giving good description of data

Reminder

■ Need model giving good description of data

Playing with variables

- Number of variables:
 - not affected too much by "curse of dimensionality"
 - CPU consumption scales as $nN \log N$ with n variables and N training events
- Variable order does not matter: all variables treated equal
- Order of training events is irrelevant (batch training)
- Irrelevant variables:
 - no discriminative power ⇒ not used
 - only costs a little CPU time, no added noise
- Can use continuous and discrete variables, simultaneously

Transforming input variables

- Completely insensitive to replacement of any subset of input variables by (possibly different) arbitrary strictly monotone functions of them (same order ⇒ same DT):
 - $lue{}$ convert MeV ightarrow GeV
 - no need to make all variables fit in the same range
 - no need to regularise variables (e.g. taking the log)
- \Rightarrow Some immunity against outliers

Transforming input variables

- Completely insensitive to replacement of any subset of input variables by (possibly different) arbitrary strictly monotone functions of them (same order ⇒ same DT):
 - $lue{}$ convert MeV ightarrow GeV
 - no need to make all variables fit in the same range
 - no need to regularise variables (e.g. taking the log)
- ⇒ Some immunity against outliers

Note about actual implementation

- The above is strictly true only if testing all possible cut values
- If there is some computational optimisation (e.g., check only 20 possible cuts on each variable), it may not work anymore

Variable ranking (mean decrease impurity MDI)

- Ranking of x_i : add up decrease of impurity each time x_i is used
- Largest decrease of impurity (during training) = best variable

Shortcoming: masking of variables

- \blacksquare x_j may be just a little worse than x_i but will never be picked
- x_i is ranked as irrelevant
- But remove x_i and x_j becomes very relevant
 - ⇒ careful with interpreting ranking (specific to training)

Permutation importance (mean decrease accuracy MDA)

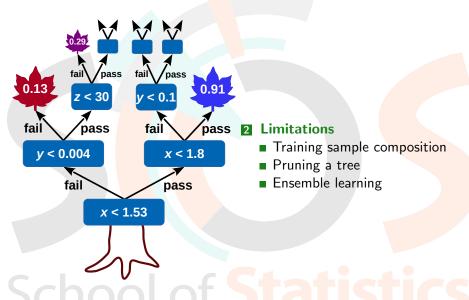
- Applicable to any already trained classifier
- Randomly shuffle each variable in turn and measure decrease of performance
- Important variable ⇒ big loss of performance
- Can also be performed on validation sample

Beware of correlations

505 Variable selection IV

Choosing variables

- Usually try to have as few variables as possible
- But difficult: correlations, possibly large number to consider, large phase space with different properties in different regions
- Brute force: with n variables train all n, n-1, etc. combinations, pick best
- Backward elimination: train with n variables, then train all n-1 variables trees and pick best one; now train all n-2 variables trees starting from the n-1 variable list; etc. Pick optimal cost-complexity tree.
- Forward greedy selection: start with k = 1 variable, then train all k + 1 variables trees and pick the best; move to k + 2 variables; etc.



Tree instability: training sample composition

- Small changes in sample can lead to very different tree structures (high variance)
- Not optimal to understand data from DT rules
- Does not give confidence in result:
 - DT output distribution discrete by nature
 - granularity related to tree complexity
 - tendency to have spikes at certain purity values (or just two delta functions at ± 1 if not using purity)

Why prune a tree?

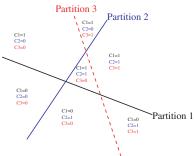
- Possible to get a perfect classifier on training events
- Mathematically misclassification error can be made as little as wanted
- E.g. tree with one class only per leaf (down to 1 event per leaf if necessary)
- Training error is zero
- But run new independent events through tree (testing or validation sample): misclassification is probably > 0, overtraining
- Pruning: eliminate subtrees (branches) that seem too specific to training sample:
 - a node and all its descendants turn into a leaf

Pruning algorithms • details in backup

- Pre-pruning (early stopping condition like min leaf size, max depth)
- Expected error pruning (based on statistical error estimate)
- Cost-complexity pruning (penalise "complex" trees with many nodes/leaves)

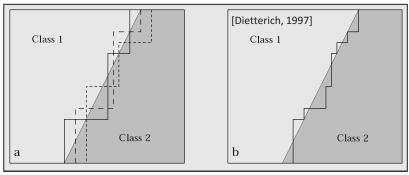
Tree (in)stability: distributed representation

- One tree:
 - one information about event (one leaf)
 - cannot really generalise to variations not covered in training set (at most as many leaves as input size)
- Many trees:
 - distributed representation: number of intersections of leaves exponential in number of trees
 - \blacksquare many leaves contain the event \Rightarrow richer description of input pattern

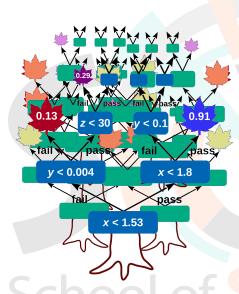


Tree (in)stability solution: averaging

Build several trees and average the output



- K-fold cross-validation (good for small samples)
 - divide training sample \mathcal{L} in K subsets of equal size: $\mathcal{L} = \bigcup_{k=1, K} \mathcal{L}_k$
 - Train tree T_k on $\mathcal{L} \mathcal{L}_k$, test on \mathcal{L}_k
 - DT output = $\frac{1}{K} \sum_{k=1}^{K} T_k$
- Bagging, boosting, random forests: ensemble learning



Boosted decision trees

- Introduction
- AdaBoost
- Figures of merit
- Clues to boosting performance
- Gradient boosting
- Performance examples
- BDTs in real physics cases

SBoosting: a brief history

First provable algorithm [Schapire 1990]

- \blacksquare Train classifier T_1 on N events
- lacktriangle Train T_2 on new N-sample, half of which misclassified by T_1
- Build T_3 on events where T_1 and T_2 disagree
- Boosted classifier: MajorityVote (T_1, T_2, T_3)

SBoosting: a brief history

First provable algorithm [Schapire 1990]

- \blacksquare Train classifier T_1 on N events
- lacktriangle Train T_2 on new N-sample, half of which misclassified by T_1
- Build T_3 on events where T_1 and T_2 disagree
- Boosted classifier: MajorityVote(T_1, T_2, T_3)

Then

- Variation [Freund 1995]: boost by majority (combining many learners with fixed error rate)
- Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

SBoosting: a brief history

First provable algorithm [Schapire 1990]

- \blacksquare Train classifier T_1 on N events
- Train T_2 on new N-sample, half of which misclassified by T_1
- Build T_3 on events where T_1 and T_2 disagree
- Boosted classifier: MajorityVote(*T*₁, *T*₂, *T*₃)

Then

- Variation [Freund 1995]: boost by majority (combining many learners with fixed error rate)
- Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

- MiniBooNe compared performance of different boosting algorithms and neural networks for particle ID [MiniBooNe 2005]
- D0 claimed first evidence for single top quark production [D0 2006]
- CDF copied ⓒ (2008). Both used BDT for single top observation

What is boosting?

- General method, not limited to decision trees
- Hard to make a very good learner, but easy to make simple, error-prone ones (but still better than random guessing)
- Goal: combine such weak classifiers into a new more stable one, with smaller error

AdaBoost

- Introduced by Freund&Schapire in 1996
- Stands for adaptive boosting
- Learning procedure adjusts to training data to classify it better
- Many variations on the same theme for actual implementation
- Usually leads to better results than without boosting

- Check which events of training sample \mathbb{T}_k are misclassified by T_k :
 - $\mathbb{I}(X) = 1$ if X is true, 0 otherwise
 - for DT output in $\{\pm 1\}$: isMisclassified_k $(i) = \mathbb{I}(y_i \times T_k(x_i) \leq 0)$
 - lacktriangledown or isMisclassified $_k(i)=\mathbb{I}ig(y_i imes (T_k(x_i)-0.5)\leq 0ig)$ in purity convention
 - misclassification rate:

$$R(T_k) = \varepsilon_k = \frac{\sum_{i=1}^N w_i^k \times \text{isMisclassified}_k(i)}{\sum_{i=1}^N w_i^k}$$

- Derive tree weight $\alpha_k = \beta \times \ln((1 \varepsilon_k)/\varepsilon_k)$
- Increase weight of misclassified events in \mathbb{T}_k to create \mathbb{T}_{k+1} :

$$w_i^k \to w_i^{k+1} = w_i^k \times e^{\alpha_k}$$

- Train T_{k+1} on \mathbb{T}_{k+1}
- Boosted result of event *i*:

$$T(i) = \frac{1}{\sum_{k=1}^{N_{\text{tree}}} \alpha_k} \sum_{k=1}^{N_{\text{tree}}} \alpha_k T_k(i)$$

SAdaBoost error rate

Misclassification rate ε on training sample

■ Can be shown to be bound:

$$\varepsilon \leq \prod_{k=1}^{N_{tree}} 2\sqrt{\varepsilon_k (1 - \varepsilon_k)}$$

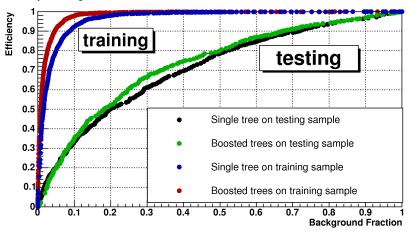
- If each tree has $\varepsilon_k \neq 0.5$ (i.e. better than random guessing): the error rate falls to zero for sufficiently large N_{tree}
- Corollary: training data is overfitted

Overtraining?

- Error rate on test sample may reach a minimum and then potentially rise. Stop boosting at the minimum.
- In principle AdaBoost *must* overfit training sample
- In many cases in literature, no loss of performance due to overtraining
 - may have to do with fact that successive trees get in general smaller and smaller weights
 - trees that lead to overtraining contribute very little to final DT output on validation sample

Training and generalisation error

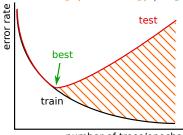
Efficiency vs. background fraction



■ Clear overtraining, but still better performance on testing sample after boosting

SOvertraining estimation: good or bad?

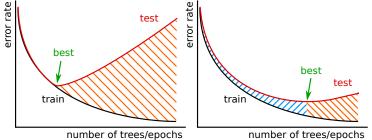
"bad" overtraining (overfitting) / "good" overtraining (still underfitting)



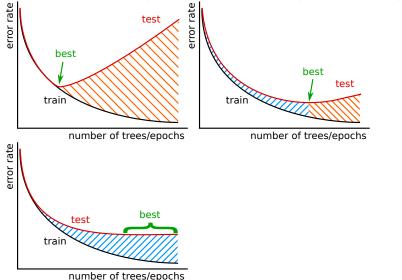
number of trees/epochs

SOVERTY Overtraining estimation: good or bad?

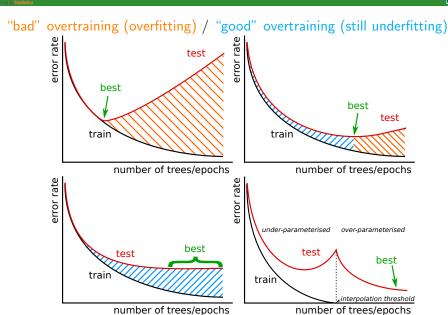
"bad" overtraining (overfitting) / "good" overtraining (still underfitting)



SOVERTY Overtraining estimation: good or bad?



SOVERTY Overtraining estimation: good or bad?



Overfitting vs. underfitting

Overfitting implies high variance

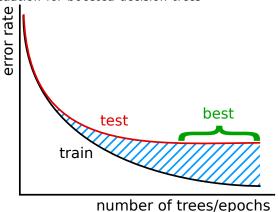
- unstable model class
- variance increases with model complexity
- variance decreases with more training data

Underfitting implies high bias

- even with no variance, model class has high error
- happens whenever model complexity is too low

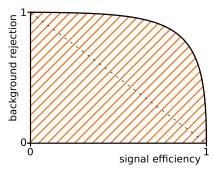
5 Overtraining estimation: good or bad?

Typical situation for boosted decision trees



"bad" overtraining (overfitting) / "good" overtraining (still underfitting)

- Common in ML: accuracy = fraction of correctly classified samples
 - not appropriate with imbalanced classes
- Receiver operating characteristic (ROC) curve
 - true positive rate vs. false positive rate
 - ... or equivalently signal efficiency vs background efficiency
 - can also replace bkg efficiency by bkg rejection (1—bkg efficiency)
 - Measure: area under the curve (AUC)



■ Excess significance s/\sqrt{b} and cross-section significance $s/\sqrt{s+b}$

■ Better: approximate median significance ($\approx s/\sqrt{b}$ for $s \ll b$):

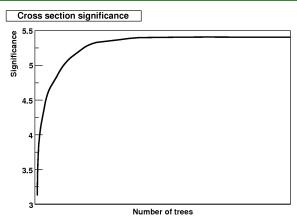
$$\mathsf{AMS} = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)}$$

■ Adding background uncertainty $b \rightarrow b \pm \sigma$ (observing n):

$$Z = \begin{cases} +\sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)} & \text{if } n \geqslant b \\ -\sqrt{2\left(n\ln\left[\frac{n(b+\sigma^2)}{b^2+n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n-b)}{b(b+\sigma^2)}\right]\right)} & \text{if } n < b \end{cases}$$

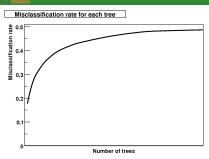
- \blacksquare simplifies to AMS for vanishing uncertainty ($\sigma = 0$)
- simplifies to $s/\sqrt{b+\sigma^2}$ for $s \ll b$
- recommended by ATLAS collaboration ► ATL-PHYS-PUB-2020-025
- Many more metrics, see e.g. in Scikit-learn documentation

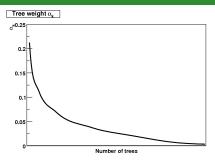
Cross section significance $(s/\sqrt{s+b})$



- More relevant than testing error
- Reaches plateau
- Afterwards, boosting does not hurt (just wasted CPU)
- Applicable to any other figure of merit of interest for your use case

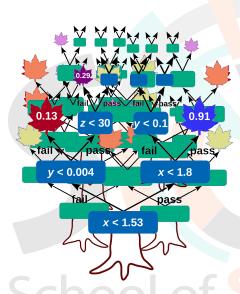
SClues to boosting performance





- First tree is best, others are minor corrections
- Specialised trees do not perform well on most events ⇒ decreasing tree weight and increasing misclassification rate
- Last tree is not better evolution of first tree, but rather a pretty bad DT that only does a good job on few cases that the other trees could not get right
- But adding trees may increase reliability of prediction: margins explanation [Shapire&Freund 2012]
 - Double descent risk curve and interpolation regime [Belkin 2019]

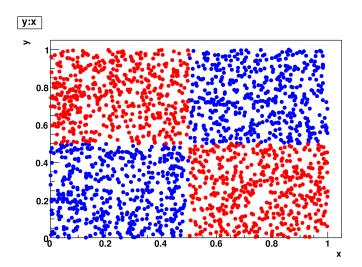
- AdaBoost recast in a statistical framework: corresponds to minimising an exponential loss
- Generalisation: formulate boosting as numerical optimisation problem, minimise loss function by adding trees using gradient descent procedure
- Procedure:
 - Build imperfect model F_k at step k (sometimes $F_k(x) \neq y$)
 - Improve model: $F_{k+1}(x) = F_k(x) + h_k(x) = y$, or residual $h_k(x) = y F_k(x)$
 - Train new classifier on residual
- Example: mean squared error loss function $L_{MSF}(x, y) = \frac{1}{2} (y F_k(x))^2$
 - minimising loss $J = \sum_i L_{\mathsf{MSE}}(x_i, y_i)$ leads to $\frac{\partial J}{\partial F_k(x_i)} = F_k(x_i) y_i$ ⇒ residual as negative gradient: $h_k(x_i) = y_i - F_k(x_i) = -\frac{\partial J}{\partial F_k(x_i)}$
- Generalised to any differentiable loss function



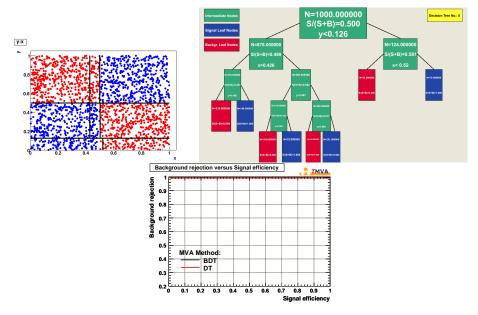
Boosted decision trees

- Performance examples
 - XOR problem
 - Boosting longer
 - Many small trees or fewer large trees?
 - Other averaging techniques

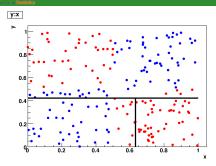
SExample: XOR problem

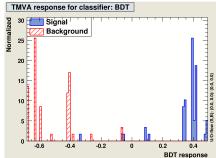


SExample: XOR problem



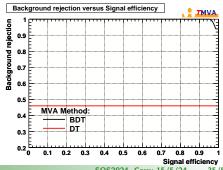
Example: XOR with 100 events

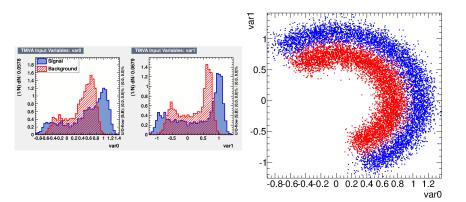




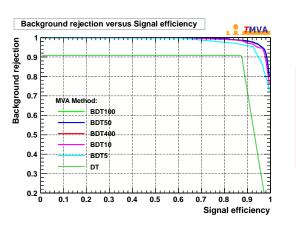
Small statistics

- Single tree not so good
- BDT very good: high performance discriminant from combination of weak classifiers

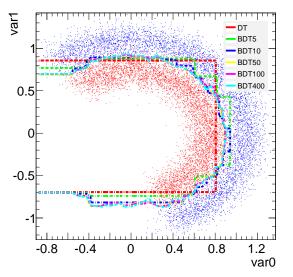




- Compare performance of single DT and BDT with more and more trees (5 to 400)
- All other parameters unchanged

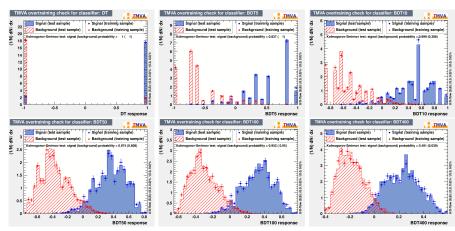


- Single (small) DT: not so good
- More trees ⇒ improve performance until saturation



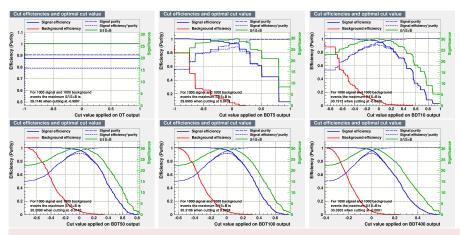
- Note: max tree depth = 3
- Single (small) DT: not so good. Note: a larger tree would solve this problem
- More trees ⇒ improve performance (less step-like, closer to optimal separation) until saturation
- Largest BDTs: wiggle a little around the contour ⇒ picked up features of training sample, that is, overtraining

Training/testing output



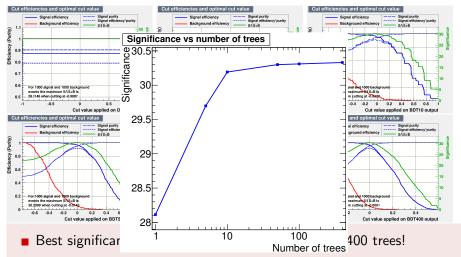
- Better shape with more trees: quasi-continuous
- Overtraining because of disagreement between training and testing? Let's see. . .

Performance in optimal significance



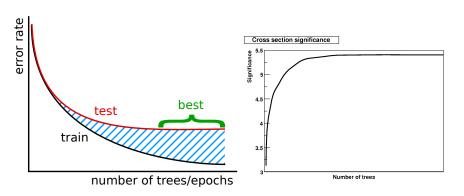
- Best significance actually obtained with last BDT, 400 trees!
- But to be fair, equivalent performance with 10 trees already
- Less "stepped" output desirable? ⇒ maybe 50 is reasonable

SPerformance in optimal significance



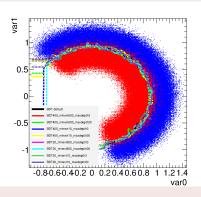
- But to be fair, equivalent performance with 10 trees already
- Less "stepped" output desirable? ⇒ maybe 50 is reasonable

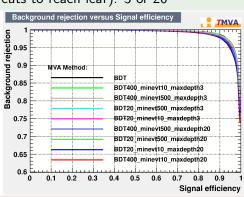
Getting best performance



≪Many small trees or fewer large trees?

- Generating larger dataset to avoid stats limitations
- 20 or 400 trees; minimum leaf size: 10 or 500 events
- Maximum depth (max # of cuts to reach leaf): 3 or 20





■ Overall: very comparable performance. Depends on use case.

Other averaging techniques

Bagging (Bootstrap aggregating)

[Breiman 1996]

- Before building tree T_k take random sample of N events from training sample with replacement
- \blacksquare Train T_k on it
- Events not picked form "out of bag" validation sample
- Applicable to other techniques than DT
 tends to produce more stable and better classifier
- Reduces variance of weak learners (while boosting reduces bias)

Other averaging techniques

Bagging (Bootstrap aggregating)

[Breiman 1996]

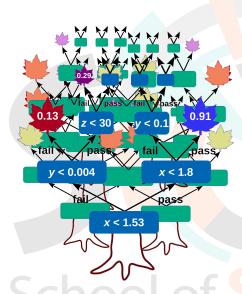
- Before building tree T_k take random sample of N events from training sample with replacement
- \blacksquare Train T_k on it
- Events not picked form "out of bag" validation sample
- Applicable to other techniques than DT ■ tends to produce more stable and better classifier
- Reduces variance of weak learners (while boosting reduces bias)

Random forests

[Breiman 2001

- Same as bagging
- In addition, pick random subset of variables to consider for each node split
- Two levels of randomisation, much more stable output
- Often as good as boosting

STOCK OF STATE OF ST

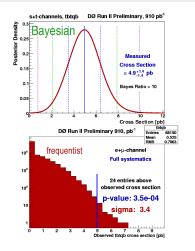


Boosted decision trees

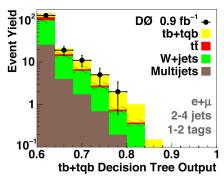
- BDTs in real physics cases
 - Single top search at D0
 - LHC examples
 - Type Ia SN photometric classification
 - BDT and systematic uncertainties

Single top production evidence at D0 (2006)

- Three multivariate techniques: BDT, Matrix Elements, BNN
- Most sensitive: BDT



 $\sigma_{s+t} = 4.9 \pm 1.4 \text{ pb}$ p-value = 0.035% (3.4 σ) SM compatibility: 11% (1.3 σ)



$$\sigma_{s} = 1.0 \pm 0.9 \; \mathrm{pb}$$
 $\sigma_{t} = 4.2^{+1.8}_{-1.4} \; \mathrm{pb}$

Decision trees — 49 input variables

Object Kinematics

```
p<sub>T</sub>(jet1)
p<sub>T</sub>(jet2)
p<sub>T</sub>(jet3)
p<sub>T</sub>(jet4)
p<sub>T</sub>(notbest1)
p<sub>T</sub>(notbest2)
p<sub>T</sub>(tag1)
p<sub>T</sub>(untag1)
p<sub>T</sub>(untag2)
```

Angular Correlations $\Delta R(\text{iet1.iet2})$

```
cos(best1,lepton)besttop
cos(best1,notbest1)besttop
cos(best1,notbest1)besttop
cos(tag1,lelpton)btaggedtop
cos(jet1,alljets)alljets
cos(jet2,lepton)btaggedtop
cos(jet2,lelpton)btaggedtop
cos(jet2,lelpton)btaggedtop
cos(jet2,lepton)btaggedtop
cos(jet0,Q(lepton) × z)besttop
cos(lepton,Q(lepton) × z)besttop
cos(lepton,btaggedtop,btaggedtopCMframe)
cos(lepton,btaggedtop,btaggedtopCMframe)
cos(notbest,alljets)
cos(notbest,lelpton)besttop
cos(untag1,alljets)
cos(untag1,lelpton)btaggedtop
```

Event Kinematics

```
Aplanarity(alljets, W)
M(W.best1) ("best" top mass)
M(W, tag1) ("b-tagged" top mass)
H_{T}(alliets)
H<sub>T</sub>(alljets-best1)
H<sub>T</sub>(alljets-tag1)
H_T(alljets, W)
H_{T}(\text{jet1,jet2})
H_T(\text{jet1,jet2}, W)
M(alliets)
M(alljets-best1)
M(alliets-tag1)
M(iet1.iet2)
M(jet1, jet2, W)
M_{T}(jet1, jet2)
M_{T}(W)
Missing E<sub>T</sub>
p_T(alljets-best1)
p<sub>T</sub>(alljets-tag1)
p_{T}(jet1, jet2)
Q(lepton) \times \eta(untag1)
Sphericity(alljets, W)
```

- Adding variables did not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels

5Decision trees — 49 input variables

Object Kinematics

```
P<sub>T</sub>(jet1)

P<sub>T</sub>(jet2)

P<sub>T</sub>(jet3)

P<sub>T</sub>(jet4)

P<sub>T</sub>(notbest1)

P<sub>T</sub>(notbest2)

P<sub>T</sub>(tag1)

P<sub>T</sub>(untag1)

P<sub>T</sub>(untag2)
```

Angular Correlations ΔR (iet1.iet2)

```
cos(best1,lepton)besttop
cos(best1,lepton)besttop
cos(best1,notbest1)besttop
cos(tag1,alljets)alljets
cos(tag1,lepton)btaggedtop
cos(jet1,lepton)btaggedtop
cos(jet2,alljets)alljets
cos(jet2,alljets)alljets
cos(jet2,lepton)btaggedtop
cos(lepton,Q(lepton)×z)besttop
cos(lepton,besttop,DesttopCMframe)
cos(leptonbestop,btaggedtopCMframe)
cos(notbest,alljets)alljets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1,lepton)btaggedtop
```

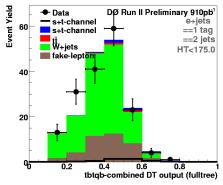
```
Event Kinematics
  Aplanarity(alljets, W)
  M(W.best1) ("best" top mass)
  M(W, tag1) ("b-tagged" top mass)
  H<sub>T</sub>(alljets)
  H<sub>T</sub>(alljets-best1)
  H<sub>T</sub>(alljets-tag1)
  H_T(alljets, W)
  H_{T}(\text{jet1,jet2})
  H_T(\text{jet1,jet2}, W)
  M(alliets)
  M(alljets-best1)
  M(alliets-tag1)
  M(iet1.iet2)
  M(jet1, jet2, W)
  M_T(jet1,jet2)
  M_{T}(W)
  Missing E<sub>T</sub>
  p_T(alljets-best1)
  p<sub>T</sub>(alljets-tag1)
  p_{T}(jet1, jet2)
  Q(lepton) \times \eta(untag1)
```

Sphericity(alljets, W)

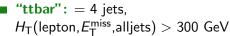
- Adding variables did not degrade performance
- Tested shorter lists, lost some sensitivity
- Same list used for all channels
- Best theoretical variable: $H_T(\text{alljets}, W)$.

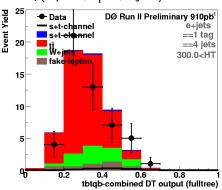
 But detector not perfect ⇒ capture the essence from several variations usually helps "dumb" MVA

- Validate method on data in no-signal region
- "W+jets": = 2 jets, H_T (lepton, E_T^{miss} ,alljets) < 175 GeV

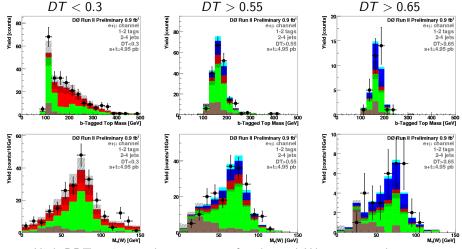


■ Good agreement



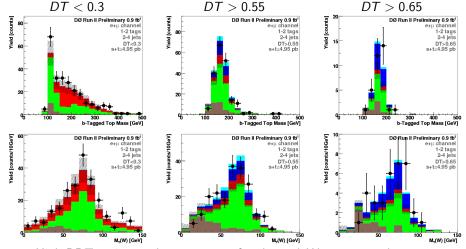


Sosted decision tree event characteristics



- High BDT region = shows masses of real t and $W \Rightarrow$ expected
- Low BDT region = background-like \Rightarrow expected

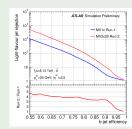
Sosted decision tree event characteristics



- High BDT region = shows masses of real t and $W \Rightarrow$ expected
- Low BDT region = background-like \Rightarrow expected
- Above does NOT tell analysis is ok, but not seeing this could be a sign of a problem

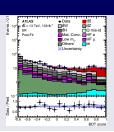
ATLAS b-tagging in Run 2

- ► Eur. Phys. J. C 79 (2019) 970
- Run 1 MV1c: NN trained from output of other taggers
- Run 2 MV2c20: BDT using feature variables of underlying algorithms and p_T , η of jets
- Run 2: introduced IBL (new innermost pixel layer)
 - \Rightarrow explains part of the performance gain, but not all



ATLAS $t\bar{t}t\bar{t}$ production evidence

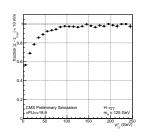
- BDT output used in final fit to measure cross section
- Constraints on systematic uncertainties from profiling

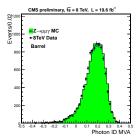


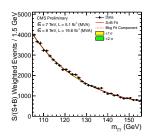
SBDT in HEP: CMS $H o \gamma \gamma$ result

Hard to use more BDT in an analysis:

- vertex selected with BDT
- 2nd vertex BDT to estimate probability to be within 1cm of interaction point
- photon ID with BDT
- photon energy corrected with BDT regression
- event-by-event energy uncertainty from another BDT
- several BDT to extract signal in different categories





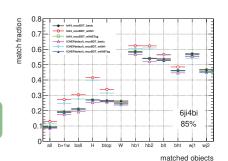


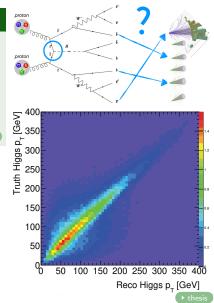
SEBDT in HEP: reducing combinatorics

$t\bar{t}H(b\bar{b})$ reconstruction

- Match jets and partons in high-multiplicity final state
- BDT trained on all combinations
- New inputs to classification BDT
- Access to Higgs p_T, origin of b-jets

▶ Phys. Rev. D 97, 072016 (2018) ▶ arXiv:2111.06712 [hep-ex]

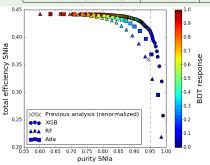


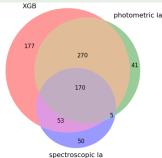


SEDT in cosmology: photometric classification

- Type la supernovae photometric classification
- Deriving redshifts from SN light curves on real data
- Tried random forest, AdaBoost and XGBoost

	AdaBoost	Random Forest	XGBoost
% SNIa $(CI = 4 \text{ or } 5)$	74 ± 3	87 ± 3	96 ± 2
% SNIa* $(CI = 3)$	58 ± 6	73 ± 6	88 ± 4





SBDT and systematic uncertainties

- No particular rule
- BDT output can be considered as any other cut variable (just more powerful). Evaluate systematics by:
 - varying cut value
 - retraining
 - calibrating, etc.
- Most common (and appropriate): propagate other uncertainties (detector, theory, etc.) up to BDT ouput and check how much the analysis is affected
- More and more common: profiling. Watch out:
 - BDT output powerful
 - signal region (high BDT output) probably low statistics
 ⇒ potential recipe for disaster if modelling is not good
- May require extra systematics, not so much on technique itself, but because it probes specific corners of phase space and/or wider parameter space (usually loosening pre-BDT selection cuts)

Boosted decision tree software

- Go for a fully integrated solution
 - use different multivariate techniques easily
 - spend your time on understanding your data and model
- Examples:
 - TMVA (Toolkit for MultiVariate Analysis) (C++/python)
 Integrated in ROOT, complete manual
 - scikit-learn (python)

https://scikit-learn.org

- Dedicated to BDT but transparently integrated with e.g. scikit-learn:

 - LightGBM [Microsoft]
 - CatBoost [Yandex]

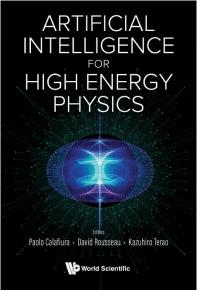
https://lightgbm.readthedocs.io

https://catboost.ai/

- Decision trees: natural extension to cut-based analysis
- Greatly improved performance with boosting (and also with bagging, random forests)
- Boosted decision trees still very common in HEP results
 - often using TMVA in ROOT or python ◆ see backup
 - more and more with XGBoost, LightGBM, etc. (see hands-on)
- Possibly soon overpowered by deep learning algorithms, although trickier to optimise
- Whichever technique you use, expect a lot of scepticism (but less and less with time): you will have to convince yourself and others that your advanced technique leads to meaningful and reliable results ⇒ ensemble tests, use several techniques, compare to random grid search, etc. But DO NOT show them useless plots like BDT output on training and testing to measure overtraining, please!
- As with other advanced techniques, no point in using them if data not understood and well modelled

HEP reference book (March 2022)

Artificial Intelligence for High Energy Physics



Contents:

- · Introduction (Paolo Calafiura, David Rousseau and Kazuhiro Terao)
- · Discriminative Models for Signal/Background Boosting:
 - Boosted Decision Trees (Yann Coadou)
 - Deep Learning from Four Vectors (Pierre Baldi, Peter Sadowski and Daniel Whiteson)
- Anomaly Detection for Physics Analysis and Less Than Supervised Learning (Benjamin Nachman) · Data Quality Monitoring:

Data Quality Monitoring Anomaly Detection (Adrian Alan Pol, Gianluca Cerminara, Cecile Germain and

- Maurizio Pierini) Generative Models:

 - Generative Models for Fast Simulation (Michela Paganini, Luke de Oliveira, Benjamin Nachman, Denis Derkach, Fedor Ratnikov, Andrey Ustyuzhanin and Aishik Ghosh)
 - Generative Networks for LHC Events (Anja Butter and Tilman Plehn)
- · Machine Learning Platforms:
 - · Distributed Training and Optimization of Neural Networks (Jean-Roch Vlimant and Jungi Yin)
 - Machine Learning for Triggering and Data Acquisition (Philip Harris and Nhan Tran)

· Detector Data Reconstruction:

- · End-to-End Analyses Using Image Classification (Adam Aurisano and Leigh H Whitehead)
- Clustering (Kazuhiro Terao)
- · Graph Neural Networks for Particle Tracking and Reconstruction (Javier Duarte and Jean-Roch

Jet Classification and Particle Identification from Low Level:

- Image-Based Jet Analysis (Michael Kagan)
- · Particle Identification in Neutrino Detectors (Ralitsa Sharankova and Taritree Wongjirad)
- Sequence-Based Learning (Rafael Teixeira de Lima) · Physics Inference:

- · Simulation-Based Inference Methods for Particle Physics (Johann Brehmer and Kyle Cranmer)
- Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)
- Bayesian Neural Networks (Tom Charnock, Laurence Perreault-Levasseur and François Lanusse) Parton Distribution Functions (Stefano Forte and Stefano Carrazza)

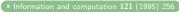
· Scientific Competitions and Open Datasets:

Machine Learning Scientific Competitions and Datasets (David Rousseau and Andrey Ustyuzhanin)

L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, *Classification and Regression Trees*, Wadsworth, Stamford, 1984

R.E. Schapire, "The strength of weak learnability" Machine Learning 5 (1990) 197

Y. Freund, "Boosting a weak learning algorithm by majority"



Y. Freund and R.E. Schapire, "Experiments with a New Boosting Algorithm" in *Machine Learning: Proceedings of the Thirteenth International Conference*, edited by L. Saitta (Morgan Kaufmann, San Fransisco, 1996) p. 148

Y. Freund and R.E. Schapire, "A short introduction to boosting"

▶ Journal of Japanese Society for Artificial Intelligence 14 (1999) 771

R. E. Schapire and Y. Freund, "Boosting: Foundations and Algorithms", MIT Press, 2012.

Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting"

Journal of Computer and System Sciences 55 (1997) 119

J.H. Friedman, T. Hastie and R. Tibshirani, "Additive logistic regression: a statistical view of boosting" • Annals of Statistics 28 (2000) 377

J. H. Friedman, "Greedy function approximation: A gradient boosting machine" ► Annals of Statistics 29 (2001) 1189

T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2nd edition)" Springer Series in Statistics, 2009

S. Shalev-Shwartz and S. Ben-David, "Understanding Machine Learning: From Theory to Algorithms" \(\bigcap \) Cambridge University Press, 2014

M. Belkin, D. Hsu, S. Ma, and S. Mandal, "Reconciling modern machine-learning practice and the classical bias-variance trade-off" PNAS 116 (2019) 15849 → arXiv:1812.11118 [stat.ML]

L. Breiman, "Bagging Predictors" Machine Learning 24 (1996) 123

L. Breiman, "Random forests" Machine Learning 45 (2001) 5

B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor ▶ Nucl. Instr. Meth. A 543 (2005) 577; H.-J. Yang, B.P. Roe, and J. Zhu Nucl. Instr. Meth. A 555 (2005) 370

V. M. Abazov et al. [D0 Collaboration], "Evidence for production of single top quarks" > Phys. Rev. D 78 (2008) 012005

SBeyond the standard slides

Pre-pruning

- Stop tree growth during building phase
- Already seen: minimum leaf size, minimum separation improvement, maximum depth, etc.
- Careful: early stopping condition may prevent from discovering further useful splitting

Expected error pruning

- Grow full tree
- When result from children not significantly different from result of parent, prune children
- Can measure statistical error estimate with binomial error $\sqrt{p(1-p)/N}$ for node with purity p and N training events
- No need for testing sample
- Known to be "too aggressive"

Pruning a tree II: cost-complexity pruning

- Idea: penalise "complex" trees (many nodes/leaves) and find compromise between good fit to training data (larger tree) and good generalisation properties (smaller tree)
- With misclassification rate R(T) of subtree T (with N_T nodes) of fully grown tree T_{max} :

cost complexity
$$R_{\alpha}(T) = R(T) + \alpha N_{T}$$

 $\alpha = \text{ complexity parameter}$

- Minimise $R_{\alpha}(T)$:
 - small α : pick T_{max}
 - large α : keep root node only, T_{max} fully pruned
- First-pass pruning, for terminal nodes t_L , t_R from split of t:
 - by construction $R(t) \ge R(t_L) + R(t_R)$
 - if $R(t) = R(t_L) + R(t_R)$ prune off t_L and t_R

SSS Statistics

Pruning a tree III: cost-complexity pruning

- For node t and subtree T_t :
 - if t non-terminal, $R(t) > R(T_t)$ by construction
 - $\blacksquare R_{\alpha}(\lbrace t \rbrace) = R_{\alpha}(t) = R(t) + \alpha (N_{T} = 1)$
 - if $R_{\alpha}(T_t) < R_{\alpha}(t)$ then branch has smaller cost-complexity than single node and should be kept
 - at critical $\alpha = \rho_t$, node is preferable to find ρ_t , solve $R_{\rho_t}(T_t) = R_{\rho_t}(t)$, or: $\rho_t = \frac{R(t) R(T_t)}{N_T 1}$
 - \blacksquare node with smallest ρ_t is weakest link and gets pruned
 - apply recursively till you get to the root node
- This generates sequence of decreasing cost-complexity subtrees
- Compute their true misclassification rate on validation sample:
 - will first decrease with cost-complexity
 - then goes through a minimum and increases again
 - pick this tree at the minimum as the best pruned tree
- Note: best pruned tree may not be optimal in a forest

■ **TMVA**: Toolkit for MultiVariate Analysis

► https://root.cern/tmva

https://github.com/root-project/root/tree/master/tmv

- Written by physicists
- In C++ (also python API), integrated in ROOT
- Quite complete manual
- Includes many different multivariate/machine learning techniques
- To compile, add appropriate header files in your code (e.g., #include "TMVA/Factory.h") and this to your compiler command line:
 'root-config --cflags --libs' -lTMVA
- More complete examples of code: \$ROOTSYS/tutorials/tmva
 - createData.C macro to make example datasets
 - classification and regression macros
 - also includes Keras examples (deep learning)
- Sometimes useful performance measures (more in these headers): #include "TMVA/ROCCalc.h"

```
TMVA::ROCCalc(TH1* S,TH1* B).GetROCIntegral();
#include "TMVA/Tools.h"
TMVA::gTools().GetSeparation(TH1* S,TH1* B);
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root")
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
factory->TrainAllMethods(); // Train MVAs using training events
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
factory->TrainAllMethods(); // Train MVAs using training events
factory->TestAllMethods(); // Evaluate all MVAs using test events
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
factory->TrainAllMethods(); // Train MVAs using training events
factory->TestAllMethods(); // Evaluate all MVAs using test events
// ---- Evaluate and compare performance of all configured MVAs
factory->EvaluateAllMethods();
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") =
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
factory->TrainAllMethods(); // Train MVAs using training events
factory->TestAllMethods(); // Evaluate all MVAs using test events
// ---- Evaluate and compare performance of all configured MVAs
factory->EvaluateAllMethods();
auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") -
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
factory->TrainAllMethods(); // Train MVAs using training events
factory->TestAllMethods(); // Evaluate all MVAs using test events
// ---- Evaluate and compare performance of all configured MVAs
factory->EvaluateAllMethods();
auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance
outputFile->Close();
delete factory; delete dataloader;
```



```
TFile* outputFile = TFile::Open("output.root", "RECREATE");
TMVA::Factory *factory = new TMVA::Factory( "TMVAClassification", outputFile,
    "!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");
TFile* inputFile = new TFile("dataSchachbrett.root") -
TTree* sig = (TTree*)inputFile->Get("TreeS");
TTree* bkg = (TTree*)inputFile->Get("TreeB");
double sigWeight = 1.0; double bkgWeight = 1.0;
TMVA::DataLoader *dataloader =
   new TMVA::DataLoader("dataset"):
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
dataloader->AddVariable("var0", 'F');
dataloader->AddVariable("var1", 'F');
TCut mycut = "";
dataloader->PrepareTrainingAndTestTree(mycut, "SplitMode=Random");
factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:
   MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");
factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");
factory->TrainAllMethods(); // Train MVAs using training events
factory->TestAllMethods(); // Evaluate all MVAs using test events
// ---- Evaluate and compare performance of all configured MVAs
factory->EvaluateAllMethods();
auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance
outputFile->Close();
delete factory; delete dataloader;
                                           TMVA::TMVAGui("output.root");
```



```
TFile* inputFile = new TFile("dataSchachbrett.root");
TTree* data = (TTree*)inputFile->Get("TreeS");
Float_t var0=-99., var1=-99.;
data->SetBranchAddress("var0", &var0);
data->SetBranchAddress("var1", &var1);
```



```
TFile* inputFile = new TFile("dataSchachbrett.root");
TTree* data = (TTree*)inputFile->Get("TreeS");
Float t var0=-99.. var1=-99.:
data->SetBranchAddress("var0", &var0);
data->SetBranchAddress("var1", &var1);
TMVA::Reader *reader = new TMVA::Reader():
reader->AddVariable( "var0", &var0 );
reader->AddVariable( "var1", &var1 );
```



```
TFile* inputFile = new TFile("dataSchachbrett.root");
TTree* data = (TTree*)inputFile->Get("TreeS");
Float t var0=-99.. var1=-99.:
data->SetBranchAddress("var0", &var0);
data->SetBranchAddress("var1", &var1);
TMVA::Reader *reader = new TMVA::Reader():
reader->AddVariable( "var0", &var0 );
reader->AddVariable( "var1", &var1 );
reader->BookMVA( "My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");
reader->BookMVA( "Fisher discriminant",
  "dataset/weights/TMVAClassification_Fisher.weights.xml");
```



```
TFile* inputFile = new TFile("dataSchachbrett.root");
TTree* data = (TTree*)inputFile->Get("TreeS");
Float t var0=-99.. var1=-99.:
data->SetBranchAddress("var0", &var0);
data->SetBranchAddress("var1", &var1):
TMVA::Reader *reader = new TMVA::Reader():
reader->AddVariable( "var0", &var0 );
reader->AddVariable( "var1", &var1 );
reader->BookMVA( "My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");
reader->BookMVA( "Fisher discriminant",
  "dataset/weights/TMVAClassification_Fisher.weights.xml");
// ----- start your event loop
for (Long64_t ievt=0; ievt<10; ++ievt) {
  data->GetEntry(ievt);
 double bdt = reader->EvaluateMVA("My BDT");
 double fisher = reader->EvaluateMVA("Fisher discriminant");
 cout<<"var0="<<var0<" var1="<<var1<" BDT="<<bdt<<" Fisher="<<fisher<<end1:
delete reader:
inputFile->Close();
```



```
TFile* inputFile = new TFile("dataSchachbrett.root");
TTree* data = (TTree*)inputFile->Get("TreeS");
Float t var0=-99.. var1=-99.:
data->SetBranchAddress("var0", &var0);
data->SetBranchAddress("var1", &var1):
TMVA::Reader *reader = new TMVA::Reader():
reader->AddVariable( "var0", &var0 );
reader->AddVariable( "var1", &var1 );
reader->BookMVA( "My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");
reader->BookMVA( "Fisher discriminant".
  "dataset/weights/TMVAClassification_Fisher.weights.xml");
// ----- start your event loop
for (Long64_t ievt=0; ievt<10; ++ievt) {
  data->GetEntry(ievt);
 double bdt = reader->EvaluateMVA("My BDT");
  double fisher = reader->EvaluateMVA("Fisher discriminant");
 cout<<"var0="<<var0<" var1="<<var1<" BDT="<<bdt<<" Fisher="<<fisher<<end1:
delete reader:
inputFile->Close();
```

More complete tutorials:

- To make code compilable (and MUCH faster)
 - Need ROOT and TMVA corresponding header files

```
■ e.g., for Train.C:
#include "TFile.h"
#include "TTree.h"
#include "TMVA/Factory.h"
#include "TMVA/DataLoader.h"
#include "TMVA/TMVAGui.h"
  Need a "main" function
int main() {
 Train():
 return 0:
  Compilation:
g++ Train.C 'root-config --cflags --libs' -1TMVA -1TMVAGui -o TMVATrainer
  ■ Train.C: file to compile
  ■ TMVATrainer: name of executable
  -ITMVAGui: just because of TMVA::TMVAGui("output.root");
```


5 TMVA: training refinements

- Common technique: train on even event numbers, test on odd event numbers (and vice versa)
- Can also think of more than two-fold
- Achieve in TMVA by replacing:

```
dataloader->AddSignalTree(sig, sigWeight);
dataloader->AddBackgroundTree(bkg, bkgWeight);
```

with:

```
TString trainString = "(eventNumber % 2 == 0)";
TString testString = "!"+trainString;
dataloader->AddTree(sig, "Signal", sigWeight, trainString.Data(), "Training");
dataloader->AddTree(sig, "Signal", sigWeight, testString.Data(), "Test");
dataloader->AddTree(bkg, "Background", bkgWeight, trainString.Data(), "Training");
dataloader->AddTree(bkg, "Background", bkgWeight, testString.Data(), "Test");
```

Use individual event weights:

```
string eventWeight = "TMath::Abs(eventWeight)"; //Compute event weight
dataloader->SetSignalWeightExpression(eventWeight);
dataloader->SetBackgroundWeightExpression(eventWeight); //Can differ
```