
Boosted decision trees

Yann Coadou

CPPM Marseille

SOS2024
Carry-le-Rouet, 15 May 2024

Outline

1 Decision trees
2 Limitations
3 Boosted decision trees
4 Software
5 Conclusion
6 References

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 2/58

https://indico.in2p3.fr/e/SOS2024

Decision trees

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1

1 Decision trees
Algorithm
Tree hyperparameters
Splitting a node
Variable selection

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 3/58

Introduction

Decision tree origin

Machine-learning technique, widely used in social sciences.
Originally data mining/pattern recognition, then medical diagnosis,
insurance/loan screening, etc.

L. Breiman et al., “Classification and Regression Trees” (1984)

Basic principle

Extend cut-based selection
many (most?) events do not have all characteristics of signal or
background
try not to rule out events failing a particular criterion

Keep events rejected by one criterion and see whether other criteria
could help classify them properly

Binary trees

Trees can be built with branches splitting into many sub-branches

In this lecture: mostly binary trees
Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 4/58

Tree building algorithm

Start with all events (signal and background) = first (root) node

sort all events by each variable

for each variable, find splitting value with best separation between
two children

mostly signal in one child
mostly background in the other

select variable and splitting value with best separation, produce two
branches (nodes)

events failing criterion on one side
events passing it on the other

Keep splitting

Now have two new nodes. Repeat algorithm recursively on each node

Can reuse the same variable

Iterate until stopping criterion is reached (min leaf size, max tree
depth, insufficient improvement, perfect classification, etc.)

Splitting stops: terminal node = leaf
Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 5/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Algorithm example

Consider signal (si) and background
(bj) events described by 3 variables: pT
of leading jet, top mass Mt and scalar
sum of pT’s of all objects in the event
HT

sort all events by each variable:
ps1
T ≤ pb34

T ≤ · · · ≤ pb2
T ≤ ps12

T

Hb5
T ≤ Hb3

T ≤ · · · ≤ Hs67
T ≤ Hs43

T

Mb6
t ≤ Ms8

t ≤ · · · ≤ Ms12
t ≤ Mb9

t

best split (arbitrary unit):
pT < 56 GeV, separation = 3
HT < 242 GeV, separation = 5
Mt < 105 GeV, separation = 0.7

split events in two branches: pass or
fail HT < 242 GeV

Repeat recursively on each node

Splitting stops: e.g. events with HT < 242 GeV and Mt > 162 GeV
are signal like (p = 0.82)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 6/58

Decision tree output

Run event through tree

Start from root node

Apply first best cut

Go to left or right child node

Apply best cut for this node

...Keep going until...

Event ends up in leaf

DT Output

Purity
(

s
s+b , with weighted events

)
of leaf, close to 1 for signal and 0

for background

or binary answer (discriminant function +1 for signal, −1 or 0 for
background) based on purity above/below specified value (e.g. 1

2) in
leaf

E.g. events with HT < 242 GeV and Mt > 162 GeV have a DT
output of 0.82 or +1

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 7/58

Tree construction parameters

Normalization of signal and background before training

Balanced classes: same total weight for signal and background events
(p = 0.5, maximal mixing)

Selection of splits

list of questions (variablei < cuti?, “Is jet b-tagged?”)

goodness of split (separation measure)

Decision to stop splitting (declare a node terminal)

minimum leaf size (for statistical significance, e.g. 100 events)

insufficient improvement from further splitting

perfect classification (all events in leaf belong to same class)

maximal tree depth (like-size trees choice or computing concerns)

Assignment of terminal node to a class

signal leaf if purity > 0.5, background otherwise

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 8/58

Splitting a node

Optimal split: figure of merit

Decrease of impurity for split s of node t into children tP and tF
(goodness of split): ∆i(s, t) = i(t)− pP · i(tP)− pF · i(tF)
Aim: find split s∗ such that ∆i(s∗, t) = maxs∈{splits}∆i(s, t)

Maximising ∆i(s, t) ≡ minimising overall tree impurity

Common impurity functions

misclassification error
= 1−max(p, 1− p)

(cross) entropy
= −

∑
i=s,b pi log pi

Gini index signal purity
0 0.2 0.4 0.6 0.8 1

ar
b

it
ra

ry
 u

n
it

0

0.05

0.1

0.15

0.2

0.25

Split criterion

Misclas. error

Entropy

Gini

Also cross section (− s2

s+b) and excess significance (− s2

b)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 9/58

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:
not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:
no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 10/58

Variable selection I

Reminder

Need model giving good description of data

Playing with variables

Number of variables:
not affected too much by “curse of dimensionality”
CPU consumption scales as nN logN with n variables and N training
events

Variable order does not matter: all variables treated equal

Order of training events is irrelevant (batch training)

Irrelevant variables:
no discriminative power ⇒ not used
only costs a little CPU time, no added noise

Can use continuous and discrete variables, simultaneously

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 10/58

Variable selection II

Transforming input variables

Completely insensitive to replacement of any subset of input variables
by (possibly different) arbitrary strictly monotone functions of them
(same order ⇒ same DT):

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 11/58

Variable selection II

Transforming input variables

Completely insensitive to replacement of any subset of input variables
by (possibly different) arbitrary strictly monotone functions of them
(same order ⇒ same DT):

convert MeV → GeV
no need to make all variables fit in the same range
no need to regularise variables (e.g. taking the log)

⇒ Some immunity against outliers

Note about actual implementation

The above is strictly true only if testing all possible cut values

If there is some computational optimisation (e.g., check only 20
possible cuts on each variable), it may not work anymore

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 11/58

Variable selection III

Variable ranking (mean decrease impurity MDI)

Ranking of xi : add up decrease of impurity each time xi is used

Largest decrease of impurity (during training) = best variable

Shortcoming: masking of variables

xj may be just a little worse than xi but will never be picked

xj is ranked as irrelevant

But remove xi and xj becomes very relevant
⇒ careful with interpreting ranking (specific to training)

Permutation importance (mean decrease accuracy MDA)

Applicable to any already trained classifier
Randomly shuffle each variable in turn and measure decrease of
performance
Important variable ⇒ big loss of performance
Can also be performed on validation sample
Beware of correlations

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 12/58

Variable selection IV

Choosing variables

Usually try to have as few variables as possible
But difficult: correlations, possibly large number to consider, large
phase space with different properties in different regions
Brute force: with n variables train all n, n − 1, etc. combinations,
pick best
Backward elimination: train with n variables, then train all n − 1
variables trees and pick best one; now train all n − 2 variables trees
starting from the n− 1 variable list; etc. Pick optimal cost-complexity
tree.
Forward greedy selection: start with k = 1 variable, then train all
k + 1 variables trees and pick the best; move to k + 2 variables; etc.

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 13/58

Decision trees

x < 1.53

fail pass

fail pass

y < 0.004

fail pass

0.910.13
fail pass

0.29

z < 30

x < 1.8

passfail

y < 0.1

2 Limitations
Training sample composition
Pruning a tree
Ensemble learning

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 14/58

Tree instability: training sample composition

Small changes in sample can lead to very different tree structures
(high variance)

Not optimal to understand data from DT rules

Does not give confidence in result:
DT output distribution discrete by nature
granularity related to tree complexity
tendency to have spikes at certain purity values (or just two delta
functions at ±1 if not using purity)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 15/58

Pruning a tree
Why prune a tree?

Possible to get a perfect classifier on training events

Mathematically misclassification error can be made as little as wanted

E.g. tree with one class only per leaf (down to 1 event per leaf if
necessary)

Training error is zero

But run new independent events through tree (testing or validation
sample): misclassification is probably > 0, overtraining
Pruning: eliminate subtrees (branches) that seem too specific to
training sample:

a node and all its descendants turn into a leaf

Pruning algorithms details in backup

Pre-pruning (early stopping condition like min leaf size, max depth)

Expected error pruning (based on statistical error estimate)

Cost-complexity pruning (penalise “complex” trees with many
nodes/leaves)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 16/58

Tree (in)stability: distributed representation

One tree:
one information about event (one leaf)
cannot really generalise to variations not covered in training set (at
most as many leaves as input size)

Many trees:
distributed representation: number of intersections of leaves
exponential in number of trees
many leaves contain the event ⇒ richer description of input pattern

Partition 1

C3=0

C1=1

C2=1

C3=0

C1=0

C2=0

C3=0

C1=0

C2=1

C3=0

C1=1

C2=1

C3=1

C1=1

C2=0

C3=1

C1=1

C2=1

C3=1

C1=0

Partition 3
Partition 2

C2=0

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 17/58

Tree (in)stability solution: averaging

Build several trees and average the output

[Dietterich, 1997]

K-fold cross-validation (good for small samples)
divide training sample L in K subsets of equal size: L =

⋃
k=1..K Lk

Train tree Tk on L − Lk , test on Lk

DT output = 1
K

∑
k=1..K Tk

Bagging, boosting, random forests: ensemble learning

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 18/58

Boosted decision trees

3 Boosted decision trees
Introduction
AdaBoost
Figures of merit
Clues to boosting performance
Gradient boosting
Performance examples
BDTs in real physics cases

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 19/58

Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 20/58

Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 20/58

Boosting: a brief history

First provable algorithm [Schapire 1990]

Train classifier T1 on N events

Train T2 on new N-sample, half of which misclassified by T1

Build T3 on events where T1 and T2 disagree

Boosted classifier: MajorityVote(T1,T2,T3)

Then

Variation [Freund 1995]: boost by majority (combining many learners
with fixed error rate)

Freund&Schapire joined forces: 1st functional model AdaBoost (1996)

When it really picked up in HEP

MiniBooNe compared performance of different boosting algorithms
and neural networks for particle ID [MiniBooNe 2005]

D0 claimed first evidence for single top quark production [D0 2006]

CDF copied (2008). Both used BDT for single top observation

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 20/58

AdaBoost [Freund&Schapire 1996]

What is boosting?

General method, not limited to decision trees

Hard to make a very good learner, but easy to make simple,
error-prone ones (but still better than random guessing)

Goal: combine such weak classifiers into a new more stable one, with
smaller error

AdaBoost

Introduced by Freund&Schapire in 1996

Stands for adaptive boosting

Learning procedure adjusts to training data to classify it better

Many variations on the same theme for actual implementation

Usually leads to better results than without boosting

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 21/58

AdaBoost algorithm

Check which events of training sample Tk are misclassified by Tk :
I(X) = 1 if X is true, 0 otherwise
for DT output in {±1}: isMisclassifiedk(i) = I

(
yi × Tk(xi) ≤ 0

)
or isMisclassifiedk(i) = I

(
yi × (Tk(xi)− 0.5) ≤ 0

)
in purity convention

misclassification rate:

R(Tk) = εk =

∑N
i=1 w

k
i × isMisclassifiedk(i)∑N

i=1 w
k
i

Derive tree weight αk = β × ln((1− εk)/εk)

Increase weight of misclassified events in Tk to create Tk+1:

wk
i → wk+1

i = wk
i × eαk

Train Tk+1 on Tk+1

Boosted result of event i :
T (i) =

1∑Ntree
k=1 αk

Ntree∑
k=1

αkTk(i)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 22/58

AdaBoost error rate

Misclassification rate ε on training sample

Can be shown to be bound:
ε ≤

Ntree∏
k=1

2
√
εk(1− εk)

If each tree has εk ̸= 0.5 (i.e. better than random guessing):
the error rate falls to zero for sufficiently large Ntree

Corollary: training data is overfitted

Overtraining?

Error rate on test sample may reach a minimum and then potentially
rise. Stop boosting at the minimum.

In principle AdaBoost must overfit training sample

In many cases in literature, no loss of performance due to overtraining
may have to do with fact that successive trees get in general smaller
and smaller weights
trees that lead to overtraining contribute very little to final DT output
on validation sample

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 23/58

Training and generalisation error

Clear overtraining, but still better performance on testing sample
after boosting

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 24/58

Overtraining estimation: good or bad?

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)
e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

interpolation threshold

under-parameterised over-parameterised

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 25/58

Overtraining estimation: good or bad?

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)
e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

interpolation threshold

under-parameterised over-parameterised

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 25/58

Overtraining estimation: good or bad?

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)
e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

interpolation threshold

under-parameterised over-parameterised

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 25/58

Overtraining estimation: good or bad?

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)
e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test

best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

interpolation threshold

under-parameterised over-parameterised

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 25/58

Overfitting vs. underfitting

Overfitting implies high variance

unstable model class

variance increases with model complexity

variance decreases with more training data

Underfitting implies high bias

even with no variance, model class has high error

happens whenever model complexity is too low

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 26/58

Overtraining estimation: good or bad?

Typical situation for boosted decision trees

e
rr

o
r

ra
te

number of trees/epochs

train

test
best

“bad” overtraining (overfitting) / “good” overtraining (still underfitting)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 27/58

Figures of merit

Common in ML: accuracy = fraction of correctly classified samples
not appropriate with imbalanced classes

Receiver operating characteristic
(ROC) curve

true positive rate vs. false positive
rate
. . . or equivalently signal efficiency
vs background efficiency
can also replace bkg efficiency by
bkg rejection (1−bkg efficiency)
Measure: area under the curve
(AUC)

Excess significance s/
√
b and cross-section significance s/

√
s + b

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 28/58

Figures of merit

Better: approximate median significance (≈ s/
√
b for s ≪ b):

AMS =

√
2
(
(s + b) ln

(
1 +

s

b

)
− s

)
Adding background uncertainty b → b ± σ (observing n):

Z =

+

√
2
(
nln

[
n(b+σ2)
b2+nσ2

]
− b2

σ2 ln
[
1 + σ2(n−b)

b(b+σ2)

])
if n ⩾ b

−
√

2
(
nln

[
n(b+σ2)
b2+nσ2

]
− b2

σ2 ln
[
1 + σ2(n−b)

b(b+σ2)

])
if n < b

simplifies to AMS for vanishing uncertainty (σ = 0)
simplifies to s/

√
b + σ2 for s ≪ b

recommended by ATLAS collaboration ATL-PHYS-PUB-2020-025

Many more metrics, see e.g. in scikit-learn documentation

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 29/58

https://cds.cern.ch/record/2736148
https://scikit-learn.org/stable/modules/model_evaluation.html

Cross section significance (s/
√
s + b)

More relevant than testing error

Reaches plateau

Afterwards, boosting does not hurt (just wasted CPU)

Applicable to any other figure of merit of interest for your use case

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 30/58

Clues to boosting performance

First tree is best, others are minor corrections
Specialised trees do not perform well on most events ⇒ decreasing
tree weight and increasing misclassification rate
Last tree is not better evolution of first tree, but rather a pretty bad
DT that only does a good job on few cases that the other trees could
not get right
But adding trees may increase reliability of prediction: margins
explanation [Shapire&Freund 2012]
Double descent risk curve and interpolation regime [Belkin 2019]

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 31/58

Gradient boosting [Friedman 2001]

AdaBoost recast in a statistical framework: corresponds to minimising
an exponential loss

Generalisation: formulate boosting as numerical optimisation
problem, minimise loss function by adding trees using gradient
descent procedure

Procedure:
Build imperfect model Fk at step k (sometimes Fk(x) ̸= y)
Improve model: Fk+1(x) = Fk(x) + hk(x) = y , or
residual hk(x) = y − Fk(x)
Train new classifier on residual

Example: mean squared error loss function
LMSE(x , y) =

1
2 (y − Fk(x))

2

minimising loss J =
∑

i LMSE(xi , yi) leads to
∂J

∂Fk (xi)
= Fk(xi)− yi

⇒ residual as negative gradient: hk(xi) = yi − Fk(xi) = − ∂J
∂Fk (xi)

Generalised to any differentiable loss function

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 32/58

Performance examples

3 Boosted decision trees
Performance examples

XOR problem
Boosting longer
Many small trees or fewer large
trees?
Other averaging techniques

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 33/58

Example: XOR problem

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 34/58

Example: XOR problem

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
BDT
DT

Background rejection versus Signal efficiency

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 34/58

Example: XOR with 100 events

Small statistics

Single tree not so good

BDT very good: high
performance discriminant from
combination of weak classifiers

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:
BDT
DT

Background rejection versus Signal efficiency

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 35/58

Example dataset

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 36/58

Boosting longer

Compare performance of single DT and BDT with more and more
trees (5 to 400)

All other parameters unchanged

Signal efficiency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ac

kg
ro

u
n

d
 r

ej
ec

ti
o

n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MVA Method:

BDT100

BDT50

BDT400

BDT10

BDT5

DT

Background rejection versus Signal efficiency

Single (small) DT: not
so good

More trees ⇒ improve
performance until
saturation

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 37/58

Decision contours

var0
-0.8 -0.4 0 0.4 0.8 1.2

va
r1

-1

-0.5

0

0.5

1

DT

BDT5

BDT10

BDT50

BDT100

BDT400

Note: max tree depth = 3

Single (small) DT: not so
good. Note: a larger tree
would solve this problem

More trees ⇒ improve
performance (less step-like,
closer to optimal
separation) until saturation

Largest BDTs: wiggle a
little around the contour
⇒ picked up features of
training sample, that is,
overtraining

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 38/58

Training/testing output

Better shape with more trees: quasi-continuous

Overtraining because of disagreement between training and testing?
Let’s see. . .

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 39/58

Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already

Less “stepped” output desirable? ⇒ maybe 50 is reasonable

1 10 100
Number of trees

28

28.5

29

29.5

30

30.5

S
ig

n
if
ic

a
n

c
e

Significance vs number of trees

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 40/58

Performance in optimal significance

Best significance actually obtained with last BDT, 400 trees!

But to be fair, equivalent performance with 10 trees already

Less “stepped” output desirable? ⇒ maybe 50 is reasonable

1 10 100
Number of trees

28

28.5

29

29.5

30

30.5

S
ig

n
if
ic

a
n

c
e

Significance vs number of trees

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 40/58

Getting best performance
e
rr

o
r

ra
te

number of trees/epochs

train

test
best

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 41/58

Many small trees or fewer large trees?

Generating larger dataset to avoid stats limitations

20 or 400 trees; minimum leaf size: 10 or 500 events

Maximum depth (max # of cuts to reach leaf): 3 or 20

Overall: very comparable performance. Depends on use case.

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 42/58

Other averaging techniques

Bagging (Bootstrap aggregating) [Breiman 1996]

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Applicable to other techniques than DT
tends to produce more stable and better classifier

Reduces variance of weak learners (while boosting reduces bias)

Random forests [Breiman 2001]

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Often as good as boosting

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 43/58

Other averaging techniques

Bagging (Bootstrap aggregating) [Breiman 1996]

Before building tree Tk take random sample of N events from
training sample with replacement

Train Tk on it

Events not picked form “out of bag” validation sample

Applicable to other techniques than DT
tends to produce more stable and better classifier

Reduces variance of weak learners (while boosting reduces bias)

Random forests [Breiman 2001]

Same as bagging

In addition, pick random subset of variables to consider for each node
split

Two levels of randomisation, much more stable output

Often as good as boosting

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 43/58

BDT usage in real physics cases

3 Boosted decision trees
BDTs in real physics cases

Single top search at D0
LHC examples
Type Ia SN photometric classifica-
tion
BDT and systematic uncertainties

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 44/58

Single top production evidence at D0 (2006)

Three multivariate techniques:
BDT, Matrix Elements, BNN

Most sensitive: BDT

σs+t = 4.9 ± 1.4 pb
p-value = 0.035% (3.4σ)

SM compatibility: 11% (1.3σ)

σs = 1.0± 0.9 pb
σt = 4.2+1.8

−1.4 pb
Phys. Rev. D78, 012005 (2008)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 45/58

http://dx.doi.org/10.1103/PhysRevD.78.012005

Decision trees — 49 input variables

Object Kinematics Event Kinematics
pT(jet1) Aplanarity(alljets,W)
pT(jet2) M(W ,best1) (“best” top mass)
pT(jet3) M(W ,tag1) (“b-tagged” top mass)
pT(jet4) HT(alljets)
pT(best1) HT(alljets−best1)
pT(notbest1) HT(alljets−tag1)
pT(notbest2) HT(alljets,W)
pT(tag1) HT(jet1,jet2)
pT(untag1) HT(jet1,jet2,W)
pT(untag2) M(alljets)

M(alljets−best1)
Angular Correlations M(alljets−tag1)
∆R(jet1,jet2) M(jet1,jet2)
cos(best1,lepton)besttop M(jet1,jet2,W)
cos(best1,notbest1)besttop MT(jet1,jet2)
cos(tag1,alljets)alljets MT(W)
cos(tag1,lepton)btaggedtop Missing ET
cos(jet1,alljets)alljets pT(alljets−best1)
cos(jet1,lepton)btaggedtop pT(alljets−tag1)
cos(jet2,alljets)alljets pT(jet1,jet2)
cos(jet2,lepton)btaggedtop Q(lepton)×η(untag1)

cos(lepton,Q(lepton)×z)besttop
√
ŝ

cos(leptonbesttop,besttopCMframe) Sphericity(alljets,W)
cos(leptonbtaggedtop,btaggedtopCMframe)
cos(notbest,alljets)alljets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1,lepton)btaggedtop

Adding variables
did not degrade
performance

Tested shorter
lists, lost some
sensitivity

Same list used for
all channels

Best theoretical
variable:
HT(alljets,W).
But detector not
perfect ⇒ capture
the essence from
several variations
usually helps
“dumb” MVA

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 46/58

Decision trees — 49 input variables

Object Kinematics Event Kinematics
pT(jet1) Aplanarity(alljets,W)
pT(jet2) M(W ,best1) (“best” top mass)
pT(jet3) M(W ,tag1) (“b-tagged” top mass)
pT(jet4) HT(alljets)
pT(best1) HT(alljets−best1)
pT(notbest1) HT(alljets−tag1)
pT(notbest2) HT(alljets,W)
pT(tag1) HT(jet1,jet2)
pT(untag1) HT(jet1,jet2,W)
pT(untag2) M(alljets)

M(alljets−best1)
Angular Correlations M(alljets−tag1)
∆R(jet1,jet2) M(jet1,jet2)
cos(best1,lepton)besttop M(jet1,jet2,W)
cos(best1,notbest1)besttop MT(jet1,jet2)
cos(tag1,alljets)alljets MT(W)
cos(tag1,lepton)btaggedtop Missing ET
cos(jet1,alljets)alljets pT(alljets−best1)
cos(jet1,lepton)btaggedtop pT(alljets−tag1)
cos(jet2,alljets)alljets pT(jet1,jet2)
cos(jet2,lepton)btaggedtop Q(lepton)×η(untag1)

cos(lepton,Q(lepton)×z)besttop
√
ŝ

cos(leptonbesttop,besttopCMframe) Sphericity(alljets,W)
cos(leptonbtaggedtop,btaggedtopCMframe)
cos(notbest,alljets)alljets
cos(notbest,lepton)besttop
cos(untag1,alljets)alljets
cos(untag1,lepton)btaggedtop

Adding variables
did not degrade
performance

Tested shorter
lists, lost some
sensitivity

Same list used for
all channels

Best theoretical
variable:
HT(alljets,W).
But detector not
perfect ⇒ capture
the essence from
several variations
usually helps
“dumb” MVA

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 46/58

Cross-check samples

Validate method on data in no-signal region

“W+jets”: = 2 jets,
HT(lepton,E

miss
T ,alljets) < 175 GeV

“ttbar”: = 4 jets,
HT(lepton,E

miss
T ,alljets) > 300 GeV

Good agreement

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 47/58

Boosted decision tree event characteristics
DT < 0.3 DT > 0.55 DT > 0.65

High BDT region = shows masses of real t and W ⇒ expected

Low BDT region = background-like ⇒ expected

Above does NOT tell analysis is ok, but not seeing this could be a sign of a
problem

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 48/58

Boosted decision tree event characteristics
DT < 0.3 DT > 0.55 DT > 0.65

High BDT region = shows masses of real t and W ⇒ expected

Low BDT region = background-like ⇒ expected

Above does NOT tell analysis is ok, but not seeing this could be a sign of a
problem

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 48/58

BDT in HEP

ATLAS b-tagging in Run 2 Eur. Phys. J. C 79 (2019) 970

Run 1 MV1c: NN trained from output of other
taggers

Run 2 MV2c20: BDT using feature variables of
underlying algorithms and pT, η of jets

Run 2: introduced IBL (new innermost pixel
layer)
⇒ explains part of the performance gain, but
not all

ATLAS tt̄tt̄ production evidence

Eur. Phys. J. C 80 (2020) 1085 arXiv:2007.14858 [hep-ex]

BDT output used in final fit to measure
cross section

Constraints on systematic uncertainties
from profiling 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

BDT score

0

0.5

1

1.5

D
at

a
/ P

re
d.

1−10

1

10

210

310

410

E
ve

nt
s

/ 0
.1

ATLAS
-1 = 13 TeV, 139 fbs

SR
Post-Fit

Data tttt
Wtt Ztt
Htt Q mis-id

Mat. Conv. HF e

*γLow m µHF
Others ttt
Uncertainty

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 49/58

http://dx.doi.org/10.1140/epjc/s10052-019-7450-8
http://dx.doi.org/10.1140/epjc/s10052-020-08509-3
http://arxiv.org/abs/2007.14858

BDT in HEP: CMS H → γγ result

CMS-PAS-HIG-13-001

Hard to use more BDT in an analysis:
vertex selected with BDT

2nd vertex BDT to estimate probability to be within 1cm of
interaction point

photon ID with BDT

photon energy corrected with BDT regression

event-by-event energy uncertainty from another BDT

several BDT to extract signal in different categories

 (GeV)
γγ

Tp
0 50 100 150 200 250

| <
 1

0
m

m
tr

ue
fr

ac
tio

n
|z

 -
 z

0

0.2

0.4

0.6

0.8

1

<PU>=19.9
CMS Preliminary Simulation

 = 125 GeVHm
γγ→H

Photon ID MVA
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

E
ve

nt
s/

0.
02

0

200

400

600

800

1000

1200

 MCγµµ→Z
8TeV Data

 -1 = 8 TeV, L = 19.6 fbsCMS preliminary,

Barrel

 (GeV)γγm
110 120 130 140 150S

/(
S

+
B

)
W

ei
gh

te
d

E
ve

nt
s

/ 1
.5

 G
eV

0

1000

2000

3000

4000

5000
Data
S+B Fit
Bkg Fit Component

σ1 ±
σ2 ±

 (MVA)-1 = 8 TeV, L = 19.6 fbs

 (MVA)-1 = 7 TeV, L = 5.1 fbs

CMS Preliminary

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 50/58

http://cds.cern.ch/record/1530524

BDT in HEP: reducing combinatorics

tt̄H(bb̄) reconstruction

Match jets and partons in
high-multiplicity final state

BDT trained on all combinations

New inputs to classification BDT

Access to Higgs pT, origin of b-jets
Phys. Rev. D 97, 072016 (2018) arXiv:2111.06712 [hep-ex]

matched objects

all b+1w ball H btop W hb1 hb2 blt bht wj1 wj2

m
a

tc
h

 f
ra

c
ti
o

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
b4l4_recoBDT_basic

b4l4_recoBDT_withH

b4l4_recoBDT_withBTag

ICHEPdefault_recoBDT_basic

ICHEPdefault_recoBDT_withH

ICHEPdefault_recoBDT_withBTag

6ji4bi

85%th
es
is

0 50 100 150 200 250 300 350 400

 [GeV]
T

Reco Higgs p

0

50

100

150

200

250

300

350

400

 [
G

e
V

]
T

 T
ru

th
 H

ig
g
s
 p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

thesis

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 51/58

https://dx.doi.org/10.1103/PhysRevD.97.072016
https://arxiv.org/abs/2111.06712
http://www.theses.fr/s189750
http://www.theses.fr/s189455

BDT in cosmology: photometric classification

Type Ia supernovae photometric classification

Deriving redshifts from SN light curves on real data

Tried random forest, AdaBoost and XGBoost
AdaBoost Random Forest XGBoost

% SNIa (CI = 4 or 5) 74± 3 87± 3 96± 2

% SNIa* (CI = 3) 58± 6 73± 6 88± 4 JCAP 12 (2016) 008

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 52/58

http://dx.doi.org/10.1088/1475-7516/2016/12/008

BDT and systematic uncertainties

No particular rule

BDT output can be considered as any other cut variable (just more
powerful). Evaluate systematics by:

varying cut value
retraining
calibrating, etc.

Most common (and appropriate): propagate other uncertainties
(detector, theory, etc.) up to BDT ouput and check how much the
analysis is affected

More and more common: profiling.
Watch out:

BDT output powerful
signal region (high BDT output) probably low statistics
⇒ potential recipe for disaster if modelling is not good

May require extra systematics, not so much on technique itself, but
because it probes specific corners of phase space and/or wider
parameter space (usually loosening pre-BDT selection cuts)

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 53/58

Boosted decision tree software

Go for a fully integrated solution
use different multivariate techniques easily
spend your time on understanding your data and model

Examples:
TMVA (Toolkit for MultiVariate Analysis) (C++/python)
Integrated in ROOT, complete manual https://root.cern/tmva

scikit-learn (python) https://scikit-learn.org

Dedicated to BDT but transparently integrated with e.g. scikit-learn:
XGBoost (popular in HEP) arXiv:1603.02754 https://github.com/dmlc/xgboost

(note: cannot handle negative weights)
LightGBM [Microsoft] https://lightgbm.readthedocs.io

CatBoost [Yandex] https://catboost.ai/

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 54/58

https://root.cern/tmva
https://scikit-learn.org
http://arxiv.org/abs/1603.02754
https://github.com/dmlc/xgboost
https://lightgbm.readthedocs.io
https://catboost.ai/

Conclusion

Decision trees: natural extension to cut-based analysis

Greatly improved performance with boosting (and also with bagging,
random forests)

Boosted decision trees still very common in HEP results
often using TMVA in ROOT or python see backup

more and more with XGBoost, LightGBM, etc. (see hands-on)

Possibly soon overpowered by deep learning algorithms, although
trickier to optimise

Whichever technique you use, expect a lot of scepticism (but less and
less with time): you will have to convince yourself and others that
your advanced technique leads to meaningful and reliable results
⇒ ensemble tests, use several techniques, compare to random grid
search, etc. But DO NOT show them useless plots like BDT output
on training and testing to measure overtraining, please!

As with other advanced techniques,
no point in using them if data not understood and well modelled

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 55/58

HEP reference book (March 2022)

Artificial Intelligence for High Energy Physics https://doi.org/10.1142/12200
Sample Chapter(s)

Chapter 1: Introduction

Contents:

• Introduction (Paolo Cala�ura, David Rousseau and Kazuhiro Terao)

• Discriminative Models for Signal/Background Boosting:

◦ Boosted Decision Trees (Yann Coadou)

◦ Deep Learning from Four Vectors (Pierre Baldi, Peter Sadowski and Daniel Whiteson)

◦ Anomaly Detection for Physics Analysis and Less Than Supervised Learning (Benjamin Nachman)

• Data Quality Monitoring:

◦ Data Quality Monitoring Anomaly Detection (Adrian Alan Pol, Gianluca Cerminara, Cecile Germain and

Maurizio Pierini)

• Generative Models:

◦ Generative Models for Fast Simulation (Michela Paganini, Luke de Oliveira, Benjamin Nachman, Denis

Derkach, Fedor Ratnikov, Andrey Ustyuzhanin and Aishik Ghosh)

◦ Generative Networks for LHC Events (Anja Butter and Tilman Plehn)

• Machine Learning Platforms:

◦ Distributed Training and Optimization of Neural Networks (Jean-Roch Vlimant and Junqi Yin)

◦ Machine Learning for Triggering and Data Acquisition (Philip Harris and Nhan Tran)

• Detector Data Reconstruction:

◦ End-to-End Analyses Using Image Classi�cation (Adam Aurisano and Leigh H Whitehead)

◦ Clustering (Kazuhiro Terao)

◦ Graph Neural Networks for Particle Tracking and Reconstruction (Javier Duarte and Jean-Roch

Vlimant)

• Jet Classi�cation and Particle Identi�cation from Low Level:

◦ Image-Based Jet Analysis (Michael Kagan)

◦ Particle Identi�cation in Neutrino Detectors (Ralitsa Sharankova and Taritree Wongjirad)

◦ Sequence-Based Learning (Rafael Teixeira de Lima)

• Physics Inference:

◦ Simulation-Based Inference Methods for Particle Physics (Johann Brehmer and Kyle Cranmer)

◦ Dealing with Nuisance Parameters (T Dorigo and P de Castro Manzano)

◦ Bayesian Neural Networks (Tom Charnock, Laurence Perreault-Levasseur and François Lanusse)

◦ Parton Distribution Functions (Stefano Forte and Stefano Carrazza)

• Scienti�c Competitions and Open Datasets:

◦ Machine Learning Scienti�c Competitions and Datasets (David Rousseau and Andrey Ustyuzhanin)

• Index

Readership: Graduate students and physicists interested in AI/ML applications to HEP; data scientists and ML

researchers interested in "big science" data analysis and simulation.

We recommend

Chapter 5: Data Quality Monitoring Anomaly Detection

Adrian Alan Pol et al., World Scientific Book

ULTRA-FAST TIMING AND THE APPLICATION OF

HIGH ENERGY PHYSICS TECHNOLOGIES TO

BIOMEDICAL IMAGING

World Scientific Book

Oxygen Consumption and Metabolite Flux of Bovine

Portal-Drained Viscera and Liver

Gerald B. Huntington et al., The Journal of Nutrition,

1987

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 56/58

https://doi.org/10.1142/12200

References I

L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and
Regression Trees, Wadsworth, Stamford, 1984

R.E. Schapire, “The strength of weak learnability” Machine Learning 5 (1990) 197

Y. Freund, “Boosting a weak learning algorithm by majority”
Information and computation 121 (1995) 256

Y. Freund and R.E. Schapire, “Experiments with a New Boosting Algorithm” in
Machine Learning: Proceedings of the Thirteenth International Conference, edited
by L. Saitta (Morgan Kaufmann, San Fransisco, 1996) p. 148

Y. Freund and R.E. Schapire, “A short introduction to boosting”
Journal of Japanese Society for Artificial Intelligence 14 (1999) 771

R. E. Schapire and Y. Freund, “Boosting: Foundations and Algorithms”, MIT
Press, 2012.

Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning

and an application to boosting” Journal of Computer and System Sciences 55 (1997) 119

J.H. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression: a

statistical view of boosting” Annals of Statistics 28 (2000) 377

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 57/58

http://dx.doi.org/10.1023/A:1022648800760
http://dx.doi.org/10.1006/inco.1995.1136
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5846
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1214/aos/1016218223

References II

J. H. Friedman, “Greedy function approximation: A gradient boosting machine”
Annals of Statistics 29 (2001) 1189

T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (2nd edition)” Springer Series in Statistics, 2009

S. Shalev-Shwartz and S. Ben-David, “Understanding Machine Learning: From
Theory to Algorithms” Cambridge University Press, 2014

M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning

practice and the classical bias–variance trade-off” PNAS 116 (2019) 15849 ,
arXiv:1812.11118 [stat.ML]

L. Breiman, “Bagging Predictors” Machine Learning 24 (1996) 123

L. Breiman, “Random forests” Machine Learning 45 (2001) 5

B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor
Nucl. Instr. Meth. A 543 (2005) 577 ; H.-J. Yang, B.P. Roe, and J. Zhu
Nucl. Instr. Meth. A 555 (2005) 370

V. M. Abazov et al. [D0 Collaboration], “Evidence for production of single top

quarks” Phys. Rev. D 78 (2008) 012005

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 58/58

http://dx.doi.org/10.1214/aos/1013203451
https://web.stanford.edu/~hastie/ElemStatLearn/
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning
http://dx.doi.org/10.1073/pnas.1903070116
http://arxiv.org/abs/1812.11118
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.nima.2004.12.018
http://dx.doi.org/10.1016/j.nima.2005.09.022
http://dx.doi.org/10.1103/PhysRevD.78.012005

Beyond the standard slides

Backup
Pruning a decision tree

ML training with TMVA

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 59/58

Pruning a tree I

Pre-pruning

Stop tree growth during building phase

Already seen: minimum leaf size, minimum separation improvement,
maximum depth, etc.

Careful: early stopping condition may prevent from discovering
further useful splitting

Expected error pruning

Grow full tree

When result from children not significantly different from result of
parent, prune children

Can measure statistical error estimate with binomial error√
p(1− p)/N for node with purity p and N training events

No need for testing sample

Known to be “too aggressive”
Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 60/58

Pruning a tree II: cost-complexity pruning

Idea: penalise “complex” trees (many nodes/leaves) and find
compromise between good fit to training data (larger tree) and good
generalisation properties (smaller tree)

With misclassification rate R(T) of subtree T (with NT nodes) of
fully grown tree Tmax :

cost complexity Rα(T) = R(T) + αNT

α = complexity parameter

Minimise Rα(T):
small α: pick Tmax

large α: keep root node only, Tmax fully pruned

First-pass pruning, for terminal nodes tL, tR from split of t:
by construction R(t) ≥ R(tL) + R(tR)
if R(t) = R(tL) + R(tR) prune off tL and tR

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 61/58

Pruning a tree III: cost-complexity pruning

For node t and subtree Tt :
if t non-terminal, R(t) > R(Tt) by construction
Rα({t}) = Rα(t) = R(t) + α (NT = 1)
if Rα(Tt) < Rα(t) then branch has smaller cost-complexity than single
node and should be kept
at critical α = ρt , node is preferable
to find ρt , solve Rρt (Tt) = Rρt (t), or: ρt =

R(t)− R(Tt)

NT − 1

node with smallest ρt is weakest link and gets pruned
apply recursively till you get to the root node

This generates sequence of decreasing cost-complexity subtrees

Compute their true misclassification rate on validation sample:
will first decrease with cost-complexity
then goes through a minimum and increases again
pick this tree at the minimum as the best pruned tree

Note: best pruned tree may not be optimal in a forest

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 62/58

Introduction to TMVA (ROOT v6.20.06)

TMVA: Toolkit for MultiVariate Analysis
https://root.cern/tmva https://github.com/root-project/root/tree/master/tmva

Written by physicists

In C++ (also python API), integrated in ROOT

Quite complete manual

Includes many different multivariate/machine learning techniques

To compile, add appropriate header files in your code (e.g., #include
"TMVA/Factory.h") and this to your compiler command line:
‘root-config --cflags --libs‘ -lTMVA

More complete examples of code: $ROOTSYS/tutorials/tmva
createData.C macro to make example datasets
classification and regression macros
also includes Keras examples (deep learning)

Sometimes useful performance measures (more in these headers):
#include "TMVA/ROCCalc.h"

TMVA::ROCCalc(TH1* S,TH1* B).GetROCIntegral();

#include "TMVA/Tools.h"

TMVA::gTools().GetSeparation(TH1* S,TH1* B);

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 63/58

https://root.cern/tmva
https://github.com/root-project/root/tree/master/tmva

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader;

TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Training with TMVA (Train.C)
TFile* outputFile = TFile::Open("output.root","RECREATE");

TMVA::Factory *factory = new TMVA::Factory("TMVAClassification", outputFile,

"!V:Color:DrawProgressBar:Transformations=I:AnalysisType=Classification");

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* sig = (TTree*)inputFile->Get("TreeS");

TTree* bkg = (TTree*)inputFile->Get("TreeB");

double sigWeight = 1.0; double bkgWeight = 1.0;

TMVA::DataLoader *dataloader =

new TMVA::DataLoader("dataset");

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

dataloader->AddVariable("var0", ’F’);

dataloader->AddVariable("var1", ’F’);

TCut mycut = "";

dataloader->PrepareTrainingAndTestTree(mycut,"SplitMode=Random");

factory->BookMethod(dataloader, TMVA::Types::kBDT, "BDT", "!H:!V:NTrees=400:

MinNodeSize=4%:MaxDepth=5:BoostType=AdaBoost:AdaBoostBeta=0.15:nCuts=80");

factory->BookMethod(dataloader, TMVA::Types::kFisher, "Fisher", "!H:!V:Fisher");

factory->TrainAllMethods(); // Train MVAs using training events

factory->TestAllMethods(); // Evaluate all MVAs using test events

// ----- Evaluate and compare performance of all configured MVAs

factory->EvaluateAllMethods();

auto c1 = factory->GetROCCurve(dataloader); // Eager to compare performance

outputFile->Close();

delete factory; delete dataloader; TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 64/58

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 65/58

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 65/58

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 65/58

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 65/58

https://github.com/lmoneta/tmva-tutorial

Apply classifier with TMVA (Apply.C)

TFile* inputFile = new TFile("dataSchachbrett.root");

TTree* data = (TTree*)inputFile->Get("TreeS");

Float_t var0=-99., var1=-99.;

data->SetBranchAddress("var0", &var0);

data->SetBranchAddress("var1", &var1);

TMVA::Reader *reader = new TMVA::Reader();

reader->AddVariable("var0", &var0);

reader->AddVariable("var1", &var1);

reader->BookMVA("My BDT", "dataset/weights/TMVAClassification_BDT.weights.xml");

reader->BookMVA("Fisher discriminant",

"dataset/weights/TMVAClassification_Fisher.weights.xml");

// ------- start your event loop

for (Long64_t ievt=0; ievt<10; ++ievt) {

data->GetEntry(ievt);

double bdt = reader->EvaluateMVA("My BDT");

double fisher = reader->EvaluateMVA("Fisher discriminant");

cout<<"var0="<<var0<<" var1="<<var1<<" BDT="<<bdt<<" Fisher="<<fisher<<endl;

}

delete reader;

inputFile->Close();

More complete tutorials:
https://github.com/lmoneta/tmva-tutorial

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 65/58

https://github.com/lmoneta/tmva-tutorial

Compiling TMVA with C++

To make code compilable (and MUCH faster)
Need ROOT and TMVA corresponding header files
e.g., for Train.C:

#include "TFile.h"

#include "TTree.h"

#include "TMVA/Factory.h"

#include "TMVA/DataLoader.h"

#include "TMVA/TMVAGui.h"

Need a “main” function
int main() {

Train();

return 0;

}

Compilation:
g++ Train.C ‘root-config --cflags --libs‘ -lTMVA -lTMVAGui -o TMVATrainer

Train.C: file to compile
TMVATrainer: name of executable
-lTMVAGui: just because of TMVA::TMVAGui("output.root");

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 66/58

TMVA: training refinements

Common technique: train on even event numbers, test on odd event
numbers (and vice versa)

Can also think of more than two-fold

Achieve in TMVA by replacing:

dataloader->AddSignalTree(sig, sigWeight);

dataloader->AddBackgroundTree(bkg, bkgWeight);

with:

TString trainString = "(eventNumber % 2 == 0)";

TString testString = "!"+trainString;

dataloader->AddTree(sig, "Signal", sigWeight, trainString.Data(), "Training");

dataloader->AddTree(sig, "Signal", sigWeight, testString.Data(), "Test");

dataloader->AddTree(bkg, "Background", bkgWeight, trainString.Data(), "Training");

dataloader->AddTree(bkg, "Background", bkgWeight, testString.Data(), "Test");

Use individual event weights:

string eventWeight = "TMath::Abs(eventWeight)"; //Compute event weight

dataloader->SetSignalWeightExpression(eventWeight);

dataloader->SetBackgroundWeightExpression(eventWeight); //Can differ

Yann Coadou (CPPM) — Boosted decision trees SOS2024, Carry 15/5/24 67/58

